Publikationsserver der Universitätsbibliothek Marburg

Titel:The use of FLP-mediated recombination for the functional analysis of an effector gene family in the biotrophic smut fungus Ustilago maydis
Autor:Khrunyk, Yuliya
Weitere Beteiligte: Kahmann, Regine (Prof. Dr. )
Veröffentlicht:2010
URI:https://archiv.ub.uni-marburg.de/diss/z2010/0761
DOI: https://doi.org/10.17192/z2010.0761
URN: urn:nbn:de:hebis:04-z2010-07614
DDC: Biowissenschaften, Biologie
Titel (trans.):Die Anwendung der FLP-vermittelten Rekombination für funktionelle Analyse einer Effektoren Genfamilie im biotrophen Brandpilz Ustilago maydis
Publikationsdatum:2010-12-29
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
FLP recombinase, Gene family, Effector, Ustilago, FLP Rekombinase, Rekombination, Effektor, Maize, Ustilago, Ustilago zeae
Referenziert von:

Summary:
Ustilago maydis, a dimorphic hemibasidiomycete fungus, is the causative agent of corn smut disease and has become one of the models for the study of biotrophic interactions. The establishment of biotrophic growth critically depends on secreted effector molecules. Among the novel secreted U. maydis effectors some are encoded by gene families which may have redundant functions. Due to the limited number of selectable markers it was not possible to perform sequential gene deletions when this thesis was started, i.e. the functional analysis of effector gene families was not possible. To solve this problem I have established an inducible FLP-mediated marker recycling system in U. maydis. It consists of three main steps: i) the generation of a deletion mutant in which the selectable marker introduced is flanked by directly oriented FRT (FLP recombination targets) sites, ii) the introduction of an inducible FLP gene on an autonomously replicating plasmid and iii) the induction of FLP expression and the subsequent screening for the loss of the selectable marker as well as the FLP donor plasmid. To eliminate possible inter- and intramolecular recombination events between identical FRT sites left in the genome after excision, FRT sequences with different point mutations in the core region were employed. The FLP-mediated selectable marker removal technique was successfully applied to delete a family of 11 effector genes (eff1) using five sequential rounds of recombination. All Eff1 proteins have the same architecture, consisting of an N-terminal signal sequence, a central region predicted to be natively unstructured, and a conserved C-terminal domain, which presumably represents the only folded part of these proteins. I showed that expression of all 11 genes is specifically upregulated during the biotrophic phase. Strains carrying deletions of 9 or all 11 genes displayed a significant reduction in virulence and this phenotype could be partially complemented by the introduction of different members from the gene family, demonstrating redundancy. The combined deletion analysis and complementation studies conducted for members of the eff1 family has revealed that three of the 11 eff1 genes contribute most significantly to virulence, while all the other members of this gene family contribute to virulence only weakly.

Bibliographie / References

  1. Davis RP, Costa M, Grandela C, Holland AM, Hatzistavrou T, Micallef SJ, Li X, Goulburn AL, Azzola L, Elefanty AG, Stanley EG. 2008. A protocol for removal of antibiotic resistance cassettes from human embryonic stem cells genetically modified by homologous recombination or transgenesis. Nat Protoc 3(10): 1550-1558.
  2. Catanzariti AM, Dodds PN, Lawrence GJ, Ayliffe MA, Ellis JG. 2006. Haustorially expressed secreted proteins from flax rust are highly enriched for avirulence elicitors. Plant Cell 18(1): 243-256.
  3. Tang X, Frederick RD, Zhou J, Halterman DA, Jia Y, Martin GB. 1996. Initiation of Plant Disease Resistance by Physical Interaction of AvrPto and Pto Kinase. Science 274(5295): 2060-2063.
  4. Molina L, Kahmann R. 2007. An Ustilago maydis gene involved in H2O2 detoxification is required for virulence. Plant Cell 19(7): 2293-2309.
  5. Fladung M, Becker D. 2010. Targeted integration and removal of transgenes in hybrid aspen (Populus tremula L. x P. tremuloides Michx.) using site-specific recombination systems. Plant Biol (Stuttg) 12(2): 334-340.
  6. Oliva R, Win J, Raffaele S, Boutemy L, Bozkurt TO, Chaparro-Garcia A, Segretin ME, Stam R, Schornack S, Cano LM, van Damme M, Huitema E, Thines M, Banfield MJ, Kamoun S. 2010. Recent developments in effector biology of filamentous plant pathogens. Cell Microbiol.
  7. Kämper J. 2004. A PCR-based system for highly efficient generation of gene replacement mutants in Ustilago maydis. Mol Genet Genomics 271(1): 103- 110.
  8. Brachmann A, Konig J, Julius C, Feldbrugge M. 2004. A reverse genetic approach for generating gene replacement mutants in Ustilago maydis. Mol Genet Genomics 272(2): 216-226.
  9. Perez-Martin J, Castillo-Lluva S, Sgarlata C, Flor-Parra I, Mielnichuk N, Torreblanca J, Carbo N. 2006. Pathocycles: Ustilago maydis as a model to study the relationships between cell cycle and virulence in pathogenic fungi. Mol Genet Genomics 276(3): 211-229.
  10. Kämper J, Reichmann M, Romeis T, Bolker M, Kahmann R. 1995. Multiallelic recognition: nonself-dependent dimerization of the bE and bW homeodomain proteins in Ustilago maydis. Cell 81(1): 73-83.
  11. Xiang T, Zong N, Zou Y, Wu Y, Zhang J, Xing W, Li Y, Tang X, Zhu L, Chai J, Zhou JM. 2008. Pseudomonas syringae effector AvrPto blocks innate immunity by targeting receptor kinases. Curr Biol 18(1): 74-80.
  12. Misas-Villamil JC, van der Hoorn RA. 2008. Enzyme-inhibitor interactions at the plant-pathogen interface. Curr Opin Plant Biol 11(4): 380-388.
  13. Banuett F, Herskowitz I. 2002. Bud morphogenesis and the actin and microtubule cytoskeletons during budding in the corn smut fungus, Ustilago maydis. Fungal Genet Biol 37(2): 149-170.
  14. Loubradou G, Brachmann A, Feldbrugge M, Kahmann R. 2001. A homologue of the transcriptional repressor Ssn6p antagonizes cAMP signalling in Ustilago maydis. Mol Microbiol 40(3): 719-730.
  15. Birch PR, Armstrong M, Bos J, Boevink P, Gilroy EM, Taylor RM, Wawra S, Pritchard L, Conti L, Ewan R, Whisson SC, van West P, Sadanandom A, Kamoun S. 2009. Towards understanding the virulence functions of RXLR effectors of the oomycete plant pathogen Phytophthora infestans. J Exp Bot 60(4): 1133-1140.
  16. Kemen E, Kemen AC, Rafiqi M, Hempel U, Mendgen K, Hahn M, Voegele RT. 2005. Identification of a protein from rust fungi transferred from haustoria into infected plant cells. Mol Plant Microbe Interact 18(11): 1130-1139.
  17. Zheng Y, Kief J, Auffarth K, Farfsing JW, Mahlert M, Nieto F, Basse CW. 2008. The Ustilago maydis Cys2His2-type zinc finger transcription factor Mzr1 regulates fungal gene expression during the biotrophic growth stage. Mol Microbiol 68(6): 1450-1470.
  18. Mendoza-Mendoza A, Berndt P, Djamei A, Weise C, Linne U, Marahiel M, Vranes M, Kamper J, Kahmann R. 2009. Physical-chemical plant-derived signals induce differentiation in Ustilago maydis. Mol Microbiol 71(4): 895- 911.
  19. Doehlemann G, Wahl R, Horst RJ, Voll LM, Usadel B, Poree F, Stitt M, Pons- Kuhnemann J, Sonnewald U, Kahmann R, Kamper J. 2008. Reprogramming a maize plant: transcriptional and metabolic changes induced by the fungal biotroph Ustilago maydis. Plant J 56(2): 181-195.
  20. Kvitko BH, Park DH, Velasquez AC, Wei CF, Russell AB, Martin GB, Schneider DJ, Collmer A. 2009. Deletions in the repertoire of Pseudomonas syringae pv. tomato DC3000 type III secretion effector genes reveal functional overlap among effectors. PLoS Pathog 5(4): e1000388.
  21. Bischof J, Basler K. 2008. Recombinases and their use in gene activation, gene inactivation, and transgenesis. Methods Mol Biol 420: 175-195.
  22. Takken FL, Tameling WI. 2009. To nibble at plant resistance proteins. Science 324(5928): 744-746.
  23. Stergiopoulos I, de Wit PJ. 2009. Fungal effector proteins. Annu Rev Phytopathol 47: 233-263.
  24. Staats M, van Baarlen P, Schouten A, van Kan JA, Bakker FT. 2007. Positive selection in phytotoxic protein-encoding genes of Botrytis species. Fungal Genet Biol 44(1): 52-63.
  25. Bolton MD, van Esse HP, Vossen JH, de Jonge R, Stergiopoulos I, Stulemeijer IJ, van den Berg GC, Borras-Hidalgo O, Dekker HL, de Koster CG, de Wit PJ, Joosten MH, Thomma BP. 2008. The novel Cladosporium fulvum lysin motif effector Ecp6 is a virulence factor with orthologues in other fungal species. Mol Microbiol 69(1): 119-136.
  26. Boller T, He SY. 2009. Innate immunity in plants: an arms race between pattern recognition receptors in plants and effectors in microbial pathogens. Science 324(5928): 742-744. References 103
  27. Boller T, Felix G. 2009. A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu Rev Plant Biol 60: 379-406.
  28. Xing W, Zou Y, Liu Q, Liu J, Luo X, Huang Q, Chen S, Zhu L, Bi R, Hao Q, Wu JW, Zhou JM, Chai J. 2007. The structural basis for activation of plant immunity by bacterial effector protein AvrPto. Nature 449(7159): 243-247.
  29. Göhre V, Robatzek S. 2008. Breaking the barriers: microbial effector molecules subvert plant immunity. Annu Rev Phytopathol 46: 189-215.
  30. Shen QH, Saijo Y, Mauch S, Biskup C, Bieri S, Keller B, Seki H, Ulker B, Somssich IE, Schulze-Lefert P. 2007. Nuclear activity of MLA immune receptors links isolate-specific and basal disease-resistance responses. Science 315(5815): 1098-1103.
  31. Storici F, Coglievina M, Bruschi CV. 1999. A 2-microm DNA-based marker recycling system for multiple gene disruption in the yeast Saccharomyces cerevisiae. Yeast 15(4): 271-283.
  32. Kamoun S. 2006. A catalogue of the effector secretome of plant pathogenic oomycetes. Annu Rev Phytopathol 44: 41-60.
  33. Hiller NL, Bhattacharjee S, van Ooij C, Liolios K, Harrison T, Lopez-Estrano C, Haldar K. 2004. A host-targeting signal in virulence proteins reveals a secretome in malarial infection. Science 306(5703): 1934-1937.
  34. Luo H, Kausch AP. 2002. Application of FLP/FRT site-specific DNA recombination system in plants. Genet Eng (N Y) 24: 1-16.
  35. Schweizer HP. 2003. Applications of the Saccharomyces cerevisiae Flp-FRT system in bacterial genetics. J Mol Microbiol Biotechnol 5(2): 67-77.
  36. Wu S, Ying G, Wu Q, Capecchi MR. 2008. A protocol for constructing gene targeting vectors: generating knockout mice for the cadherin family and beyond. Nat Protoc 3(6): 1056-1076.
  37. Orbach MJ, Farrall L, Sweigard JA, Chumley FG, Valent B. 2000. A telomeric avirulence gene determines efficacy for the rice blast resistance gene Pi-ta. Plant Cell 12(11): 2019-2032. References 109
  38. Whisson SC, Boevink PC, Moleleki L, Avrova AO, Morales JG, Gilroy EM, Armstrong MR, Grouffaud S, van West P, Chapman S, Hein I, Toth IK, Pritchard L, Birch PR. 2007. A translocation signal for delivery of oomycete effector proteins into host plant cells. Nature 450(7166): 115-118.
  39. Van den Ackerveken G, Bonas U. 1997. Bacterial avirulence proteins as triggers of plant disease resistance. Trends Microbiol 5(10): 394-398. van der Hoorn RA, Kamoun S. 2008. From Guard to Decoy: a new model for perception of plant pathogen effectors. Plant Cell 20(8): 2009-2017.
  40. Schipper K. 2009. Characterisation of a Ustilago maydis gene cluster that encodes three novel secreted proteins Ph. D. Thesis(Phillips University of Marburg. Marburg).
  41. Thompson JD, Higgins DG, Gibson TJ. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22(22): 4673-4680.
  42. Hale RS, Thompson G. 1998. Codon optimization of the gene encoding a domain from human type 1 neurofibromin protein results in a threefold improvement in expression level in Escherichia coli. Protein Expr Purif 12(2): 185-188.
  43. Forment JV, Ramon D, MacCabe AP. 2006. Consecutive gene deletions in Aspergillus nidulans: application of the Cre/loxP system. Curr Genet 50(3): 217-224.
  44. Glazebrook J. 2005. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43: 205-227.
  45. Koornneef A, Pieterse CM. 2008. Cross talk in defense signaling. Plant Physiol 146(3): 839-844.
  46. Ausubel MA, Brent R, Kingston RE, Moore DD, Seidmann JG, Smith JA. 1987. Current protocols in molecular biology. (John & Sons, Inc.).
  47. Jia Y, McAdams SA, Bryan GT, Hershey HP, Valent B. 2000. Direct interaction of resistance gene and avirulence gene products confers rice blast resistance. Embo J 19(15): 4004-4014.
  48. Senecoff JF, Rossmeissl PJ, Cox MM. 1988. DNA recognition by the FLP recombinase of the yeast 2 mu plasmid. A mutational analysis of the FLP binding site. J Mol Biol 201(2): 405-421.
  49. Hoess R, Abremski K, Irwin S, Kendall M, Mack A. 1990. DNA specificity of the Cre recombinase resides in the 25 kDa carboxyl domain of the protein. J Mol Biol 216(4): 873-882.
  50. Kane JF. 1995. Effects of rare codon clusters on high-level expression of heterologous proteins in Escherichia coli. Curr Opin Biotechnol 6(5): 494- 500.
  51. Kondo S, Takahashi Y, Shiozawa S, Ichise H, Yoshida N, Kanegae Y, Saito I. 2006. Efficient sequential gene regulation via FLP-and Cre-recombinase using adenovirus vector in mammalian cells including mouse ES cells. Microbiol Immunol 50(10): 831-843.
  52. Bent AF, Mackey D. 2007. Elicitors, effectors, and R genes: the new paradigm and a lifetime supply of questions. Annu Rev Phytopathol 45: 399-436.
  53. Fladung M, Schenk TMH, Polak O, Becker D. 2009. Elimination of marker genes and targeted integration via FLP/FRT recombination system from yeast in hybrid aspen (Populus tremula L. x P. tremuloides Michx.). Tree Genetics & Genomes 6(2): 205 -207.
  54. Tyler BM. 2009. Entering and breaking: virulence effector proteins of oomycete plant pathogens. Cell Microbiol 11(1): 13-20.
  55. Hare PD, Chua NH. 2002. Excision of selectable marker genes from transgenic plants. Nat Biotechnol 20(6): 575-580.
  56. Kale SD, Gu B, Capelluto DGS, Dou D, Feldman E, Rumore A, Arredonado FD, Hanlon R, Fudal I, Rouxel T, Lawrence CB, Shan W, Tyler BM. 2010. External lipid PI-3-P mediates entry of eukaryotic effectors into plant and animal host cells. Cell. In press.
  57. Hu Q, Nelson K, Luo H. 2006. FLP-mediated site-specific recombination for genome modification in turfgrass. Biotechnol Lett 28(22): 1793-1804.
  58. Kamoun S, Goodwin SB. 2007. Fungal and oomycete genes galore. New Phytol 174(4): 713-717.
  59. de Jonge R, Thomma BP. 2009. Fungal LysM effectors: extinguishers of host immunity? Trends Microbiol 17(4): 151-157.
  60. Keen NT. 1990. Gene-for-gene complementarity in plant-pathogen interactions. Annu Rev Genet 24: 447-463.
  61. Wang J, Holden DW, Leong SA. 1988. Gene transfer system for the phytopathogenic fungus Ustilago maydis. Proc Natl Acad Sci U S A 85(3): 865-869.
  62. Kahmann R, Rudt F, Koch C, Mertens G. 1985. G inversion in bacteriophage Mu DNA is stimulated by a site within the invertase gene and a host factor. Cell 41(3): 771-780.
  63. Barekzi N, Beinlich K, Hoang TT, Pham XQ, Karkhoff-Schweizer R, Schweizer HP. 2000. High-frequency flp recombinase-mediated inversions of the oriC- containing region of the Pseudomonas aeruginosa genome. J Bacteriol 182(24): 7070-7074.
  64. Calderone TL, Stevens RD, Oas TG. 1996. High-level misincorporation of lysine for arginine at AGA codons in a fusion protein expressed in Escherichia coli. J Mol Biol 262(4): 407-412.
  65. Chisholm ST, Coaker G, Day B, Staskawicz BJ. 2006. Host-microbe interactions: shaping the evolution of the plant immune response. Cell 124(4): 803-814.
  66. Heath MC. 2000. Hypersensitive response-related death. Plant Mol Biol 44(3): 321- 334.
  67. Brachmann A, Weinzierl G, Kamper J, Kahmann R. 2001. Identification of genes in the bW/bE regulatory cascade in Ustilago maydis. Mol Microbiol 42(4): 1047-1063.
  68. Flor HH. 1942. Inheritance of pathogenicity in Melampsora lini. Phytopathology 32: 653-669.
  69. Nürnberger T, Brunner F, Kemmerling B, Piater L. 2004. Innate immunity in plants and animals: striking similarities and obvious differences. Immunol Rev 198: 249-266.
  70. Oesterheld M, Mewes HW, Mauceli EW, DeCaprio D, Wade CM, Butler J, Young S, Jaffe DB, Calvo S, Nusbaum C, Galagan J, Birren BW. 2006. Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis. Nature 444(7115): 97-101.
  71. Keon JP, White GA, Hargreaves JA. 1991. Isolation, characterization and sequence of a gene conferring resistance to the systemic fungicide carboxin from the maize smut pathogen, Ustilago maydis. Curr Genet 19(6): 475-481.
  72. Hacking DF. 2008. 'Knock, and it shall be opened': knocking out and knocking in to reveal mechanisms of disease and novel therapies. Early Hum Dev 84(12): 821-827.
  73. Welti R, Wang X. 2004. Lipid species profiling: a high-throughput approach to identify lipid compositional changes and determine the function of genes involved in lipid metabolism and signaling. Curr Opin Plant Biol 7(3): 337- 344.
  74. Sambrook J, Fritsch EF, Maniatis T. 1989. Molecular Cloning: a laboratory manual. 2-nd Edition. New York. Cold Spring Harbor laboratory. Cold Spring Harbor Press.
  75. Chen Y, Rice PA. 2003. New insight into site-specific recombination from Flp recombinase-DNA structures. Annu Rev Biophys Biomol Struct 32: 135-159.
  76. Birch PR, Boevink PC, Gilroy EM, Hein I, Pritchard L, Whisson SC. 2008. Oomycete RXLR effectors: delivery, functional redundancy and durable disease resistance. Curr Opin Plant Biol 11(4): 373-379. Birch PR, Rehmany AP, Pritchard L, Kamoun S, Beynon JL. 2006. Trafficking arms: oomycete effectors enter host plant cells. Trends Microbiol 14(1): 8-11.
  77. Doehlemann G, van der Linde K, Assmann D, Schwammbach D, Hof A, Mohanty A, Jackson D, Kahmann R. 2009. Pep1, a secreted effector protein References 104 of Ustilago maydis, is required for successful invasion of plant cells. PLoS Pathog 5(2): e1000290.
  78. Di Paolo G, De Camilli P. 2006. Phosphoinositides in cell regulation and membrane dynamics. Nature 443(7112): 651-657.
  79. Munnik T, Irvine RF, Musgrave A. 1998. Phospholipid signalling in plants. Biochim Biophys Acta 1389(3): 222-272.
  80. Dangl JL, Jones JD. 2001. Plant pathogens and integrated defence responses to infection. Nature 411(6839): 826-833.
  81. Stukenbrock EH, McDonald BA. 2009. Population genetics of fungal and oomycete effectors involved in gene-for-gene interactions. Mol Plant Microbe Interact 22(4): 371-380.
  82. Angot A, Peeters N, Lechner E, Vailleau F, Baud C, Gentzbittel L, Sartorel E, Genschik P, Boucher C, Genin S. 2006. Ralstonia solanacearum requires F- box-like domain-containing type III effectors to promote disease on several host plants. Proc Natl Acad Sci U S A 103(39): 14620-14625.
  83. Ellis JG, Rafiqi M, Gan P, Chakrabarti A, Dodds PN. 2009. Recent progress in discovery and functional analysis of effector proteins of fungal and oomycete plant pathogens. Curr Opin Plant Biol 12(4): 399-405.
  84. O'Gorman S, Fox DT, Wahl GM. 1991. Recombinase-mediated gene activation and site-specific integration in mammalian cells. Science 251(4999): 1351-1355.
  85. Wirth D, Gama-Norton L, Riemer P, Sandhu U, Schucht R, Hauser H. 2007. Road to precision: recombinase-based targeting technologies for genome engineering. Curr Opin Biotechnol 18(5): 411-419.
  86. Silver DP, Livingston DM. 2001. Self-excising retroviral vectors encoding the Cre recombinase overcome Cre-mediated cellular toxicity. Mol Cell 8(1): 233-243.
  87. Morschhauser J, Michel S, Staib P. 1999. Sequential gene disruption in Candida albicans by FLP-mediated site-specific recombination. Mol Microbiol 32(3): 547-556.
  88. Baker B, Zambryski P, Staskawicz B, Dinesh-Kumar SP. 1997. Signaling in plant- microbe interactions. Science 276(5313): 726-733.
  89. Stemmer WP, Crameri A, Ha KD, Brennan TM, Heyneker HL. 1995. Single-step assembly of a gene and entire plasmid from large numbers of oligodeoxyribonucleotides. Gene 164(1): 49-53.
  90. Birling MC, Gofflot F, Warot X. 2009. Site-specific recombinases for manipulation of the mouse genome. Methods Mol Biol 561: 245-263.
  91. Kerbach S, Lorz H, Becker D. 2005. Site-specific recombination in Zea mays. Theor Appl Genet 111(8): 1608-1616.
  92. Branda CS, Dymecki SM. 2004. Talking about a revolution: The impact of site- specific recombinases on genetic analyses in mice. Dev Cell 6(1): 7-28.
  93. Wirsching S, Michel S, Morschhäuser J. 2000. Targeted gene disruption in Candida albicans wild-type strains: the role of the MDR1 gene in fluconazole resistance of clinical Candida albicans isolates. Mol Microbiol 36(4): 856- 865.
  94. Marti M, Good RT, Rug M, Knuepfer E, Cowman AF. 2004. Targeting malaria virulence and remodeling proteins to the host erythrocyte. Science 306(5703): 1930-1933. References 108
  95. Zarnack K, Maurer S, Kaffarnik F, Ladendorf O, Brachmann A, Kamper J, Feldbrugge M. 2006. Tetracycline-regulated gene expression in the pathogen Ustilago maydis. Fungal Genet Biol 43(11): 727-738. References 112
  96. Schulz B, Banuett F, Dahl M, Schlesinger R, Schafer W, Martin T, Herskowitz I, Kahmann R. 1990. The b alleles of U. maydis, whose combinations program pathogenic development, code for polypeptides containing a homeodomain- related motif. Cell 60(2): 295-306.
  97. Sacristan S, Garcia-Arenal F. 2008. The evolution of virulence and pathogenicity in plant pathogen populations. Mol Plant Pathol 9(3): 369-384.
  98. Babineau D, Vetter D, Andrews BJ, Gronostajski RM, Proteau GA, Beatty LG, Sadowski PD. 1985. The FLP protein of the 2-micron plasmid of yeast. Purification of the protein from Escherichia coli cells expressing the cloned FLP gene. J Biol Chem 260(22): 12313-12319.
  99. Jones JD, Dangl JL. 2006. The plant immune system. Nature 444(7117): 323-329.
  100. Greenberg JT, Yao N. 2004. The role and regulation of programmed cell death in plant-pathogen interactions. Cell Microbiol 6(3): 201-211.
  101. Drobak BK, Franklin-Tong VE, Staiger CJ. 2005. The role of the actin cytoskeleton in plant cell signaling. New Phytol 163: 13-30.
  102. Reuss O, Vik A, Kolter R, Morschhauser J. 2004. The SAT1 flipper, an optimized tool for gene disruption in Candida albicans. Gene 341: 119-127.
  103. Gold SE, Bakkeren G, Davies JE, Kronstad JW. 1994. Three selectable markers for transformation of Ustilago maydis. Gene 142(2): 225-230.
  104. Salmeron JM, Oldroyd GE, Rommens CM, Scofield SR, Kim HS, Lavelle DT, Dahlbeck D, Staskawicz BJ. 1996. Tomato Prf is a member of the leucine- rich repeat class of plant disease resistance genes and lies embedded within the Pto kinase gene cluster. Cell 86(1): 123-133.
  105. Ladendorf O. 2003. Transposition and heterologous gene expression in Ustilago maydis. Ph. D. Thesis Phillips University of Marburg. Marburg.
  106. Conant GC, Wolfe KH. 2008. Turning a hobby into a job: how duplicated genes find new functions. Nat Rev Genet 9(12): 938-950.
  107. Sugio A, Yang B, Zhu T, White FF. 2007. Two type III effector genes of Xanthomonas oryzae pv. oryzae control the induction of the host genes OsTFIIAgamma1 and OsTFX1 during bacterial blight of rice. Proc Natl Acad Sci U S A 104(25): 10720-10725.
  108. Brefort T, Doehlemann G, Mendoza-Mendoza A, Reissmann S, Djamei A, Kahmann R. 2009. Ustilago maydis as a Pathogen. Annu Rev Phytopathol 47: 423-445.
  109. Holliday R. 1974. Ustilago maydis. Handbook of genetics edited by R. C. King 1: 575 -595.
  110. Kahmann R, Steinberg G, Basse CW, Feldbrügge M, Kämper J. 2000. Ustilago maydis, the causative agent of corn smut disease. Fungal Pathology Kluwer Academic Publishers. Dodrecht. The Netherlands. Kronstad, J. W. (ed.) 347- 371
  111. Radhakrishnan P, Srivastava V. 2005. Utility of the FLP-FRT recombination system for genetic manipulation of rice. Plant Cell Rep 23(10-11): 721-726.
  112. Hahn M, Neef U, Struck C, Gottfert M, Mendgen K. 1997. A putative amino acid transporter is specifically expressed in haustoria of the rust fungus Uromyces fabae. Mol Plant Microbe Interact 10(4): 438-445.
  113. Weinzierl G, Leveleki L, Hassel A, Kost G, Wanner G, Bolker M. 2002. Regulation of cell separation in the dimorphic fungus Ustilago maydis. Mol Microbiol 45(1): 219-231.
  114. Michielse CB, van Wijk R, Reijnen L, Manders EM, Boas S, Olivain C, Alabouvette C, Rep M. 2009. The nuclear protein Sge1 of Fusarium oxysporum is required for parasitic growth. PLoS Pathog 5(10): e1000637.
  115. Aichinger C, Hansson K, Eichhorn H, Lessing F, Mannhaupt G, Mewes W, Kahmann R. 2003. Identification of plant-regulated genes in Ustilago maydis by enhancer-trapping mutagenesis. Mol Genet Genomics 270(4): 303-314.
  116. Snetselaar KM, Mims CW. 1993. Infection of maize by Ustilago maydis: light and electron microscopy. Phytopathology 83: 843-850.
  117. Kay S, Hahn S, Marois E, Hause G, Bonas U. 2007. A bacterial effector acts as a plant transcription factor and induces a cell size regulator. Science 318(5850): 648-651.
  118. Skibbe DS, Doehlemann G, Fernandes J, Walbot V. 2010. Maize tumors caused by Ustilago maydis require organ-specific genes in host and pathogen. Science 328(5974): 89-92. References 110
  119. Wang D, Pajerowska-Mukhtar K, Culler AH, Dong X. 2007. Salicylic acid inhibits pathogen growth in plants through repression of the auxin signaling pathway. Curr Biol 17(20): 1784-1790.
  120. Grant MR, Jones JD. 2009. Hormone (dis)harmony moulds plant health and disease. Science 324(5928): 750-752.
  121. Walbot V, Skibbe DS. 2010. Maize host requirements for Ustilago maydis tumor induction. Sex Plant Reprod 23(1): 1-13.
  122. Drobak BK, Ferguson IB, Dawson AP, Irvine RF. 1988. Inositol-Containing Lipids in Suspension-Cultured Plant Cells: An Isotopic Study. Plant Physiol 87(1): 217-222.
  123. Holliday R. 1964. The Induction of Mitotic Recombination by Mitomycin C in Ustilago and Saccharomyces. Genetics 50: 323-335.
  124. Lyznik LA, Rao KV, Hodges TK. 1996. FLP-mediated recombination of FRT sites in the maize genome. Nucleic Acids Res 24(19): 3784-3789.
  125. Buchholz F, Ringrose L, Angrand PO, Rossi F, Stewart AF. 1996. Different thermostabilities of FLP and Cre recombinases: implications for applied site- specific recombination. Nucleic Acids Res 24(21): 4256-4262.
  126. Nunes-Düby SE, Kwon HJ, Tirumalai RS, Ellenberger T, Landy A. 1998. Similarities and differences among 105 members of the Int family of site- specific recombinases. Nucleic Acids Res 26(2): 391-406.
  127. Kaku H, Nishizawa Y, Ishii-Minami N, Akimoto-Tomiyama C, Dohmae N, Takio K, Minami E, Shibuya N. 2006. Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor. Proc Natl Acad Sci U S A 103(29): 11086-11091.
  128. Zhong R, Ye ZH. 2003. The SAC domain-containing protein gene family in Arabidopsis. Plant Physiol 132(2): 544-555.
  129. Schmidt EE, Taylor DS, Prigge JR, Barnett S, Capecchi MR. 2000. Illegitimate Cre-dependent chromosome rearrangements in transgenic mouse spermatids. Proc Natl Acad Sci U S A 97(25): 13702-13707.
  130. Datsenko KA, Wanner BL. 2000. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97(12): 6640-6645.
  131. Song H, Niederweis M. 2007. Functional expression of the Flp recombinase in Mycobacterium bovis BCG. Gene 399(2): 112-119.
  132. Matsuzaki H, Nakajima R, Nishiyama J, Araki H, Oshima Y. 1990. Chromosome engineering in Saccharomyces cerevisiae by using a site-specific recombination system of a yeast plasmid. J Bacteriol 172(2): 610-618.
  133. Miya A, Albert P, Shinya T, Desaki Y, Ichimura K, Shirasu K, Narusaka Y, Kawakami N, Kaku H, Shibuya N. 2007. CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis. Proc Natl Acad Sci U S A 104(49): 19613-19618.
  134. Jiang RH, Tripathy S, Govers F, Tyler BM. 2008. RXLR effector reservoir in two Phytophthora species is dominated by a single rapidly evolving superfamily with more than 700 members. Proc Natl Acad Sci U S A 105(12): 4874-4879.
  135. Dou D, Kale SD, Wang X, Chen Y, Wang Q, Jiang RH, Arredondo FD, Anderson RG, Thakur PB, McDowell JM, Wang Y, Tyler BM. 2008. Conserved C-terminal motifs required for avirulence and suppression of cell death by Phytophthora sojae effector Avr1b. Plant Cell 20(4): 1118-1133.
  136. Soanes DM, Alam I, Cornell M, Wong HM, Hedeler C, Paton NW, Rattray M, Hubbard SJ, Oliver SG, Talbot NJ. 2008. Comparative genome analysis of filamentous fungi reveals gene family expansions associated with fungal pathogenesis. PLoS One 3(6): e2300.
  137. Whiteson KL, Rice PA. 2008. Binding and catalytic contributions to site recognition by flp recombinase. J Biol Chem 283(17): 11414-11423.
  138. Barrett AR, Kang Y, Inamasu KS, Son MS, Vukovich JM, Hoang TT. 2008. Genetic tools for allelic replacement in Burkholderia species. Appl Environ Microbiol 74(14): 4498-4508.
  139. Bucholtz F. 2008. Principles of site-specific recombinase (SSR) technology. J Vis Exp(15).
  140. Sacristan S, Vigouroux M, Pedersen C, Skamnioti P, Thordal-Christensen H, Micali C, Brown JK, Ridout CJ. 2009. Coevolution between a family of parasite virulence effectors and a class of LINE-1 retrotransposons. PLoS One 4(10): e7463.
  141. Oh SK, Young C, Lee M, Oliva R, Bozkurt TO, Cano LM, Win J, Bos JI, Liu HY, van Damme M, Morgan W, Choi D, Van der Vossen EA, Vleeshouwers VG, Kamoun S. 2009. In planta expression screens of Phytophthora infestans RXLR effectors reveal diverse phenotypes, including activation of the Solanum bulbocastanum disease resistance protein Rpi-blb2. Plant Cell 21(9): 2928-2947.
  142. Patel RD, Lodge JK, Baker LG. 2010. Going green in Cryptococcus neoformans: the recycling of a selectable drug marker. Fungal Genet Biol 47(3): 191-198.
  143. Stergiopoulos I, van den Burg HA, Okmen B, Beenen HG, van Liere S, Kema GH, de Wit PJ. 2010. Tomato Cf resistance proteins mediate recognition of cognate homologous effectors from fungi pathogenic on dicots and monocots. Proc Natl Acad Sci U S A 107(16): 7610-7615.
  144. McLeod M, Craft S, Broach JR. 1986. Identification of the crossover site during FLP-mediated recombination in the Saccharomyces cerevisiae plasmid 2 microns circle. Mol Cell Biol 6(10): 3357-3367.
  145. Andrews BJ, McLeod M, Broach J, Sadowski PD. 1986. Interaction of the FLP recombinase of the Saccharomyces cerevisiae 2 micron plasmid with mutated target sequences. Mol Cell Biol 6(7): 2482-2489.
  146. Gronostajski RM, Sadowski PD. 1985. The FLP recombinase of the Saccharomyces cerevisiae 2 microns plasmid attaches covalently to DNA via a phosphotyrosyl linkage. Mol Cell Biol 5(11): 3274-3279.
  147. Vetter D, Andrews BJ, Roberts-Beatty L, Sadowski PD. 1983. Site-specific recombination of yeast 2-micron DNA in vitro. Proc Natl Acad Sci U S A 80(23): 7284-7288.
  148. Senecoff JF, Bruckner RC, Cox MM. 1985. The FLP recombinase of the yeast 2- micron plasmid: characterization of its recombination site. Proc Natl Acad Sci U S A 82(21): 7270-7274.
  149. Loonstra A, Vooijs M, Beverloo HB, Allak BA, van Drunen E, Kanaar R, Berns A, Jonkers J. 2001. Growth inhibition and DNA damage induced by Cre recombinase in mammalian cells. Proc Natl Acad Sci U S A 98(16): 9209- 9214.
  150. Tyler BM, Tripathy S, Zhang X, Dehal P, Jiang RH, Aerts A, Arredondo FD, Baxter L, Bensasson D, Beynon JL, Chapman J, Damasceno CM, Dorrance AE, Dou D, Dickerman AW, Dubchak IL, Garbelotto M, Gijzen M, Gordon SG, Govers F, Grunwald NJ, Huang W, Ivors KL, Jones RW, Kamoun S, Krampis K, Lamour KH, Lee MK, McDonald WH, Medina M, Meijer HJ, Nordberg EK, Maclean DJ, Ospina-Giraldo MD, Morris PF, Phuntumart V, Putnam NH, Rash S, Rose JK, Sakihama Y, Salamov AA, Savidor A, Scheuring CF, Smith BM, Sobral BW, Terry A, Torto- Alalibo TA, Win J, Xu Z, Zhang H, Grigoriev IV, Rokhsar DS, Boore JL. 2006. Phytophthora genome sequences uncover evolutionary origins and mechanisms of pathogenesis. Science 313(5791): 1261-1266.
  151. Hoffman CS, Winston F. 1987. A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene 57(2-3): 267-272.
  152. Mueller O, Kahmann R, Aguilar G, Trejo-Aguilar B, Wu A, de Vries RP. 2008. The secretome of the maize pathogen Ustilago maydis. Fungal Genet Biol 45 Suppl 1: S63-70.
  153. Kamoun S. 2007. Groovy times: filamentous pathogen effectors revealed. Curr Opin Plant Biol 10(4): 358-365.
  154. Doublet B, Douard G, Targant H, Meunier D, Madec JY, Cloeckaert A. 2008. Antibiotic marker modifications of lambda Red and FLP helper plasmids, pKD46 and pCP20, for inactivation of chromosomal genes using PCR products in multidrug-resistant strains. J Microbiol Methods 75(2): 359-361.
  155. JD, Pfister DH, Hewitt D, Hansen K, Hambleton S, Shoemaker RA, Kohlmeyer J, Volkmann-Kohlmeyer B, Spotts RA, Serdani M, Crous PW, Hughes KW, Matsuura K, Langer E, Langer G, Untereiner WA, Lucking R, Budel B, Geiser DM, Aptroot A, Diederich P, Schmitt I, Schultz M, Yahr R, Hibbett DS, Lutzoni F, McLaughlin DJ, Spatafora JW, Vilgalys R. 2006. Reconstructing the early evolution of Fungi using a six-gene phylogeny. Nature 443(7113): 818-822.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten