Publikationsserver der Universitätsbibliothek Marburg

Titel:Die Regulation der N-Myc-Stabilität ist eine wichtige Funktion der Aurora-A-Kinase in MYCN- amplifizierten Neuroblastomen
Autor:Schüttrumpf, Lars
Weitere Beteiligte: Eilers, Martin (Prof.)
Veröffentlicht:2010
URI:https://archiv.ub.uni-marburg.de/diss/z2010/0685
URN: urn:nbn:de:hebis:04-z2010-06859
DOI: https://doi.org/10.17192/z2010.0685
DDC:610 Medizin
Titel (trans.):Stabilization of N-Myc Is a Critical Function of Aurora A in Human Neuroblastoma
Publikationsdatum:2010-12-02
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
MYCN-Amplifikation, Aurora-Kinase-A, Aurora-A, Aurora-Kinase-A, STK 15, MYCN, Protein p53, Aurora-A, MYCN-amplification, Neuroblastom, MYCN, RNS-Interferenz, STK 15, N-Myc, Carcinogenese

Zusammenfassung:
Das Neuroblastom ist ein Tumor des Säuglings- und Kindesalters. Es entsteht aus Vorläuferzellen des sympathischen Nervensystems, den Neuroblasten. Das klinische Erscheinungsbild reicht von sehr langsam verdrängend wachsenden Tumoren, die das Potential einer vollständigen Rückbildung ohne Therapie besitzen, bis zu aggressiven invasiv wachsenden Tumoren, deren 5-Jahres-Überlebenswahrscheinlichkeit bei Ausnutzung aller zur Verfügung stehenden Therapieoptionen lediglich 30% beträgt. Die großen Unterschiede im biologischen Verhalten der Tumore basieren auf molekulargenetischen Risikofaktoren. Einer dieser Risikofaktoren ist die Amplifikation des Protoonkogens MYCN. Das exprimierte Protein N-Myc ist ein Transkriptionsfaktor, der andere Gene aktivieren und das Wachstum der Zelle beeinflussen kann. Es sind viele Zielgene des N-Myc-Proteins bekannt. Diese Kenntnisse reichen jedoch nicht aus um die N-Myc-induzierte Tumorentstehung sowie das besonders aggressive Wachstum und die schlechte Prognose der MYCN-amplifizierten Tumore zu erklären. Um weitere Gene zu identifizieren, die für das Wachstum der MYCN-amplifizierten Tumore essentiell sind, wurde ein Screen durchgeführt. Dabei wurden jeweils 194 Gene in einer MYCN-amplifizierten Neuroblastomzelllinie und einer Zelllinie ohne MYCN-Amplifikation ausgeschaltet. Alle Gene, die in der MYCN-amplifizierten Zelllinie einen Wachstumsarrest auslösten, für die nicht amplifizierte Zelllinie hingegen verzichtbar waren, wurden gelistet. Die Bedingungen wurden von 17 Genen erfüllt. In der vorliegenden Arbeit konnte gezeigt werden mit welcher Effektivtät die Expression der einzelnen Gene im Screen herunterreguliert wurde. Dies ist notwendig um die Anzahl der tatsächlich untersuchten Gene abschätzen zu können. Unter den 17 entdeckten Genen befindet sich die Aurora-Kinase A. Wird Aurora-A inhibiert bleiben die MYCN-amplifizierten Zellen im Wachstum zurück. Um zu überprüfen, ob der beobachtete Effekt nicht nur zelllinienspezifisch ist, sondern generelle Gültigkeit besitzt und auf andere Zelllinien und Neuroblastome übertragbar ist, wurden verschiedene Zelllinien auf dieses Verhalten bei Aurora-A-Depletion überprüft. In vier MYCN-amplifizierten und vier nicht amplifizierten Zelllinien bestätigten sich die Beobachtungen. Darüber hinaus konnte in den acht Neuroblastomzelllinien durch Untersuchung der Proteinveränderungen in der Zelle bei Aurora-A-Depletion auf den möglichen Mechanismus, auf dem die Beobachtungen des Wachstumsarrests beruhen, geschlossen werden. Aurora-A stabilisiert N-Myc und ist somit maßgeblich am Wachstum der Zelle beteiligt. Im Gegenzug dazu führt die Aurora-A-Depletion zu erniedrigten N-Myc-Spiegeln in der Zelle und begünstigt somit den Wachstumsarrest. Aurora-A-Kinase konnte als wichtiger Regulator der N-Myc-Stabilität identifiziert und seine entscheidende Bedeutung bei der Entstehung der MYCN-amplifizierten Neuroblastome geklärt werden.

Bibliographie / References

  1. Nagata, Y., Lan, K., Zhou, X. et al. PTEN activation contributes to tumor inhibition by trastuzumab, and loss of PTEN predicts trastuzumab resistance in patients. Cancer Cell. 2004; 6:117-27.
  2. Blackwood, E. M., Eisenman, R. N. Max: a helix-loop-helix zipper protein that forms a sequence-specific DNA-binding complex with Myc. Science. 1991; 251:1211-7.
  3. Morrish, F., Neretti, N., Sedivy, J. M., Hockenbery, D. M. The oncogene c-Myc coordinates regulation of metabolic networks to enable rapid cell cycle entry. Cell Cycle. 2008; 7:1054-66.
  4. Ho, R., Eggert, A., Hishiki, T. et al. Resistance to chemotherapy mediated by TrkB in neuroblastomas. Cancer Res. 2002; 62:6462-6.
  5. Mao, D. Y. L., Watson, J. D., Yan, P. S. et al. Analysis of Myc bound loci identified by CpG island arrays shows that Max is essential for Myc-dependent repression. Curr Biol. 2003; 13:882-6.
  6. Vafa, O., Wade, M., Kern, S. et al. c-Myc can induce DNA damage, increase reactive oxygen species, and mitigate p53 function: a mechanism for oncogene-induced genetic instability. Mol Cell. 2002; 9:1031-44.
  7. Jeng, Y., Peng, S., Lin, C., Hsu, H. Overexpression and amplification of Aurora-A in hepatocellular carcinoma. Clin Cancer Res. 2004; 10:2065-71.
  8. Mosse, Y. A Phase I Study of MLN8237, an Oral Selective Small Molecule Inhibitor of Aurora A Kinase, in Pediatric Patients With Relapsed/Refractory Solid Tumors and Leukemia. http://clinicaltrials.gov/ umber: CT00739427. 2008.
  9. Birren, S. J., Lo, L., Anderson, D. J. Sympathetic neuroblasts undergo a developmental switch in trophic dependence. Development. 1993; 119:597-610.
  10. Martins, C. P., Brown-Swigart, L., Evan, G. I. Modeling the therapeutic efficacy of p53 restoration in tumors. Cell. 2006; 127:1323-34.
  11. Berns, K., Hijmans, E. M., Mullenders, J. et al. A large-scale RNAi screen in human cells identifies new components of the p53 pathway. ature. 2004; 428:431-7.
  12. McArdle, L., McDermott, M., Purcell, R. et al. Oligonucleotide microarray analysis of gene expression in neuroblastoma displaying loss of chromosome 11q. Carcinogenesis. 2004; 25:1599-609.
  13. Reynolds, C. P., Biedler, J. L., Spengler, B. A. et al. Characterization of human neuroblastoma cell lines established before and after therapy. J atl Cancer Inst. 1986; 76:375-87.
  14. Kenney, A. M., Widlund, H. R., Rowitch, D. H. Hedgehog and PI-3 kinase signaling converge on Nmyc1 to promote cell cycle progression in cerebellar neuronal precursors. Development. 2004; 131:217-28.
  15. Plantaz, D., Vandesompele, J., Van Roy, N. et al. Comparative genomic hybridization (CGH) analysis of stage 4 neuroblastoma reveals high frequency of 11q deletion in tumors lacking MYCN amplification. Int J Cancer. 2001; 91:680-6.
  16. Rieder, C. L., Maiato, H. Stuck in division or passing through: what happens when cells cannot satisfy the spindle assembly checkpoint. Dev Cell. 2004; 7:637-51.
  17. Giannini, G., Cerignoli, F., Mellone, M. et al. Molecular mechanism of HMGA1 deregulation in human neuroblastoma. Cancer Lett. 2005; 228:97-104.
  18. Coexpression of messenger RNA for TRK protooncogene and low affinity nerve growth factor receptor in neuroblastoma with favorable prognosis. Cancer Res. 1993; 53:2044- 50.
  19. Oberthuer, A., Berthold, F., Warnat, P. et al. Customized oligonucleotide microarray gene expression-based classification of neuroblastoma patients outperforms current clinical risk stratification. J Clin Oncol. 2006; 24:5070-8.
  20. Bown, N., Cotterill, S., Lastowska, M. et al. Gain of chromosome arm 17q and adverse outcome in patients with neuroblastoma. Engl J Med. 1999; 340:1954-61.
  21. Grignani, F., Kinsella, T., Mencarelli, A. et al. High-efficiency gene transfer and selection of human hematopoietic progenitor cells with a hybrid EBV/retroviral vector expressing the green fluorescence protein. Cancer Res. 1998; 58:14-9.
  22. Hu, H. M., Chuang, C. K., Lee, M. J., Tseng, T. C., Tang, T. K. Genomic organization, expression, and chromosome localization of a third aurora-related kinase gene, Aie1. DA Cell Biol. 2000; 19:679-88.
  23. Hoefnagel, C. A., De Kraker, J., Valdes Olmos, R. A., Voute, P. A. 131I-MIBG as a first-line treatment in high-risk neuroblastoma patients. ucl Med Commun. 1994; 15:712-7.
  24. Gritsko, T. M., Coppola, D., Paciga, J. E. et al. Activation and overexpression of centrosome kinase BTAK/Aurora-A in human ovarian cancer. Clin Cancer Res. 2003; 9:1420-6.
  25. Opel, D., Poremba, C., Simon, T., Debatin, K., Fulda, S. Activation of Akt predicts poor outcome in neuroblastoma. Cancer Res. 2007; 67:735-45.
  26. Weinstein, I. B. Cancer. Addiction to oncogenes--the Achilles heal of cancer. Science. 2002; 297:63-4.
  27. Laemmli, U. K., Beguin, F., Gujer-Kellenberger, G. A factor preventing the major head protein of bacteriophage T4 from random aggregation. J Mol Biol. 1970; 47:69-85.
  28. Guo, C., White, P. S., Weiss, M. J. et al. Allelic deletion at 11q23 is common in MYC single copy neuroblastomas. ; 1999.
  29. Kaatsch, P., Kaletsch, U., Spix, C. Annual report 1998 -German Childhood Cancer Registry. Mainz; 1999.
  30. Woods, W. G., Tuchman, M., Robison, L. L. et al. A population-based study of the usefulness of screening for neuroblastoma. Lancet. 1996; 348:1682-7.
  31. Miyoshi, Y., Iwao, K., Egawa, C., Noguchi, S. Association of centrosomal kinase STK15/BTAK mRNA expression with chromosomal instability in human breast cancers. Int J Cancer. 2001; 92:370-3.
  32. Haber, M., Smith, J., Bordow, S. B. et al. Association of high-level MRP1 expression with poor clinical outcome in a large prospective study of primary neuroblastoma. J Clin Oncol. 2006; 24:1546-53.
  33. Liu, Q., Kaneko, S., Yang, L. et al. Aurora-A abrogation of p53 DNA binding and transactivation activity by phosphorylation of serine 215. J Biol Chem. 2004; 279:52175-82.
  34. Marumoto, T., Zhang, D., Saya, H. Aurora-A -a guardian of poles. at Rev Cancer. 2005; 5:42-50.
  35. Jiang, Y., Zhang, Y., Lees, E., Seghezzi, W. AuroraA overexpression overrides the mitotic spindle checkpoint triggered by nocodazole, a microtubule destabilizer.
  36. Blackwell, T. K., Huang, J., Ma, A. et al. Binding of myc proteins to canonical and noncanonical DA sequences. ; 1993.
  37. Brodeur, G. M., Maris, J. M., Yamashiro, D. J., Hogarty, M. D., White, P. S. Biology and genetics of human neuroblastomas. J Pediatr Hematol Oncol. 1997; 19:93-101.
  38. Todorov, I. T., Werness, B. A., Wang, H. Q. et al. HsMCM2/BM28: a novel proliferation marker for human tumors and normal tissues. Lab Invest. 1998; 78:73-8.
  39. Mao, J., Perez-Losada, J., Wu, D. et al. Fbxw7/Cdc4 is a p53-dependent, haploinsufficient tumour suppressor gene. ature. 2004; 432:775-9.
  40. Ohtani, K., Iwanaga, R., Nakamura, M. et al. Cell growth-regulated expression of mammalian MCM5 and MCM6 genes mediated by the transcription factor E2F.
  41. Tanaka, T., Kimura, M., Matsunaga, K., Fukada, D., Mori, H., Okano, Y. Centrosomal kinase AIK1 is overexpressed in invasive ductal carcinoma of the breast. Cancer Res. 1999; 59:2041-4.
  42. Takahashi, T., Futamura, M., Yoshimi, N. et al. Centrosomal kinases, HsAIRK1 and HsAIRK3, are overexpressed in primary colorectal cancers. Jpn J Cancer Res. 2000; 91:1007-14.
  43. Schwab, M., Varmus, H. E., Bishop, J. M. et al. Chromosome localization in normal human cells and neuroblastomas of a gene related to c-myc. ature. 1984; 308:288-91.
  44. Suzuki, S., Adachi, A., Hiraiwa, A., Ohashi, M., Ishibashi, M., Kiyono, T. Cloning and characterization of human MCM7 promoter. Gene. 1998; 216:85-91.
  45. Maris, J. M., Guo, C., Blake, D. et al. Comprehensive analysis of chromosome 1p deletions in neuroblastoma. Med Pediatr Oncol. 2001; 36:32-6.
  46. Martinsson, T., Sjoberg, R. M., Hedborg, F., Kogner, P. Deletion of chromosome 1p loci and microsatellite instability in neuroblastomas analyzed with short-tandem repeat polymorphisms. Cancer Res. 1995; 55:5681-6.
  47. Spitz, R., Hero, B., Ernestus, K., Berthold, F. Deletions in chromosome arms 3p and 11q are new prognostic markers in localized and 4s neuroblastoma. Clin Cancer Res. 2003; 9:52-8.
  48. Yang, H. W., Chen, Y. Z., Piao, H. Y., Takita, J., Soeda, E., Hayashi, Y. DNA fragmentation factor 45 (DFF45) gene at 1p36.2 is homozygously deleted and encodes variant transcripts in neuroblastoma cell line. eoplasia. 2001; 3:165-9.
  49. Bordow, S. B., Haber, M., Madafiglio, J., Cheung, B., Marshall, G. M., Norris, M. D. Expression of the multidrug resistance-associated protein (MRP) gene correlates with amplification and overexpression of the N-myc oncogene in childhood neuroblastoma.
  50. Fluorescence in situ hybridization analyses of chromosome band 1p36 in neuroblastoma detect two classes of alterations. Genes Chromosomes Cancer. 2002; 34:299-305.
  51. Prof. Dr. Frank Berthold (Principal investigator). B2004 Trial Protocol for Risk Adapted Treatment of Children with euroblastoma Principal investigator: Prof. Dr.
  52. Snider, W. D. Functions of the neurotrophins during nervous system development: what the knockouts are teaching us. Cell. 1994; 77:627-38.
  53. Westermann, F., Schwab, M. Genetic parameters of neuroblastomas. Cancer Lett. 2002; 184:127-47.
  54. Takaha, N., Hawkins, A. L., Griffin, C. A., Isaacs, W. B., Coffey, D. S. High mobility group protein I(Y): a candidate architectural protein for chromosomal rearrangements in prostate cancer cells. Cancer Res. 2002; 62:647-51.
  55. Schwab, M., Varmus, H. E., Bishop, J. M. Human N-myc gene contributes to neoplastic transformation of mammalian cells in culture. ature. 1985; 316:160-2.
  56. Hogarty, M. D., Liu, X., Guo, C. et al. Identification of a 1-megabase consensus region of deletion at 1p36.3 in primary neuroblastomas. Med Pediatr Oncol. 2000; 35:512-5.
  57. Schlagbauer-Wadl, H., Griffioen, M., van Elsas, A. et al. Influence of increased c-Myc expression on the growth characteristics of human melanoma. J Invest Dermatol. 1999; 112:332-6.
  58. Knight, Z. A., Chiang, G. G., Alaimo, P. J. et al. Isoform-specific phosphoinositide 3- kinase inhibitors from an arylmorpholine scaffold. Bioorg Med Chem. 2004; 12:4749- 59.
  59. Spitz, R., Hero, B., Simon, T., Berthold, F. Loss in chromosome 11q identifies tumors with increased risk for metastatic relapses in localized and 4S neuroblastoma. Clin Cancer Res. 2006; 12:3368-73.
  60. Berwanger, B., Hartmann, O., Bergmann, E. et al. Loss of a FYN-regulated differentiation and growth arrest pathway in advanced stage neuroblastoma. Cancer Cell. 2002; 2:377-86.
  61. Maris, J. M., Weiss, M. J., Guo, C. et al. Loss of heterozygosity at 1p36 independently predicts for disease progression but not decreased overall survival probability in neuroblastoma patients: a Children's Cancer Group study. J Clin Oncol. 2000; 18:1888- 99.
  62. Shohet, J. M., Hicks, M. J., Plon, S. E. et al. Minichromosome maintenance protein MCM7 is a direct target of the MYCN transcription factor in neuroblastoma. Cancer Res. 2002; 62:1123-8.
  63. Shackney, S. E., Smith, C. A., Miller, B. W. et al. Model for the genetic evolution of human solid tumors. Cancer Res. 1989; 49:3344-54.
  64. Reeves, R. Molecular biology of HMGA proteins: hubs of nuclear function. Gene. 2001; 277:63-81.
  65. Maris, J. M., Matthay, K. K. Molecular biology of neuroblastoma. J Clin Oncol. 1999; 17:2264-79.
  66. Manohar, C. F., Bray, J. A., Salwen, H. R. et al. MYCN-mediated regulation of the MRP1 promoter in human neuroblastoma. Oncogene. 2004; 23:753-62.
  67. Li, F., Wang, Y., Zeller, K. I. et al. Myc stimulates nuclearly encoded mitochondrial genes and mitochondrial biogenesis. Mol Cell Biol. 2005; 25:6225-34.
  68. Brodeur, G. M. Neuroblastoma: biological insights into a clinical enigma. at Rev Cancer. 2003; 3:203-16.
  69. Schwab, M., Westermann, F., Hero, B., Berthold, F. Neuroblastoma: biology and molecular and chromosomal pathology. Lancet Oncol. 2003; 4:472-80.
  70. Berthold, F., Hero, B. Neuroblastoma: current drug therapy recommendations as part of the total treatment approach. Drugs. 2000; 59:1261-77.
  71. Powell, J. E., Esteve, J., Mann, J. R. et al. Neuroblastoma in Europe: differences in the pattern of disease in the UK. SENSE. Study group for the Evaluation of Neuroblastoma Screening in Europe. Lancet. 1998; 352:682-7.
  72. Schilling, F. H., Spix, C., Berthold, F. et al. Neuroblastoma screening at one year of age. Engl J Med. 2002; 346:1047-53.
  73. Li, D., Zhu, J., Firozi, P. F. et al. Overexpression of oncogenic STK15/BTAK/Aurora A kinase in human pancreatic cancer. Clin Cancer Res. 2003b; 9:991-7.
  74. Remmele, W. Pathologie Band 4 -Tumoren des Kindesalters. Berlin: Springer; 1997.
  75. Lane, D. P. Cancer. p53, guardian of the genome. ature. 1992; 358:15-6.
  76. Frank Berthold; Dept. Pediatric Oncology and Hematology; Children?s Hospital, University of Cologne; Kerpener Str. 62; D-50924 Köln, GE. ; 2004.
  77. Matthay, K. K., Tan, J. C., Villablanca, J. G. et al. Phase I dose escalation of iodine- 131-metaiodobenzylguanidine with myeloablative chemotherapy and autologous stem- cell transplantation in refractory neuroblastoma: a new approaches to Neuroblastoma Therapy Consortium Study. J Clin Oncol. 2006; 24:500-6.
  78. Katayama, H., Sasai, K., Kawai, H. et al. Phosphorylation by aurora kinase A induces Mdm2-mediated destabilization and inhibition of p53. at Genet. 2004; 36:55-62.
  79. Park, B. H., Davidson, N. E. PI3 kinase activation and response to Trastuzumab Therapy: what's neu with herceptin resistance? Cancer Cell. 2007; 12:297-9.
  80. Hann, H. W., Evans, A. E., Siegel, S. E. et al. Prognostic importance of serum ferritin in patients with Stages III and IV neuroblastoma: the Childrens Cancer Study Group experience. Cancer Res. 1985; 45:2843-8.
  81. Staller, P., Peukert, K., Kiermaier, A. et al. Repression of p15IK4b expression by Myc through association with Miz-1. ; 2001.
  82. Brodeur, G. M., Pritchard, J., Berthold, F. et al. Revisions of the international criteria for neuroblastoma diagnosis, staging, and response to treatment. J Clin Oncol. 1993; 11:1466-77.
  83. Simon, T., Spitz, R., Hero, B., Berthold, F., Faldum, A. Risk estimation in localized unresectable single copy MYCN neuroblastoma by the status of chromosomes 1p and 11q. Cancer Lett. 2006; 237:215-22.
  84. Nakagawara, A., Brodeur, G. M. Role of neurotrophins and their receptors in human neuroblastomas: a primary culture study. Eur J Cancer. 1997; 33:2050-3.
  85. Klein, R. Role of neurotrophins in mouse neuronal development. FASEB J. 1994; 8:738-44.
  86. Marumoto, T., Hirota, T., Morisaki, T. et al. Roles of aurora-A kinase in mitotic entry and G2 checkpoint in mammalian cells. Genes Cells. 2002; 7:1173-82.
  87. Shuster, J. J., McWilliams, N. B., Castleberry, R. et al. Serum lactate dehydrogenase in childhood neuroblastoma. A Pediatric Oncology Group recursive partitioning study. Am J Clin Oncol. 1992; 15:295-303.
  88. Zeltzer, P. M., Marangos, P. J., Evans, A. E., Schneider, S. L. Serum neuron-specific enolase in children with neuroblastoma. Relationship to stage and disease course. Cancer. 1986; 57:1230-4.
  89. Maiorano, D., Lemaitre, J. M., Mechali, M. Stepwise regulated chromatin assembly of MCM2-7 proteins. J Biol Chem. 2000; 275:8426-31.
  90. Shimada, H., Ambros, I. M., Dehner, L. P., Hata, J., Joshi, V. V., Roald, B. Terminology and morphologic criteria of neuroblastic tumors: recommendations by the International Neuroblastoma Pathology Committee. Cancer. 1999a; 86:349-63.
  91. Weinberg, R. A. The biology of cancer. : Garland Science; 2007.
  92. Sjostrom, S. K., Finn, G., Hahn, W. C., Rowitch, D. H., Kenney, A. M. The Cdk1 complex plays a prime role in regulating N-myc phosphorylation and turnover in neural precursors. Dev Cell. 2005; 9:327-38.
  93. Kaelin, W. G. J. The concept of synthetic lethality in the context of anticancer therapy. at Rev Cancer. 2005; 5:689-98.
  94. Berthold, F., Sahin, K., Hero, B. et al. The current contribution of molecular factors to risk estimation in neuroblastoma patients. Eur J Cancer. 1997; 33:2092-7.
  95. Shimada, H., Ambros, I. M., Dehner, L. P. et al. The International Neuroblastoma Pathology Classification (the Shimada system). Cancer. 1999b; 86:364-72.
  96. Hempstead, B. L. The many faces of p75NTR. Curr Opin eurobiol. 2002; 12:260-7.
  97. Tang, X. X., Zhao, H., Kung, B. et al. The MYCN enigma: significance of MYCN expression in neuroblastoma. Cancer Res. 2006; 66:2826-33.
  98. Matthay, K. K., Villablanca, J. G., Seeger, R. C. et al. Treatment of high-risk neuroblastoma with intensive chemotherapy, radiotherapy, autologous bone marrow transplantation, and 13-cis-retinoic acid. Children's Cancer Group. Engl J Med. 1999; 341:1165-73.
  99. Zhou, H., Kuang, J., Zhong, L. et al. Tumour amplified kinase STK15/BTAK induces centrosome amplification, aneuploidy and transformation. at Genet. 1998; 20:189-93.
  100. Pritchard, J., Hickman, J. A. Why does stage 4s neuroblastoma regress spontaneously? Lancet. 1994; 344:869-70.
  101. Pelengaris, S., Khan, M., Evan, G. I. Suppression of Myc-induced apoptosis in beta cells exposes multiple oncogenic properties of Myc and triggers carcinogenic progression. Cell. 2002; 109:321-34.
  102. Pelengaris, S., Khan, M. The many faces of c-MYC. Arch Biochem Biophys. 2003; 416:129-36.
  103. Brodeur, G. M., Maris, J. M. Principles and Practice of Pediatric Oncology. 2002:.
  104. Lanni, J. S., Jacks, T. Characterization of the p53-dependent postmitotic checkpoint following spindle disruption. Mol Cell Biol. 1998; 18:1055-64.
  105. Bischoff, J. R., Anderson, L., Zhu, Y. et al. A homologue of Drosophila aurora kinase is oncogenic and amplified in human colorectal cancers. EMBO J. 1998; 17:3052-65.
  106. Zeller, K. I., Zhao, X., Lee, C. W. H. et al. Global mapping of c-Myc binding sites and target gene networks in human B cells. Proc atl Acad Sci U S A. 2006; 103:17834-9.
  107. Goldschneider, D., Horvilleur, E., Plassa, L. et al. Expression of C-terminal deleted p53 isoforms in neuroblastoma. ucleic Acids Res. 2006; 34:5603-12.
  108. Li, Z., Van Calcar, S., Qu, C., Cavenee, W. K., Zhang, M. Q., Ren, B. A global transcriptional regulatory role for c-Myc in Burkitt's lymphoma cells. Proc atl Acad Sci U S A. 2003a; 100:8164-9.
  109. Ryden, M., Sehgal, R., Dominici, C., Schilling, F. H., Ibanez, C. F., Kogner, P. Expression of mRNA for the neurotrophin receptor trkC in neuroblastomas with favourable tumour stage and good prognosis. Br J Cancer. 1996; 74:773-9.
  110. Sakakura, C., Hagiwara, A., Yasuoka, R. et al. Tumour-amplified kinase BTAK is amplified and overexpressed in gastric cancers with possible involvement in aneuploid formation. Br J Cancer. 2001; 84:824-31.
  111. Ikeda, H., Iehara, T., Tsuchida, Y. et al. Experience with International Neuroblastoma Staging System and Pathology Classification. Br J Cancer. 2002; 86:1110-6.
  112. Iritani, B. M., Eisenman, R. N. c-Myc enhances protein synthesis and cell size during B lymphocyte development. Proc atl Acad Sci U S A. 1999; 96:13180-5.
  113. Zindy, F., Eischen, C. M., Randle, D. H. et al. Myc signaling via the ARF tumor suppressor regulates p53-dependent apoptosis and immortalization. Genes Dev. 1998; 12:2424-33.
  114. Morgenstern, J. P., Land, H. Advanced mammalian gene transfer: high titre retroviral vectors with multiple drug selection markers and a complementary helper-free packaging cell line. ucleic Acids Res. 1990; 18:3587-96.
  115. Nakagawara, A., Azar, C. G., Scavarda, N. J., Brodeur, G. M. Expression and function of TRK-B and BDNF in human neuroblastomas. Mol Cell Biol. 1994; 14:759-67.
  116. Ramsay, G., Stanton, L., Schwab, M., Bishop, J. M. Human proto-oncogene N-myc encodes nuclear proteins that bind DNA. Mol Cell Biol. 1986; 6:4450-7.
  117. Yada, M., Hatakeyama, S., Kamura, T. et al. Phosphorylation-dependent degradation of c-Myc is mediated by the F-box protein Fbw7. EMBO J. 2004; 23:2116-25.
  118. Welcker, M., Orian, A., Jin, J. et al. The Fbw7 tumor suppressor regulates glycogen synthase kinase 3 phosphorylation-dependent c-Myc protein degradation. Proc atl Acad Sci U S A. 2004; 101:9085-90.
  119. Pear, W. S., Nolan, G. P., Scott, M. L., Baltimore, D. Production of high-titer helper- free retroviruses by transient transfection. Proc atl Acad Sci U S A. 1993; 90:8392-6.
  120. Herold, S., Wanzel, M., Beuger, V. et al. Negative regulation of the mammalian UV response by Myc through association with Miz-1. Mol Cell. 2002; 10:509-21.
  121. Berns, K., Horlings, H. M., Hennessy, B. T. et al. A functional genetic approach identifies the PI3K pathway as a major determinant of trastuzumab resistance in breast cancer. ; 2007.
  122. Van Roy, N., Laureys, G., Van Gele, M. et al. Analysis of 1;17 translocation breakpoints in neuroblastoma: implications for mapping of neuroblastoma genes. Eur J Cancer. 1997; 33:1974-8.
  123. van de Wetering, M., Oving, I., Muncan, V. et al. Specific inhibition of gene expression using a stably integrated, inducible small-interfering-RNA vector. EMBO Rep. 2003; 4:609-15.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten