Publikationsserver der Universitätsbibliothek Marburg

Titel:Input and output of the central complex related to polarized light in the nervous system of the desert locust Schistocerca gregaria
Autor:Träger, Ulrike
Weitere Beteiligte: Homberg, Uwe (Prof. Dr.)
Veröffentlicht:2010
URI:https://archiv.ub.uni-marburg.de/diss/z2010/0652
DOI: https://doi.org/10.17192/z2010.0652
URN: urn:nbn:de:hebis:04-z2010-06520
DDC: Biowissenschaften, Biologie
Titel (trans.):Ein- und Ausgang des Zentralkomplexes in Bezug auf polarisiertes Licht im Nervensystem der Wüstenheuschrecke Schistocerca gregaria
Publikationsdatum:2010-12-29
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Elektrophysiologie, Locust, Heuschrecke, Nervensystem

Summary:
Animal species from nearly all major taxa show migratory behavior, and some of these animals cover remarkable distances. Well studied examples are migratory birds like the arctic tern Sterna paradisaea that migrates from boreal and high Arctic breeding grounds to the Southern Ocean (Egevang et al., 2009). Insects also attain excellent achievements in annual migration as shown by the monarch butterfly Danaus plexippus which changes its habitat between eastern North America and central Mexico (Kyriacou, 2009). How can these animals perform such remarkable migrations? Which mechanisms underlie such a performance? Foraging ants and bees use navigational strategies similar to those of birds and mammals to reach a goal. To navigate through familiar terrain, all of these species use path integration and memories of visual landmarks (Collett & Collett, 2002). During path integration, an animal permanently updates a homing vector resulting from all angular and translational movements so that it can always take a direct path back to its starting point (Collett & Collett, 2000). To compute resulting novel routes out of several single homing flights, bees use a map-like navigation strategy that allows targetoriented decisions at any place and toward any intended location within the familiar terrain (Menzel et al., 2006). These mechanisms are used for near-range navigation, termed as "homing", rather than for long-distance navigation tasks. Animals that navigate through unknown space are forced to use cues of a global nature, such as the geomagnetic field, the stars, and cues related to the position of the sun (Frost & Mouritsen, 2006). Like diverse marine animals, e.g. marine turtles, lobsters, and molluscs, the green sea-turtle Chelonia mydas has a magnetic map sense for navigation to specific targets (Cain et al., 2005; Lohmann et al., 2004). Many diurnal species use a time-compensated sun-compass, other sky compass cues like polarized light, or stars for steering toward distant targets (Wehner, 1984; Homberg, 2004; Frost & Mouritsen, 2006).

Bibliographie / References

  1. Srinivasan MV, Poteser M, Kral K. Motion detection in insect orientation and navigation. Vision Res 39: 2749-2766, 1999.
  2. Mappes M, Homberg U. Behavioral analysis of polarization vision in tethered flying locusts. J Comp Physiol A 190: 61- 68, 2004.
  3. Homberg U, Paech A. Ultrastructure and orientation of ommatidia in the dorsal rim area of the locust compound eye. Arthropod Struct Dev 30: 271-280, 2002.
  4. Kirschfeld K. Course control and tracking: orientation through image stabilization. EXS 84: 67-93, 1997.
  5. Hassenstein B, Reichardt W. Systemtheoretische Analyse der Zeit, Reihenfolgen-und Vorzeichenauswertung bei der Be- wegungsperzeption des Rüsselkäfers Chlorophanus. Z Natur- forsch 11b: 513-524, 1956.
  6. Srinivasan MV, Zhang S. Visual motor computations in insects. Annu Rev Neurosci 27: 679-696, 2004.
  7. Wehner R. The hymenopteran skylight compass: Matched filtering and parallel coding. J Exp Biol 146: 62-85, 1989.
  8. Clements A, May TE. Studies on locust neuromuscular physiology in relation to glutamic acid. J Exp Biol 60: 673-705, 1974.
  9. David CT. Optomotor control of speed and height by free-flying Drosophila. J Exp Biol 82: 389-392, 1979.
  10. Pfeiffer K, Kinoshita M, Homberg U. Polarization-sensitive and light-sensitive neurons in two parallel pathways passing through the anterior optic tubercle in the locust brain. J Neu- rophysiol 94: 3903-3915, 2005.
  11. Rind FC. A directionally selective motion-detecting neurone in the brain of the locust: Physiological and morphological charac- terization. J Exp Biol 149: 1-19, 1990b.
  12. Loesel R, Homberg U. Anatomy and physiology of neurons with processes in the accessory medulla of the cockroach Leuco- phaea maderae. J Comp Neurol 439: 193-207, 2001.
  13. Träger U, Wagner R, Bausenwein B, Homberg U. A novel type of microglomerular synaptic complex in the polarization vi- sion pathway of the locust brain. J Comp Neurol 506: 288- 300, 2008.
  14. Brunner D, Labhart T. Behavioural evidence for polarization vision in crickets. Physiol Entomol 12: 1-10, 1987.
  15. Pfeiffer K, Homberg U. Coding of azimuthal directions via time- compensated combination of celestial compass cues. Curr Biol 17: 960-965, 2007.
  16. Preiss R, Gewecke M. Compensation of visually simulated wind drift in the swarming flight of the desert locust (Schistocerca gregaria). J Exp Biol 157: 461–481, 1991.
  17. Hensler K, Rowell CHF. Control of optomotor responses by descending deviation detector neurons in intact flying locusts. J Exp Biol 149: 191-205, 1990.
  18. Schwind R. Sehen unter und über Wasser, Sehen von Wasser. Das Sehen eines Wasserinsektes. Naturwissenschaften 72: 343- 352, 1985.
  19. Labhart T, Meyer EP. Detectors for polarized skylight in insects: a survey of ommatidial specializations in the dorsal rim area of the compound eye. Microsc Res Tech 47: 368-379, 1999.
  20. Kirschfeld K. Die notwendige Anzahl von Rezeptoren zur Be- stimmung der Richtung des elektrischen Vektors linear polari- sierten Lichtes. Z Naturforsch 27: 578-579, 1972.
  21. Schneider L, Langer H. Die Struktur des Rhabdoms im " Doppel- auge " des Wasserläufers Gerris lacustris. Z Zellforsch 99: 538-559, 1969.
  22. Rind FC. Identification of directionally selective motion-detecting neurones in the locust lobula and their synaptic connections with an identified descending neurone. J Exp Biol 149: 21-43, 1990a.
  23. Homberg U. In search of the sky compass in the insect brain. Naturwissenschaften 91: 199-208, 2004.
  24. Heinze S, Homberg U. Maplike representation of celestial E- vector orientations in the brain of an insect. Science 315: 995- 997, 2007.
  25. Rind FC. Motion detectors in the locust visual system: From biology to robot sensors. Micros Res Tech 56: 256-269, 2002.
  26. Schlurmann M, Hausen K. Motoneurons of the flight power muscles of the blowfly Calliphora erythrocephala: Structures and mutual dye coupling. J Comp Neurol 500: 448-464, 2007.
  27. Siegler MVS, Phong MP, Pousman CA. Motor neurons supplying hindwing muscles of a grasshopper: Topography and distribu- tion into anatomical groups. J Comp Neurol 310: 342-355, 1991.
  28. Homberg U, Würden S. Movement-sensitive, polarization- sensitive, and light-sensitive neurons of the medulla and ac- cessory medulla of the locust, Schistocerca gregaria. J Comp Neurol 386: 329-346, 1997.
  29. Wehner R, Labhart T. Polarisation vision. In: Invertebrate Vision, edited by Warrant E, Nilsson D-E. Cambridge University Press, 2006, p. 291-348.
  30. Glantz RM. Polarization vision in crayfish motion detectors. J Comp Physiol A 194: 565-575, 2008.
  31. Horváth G, Varjú D. Polarized light in animal vision. Springer: Berlin, 2004.
  32. Götz KG. Processing of cues from the moving environment in the Drosophila navigation system. In: Information Processing in the Visual Systems of Arthropods, edited by Wehner R. Ber- lin; Springer-Verlag, 1972, p. 255-263.
  33. Rind FC, Simmons PJ. Seeing what is coming: building collision- sensitive neurones. Trends Neurosci 22: 215-220, 1999.
  34. Kien J. Sensory integration in the locust optomotor system-I: Behavioural analysis. Vision Res 14: 1245-1254, 1974a.
  35. Srinivasan MV. Shouldn't directional movement detection neces- sarily be "colour-blind"? Vision Res 25: 997-1000, 1985.
  36. Stern M, Gewecke M. Spatial sensitivity profiles of motion sensi- tive neurons in the locust brain. In: Sensory Systems of Ar- thropods, edited by Wiese K, Gribakin FG, Popov AV, Ren- ninger G. Basel: Birkhäuser, 1993, p. 184–195.
  37. Varjú D. Stationary and dynamic responses during visual edge fixation by walking insects. Nature 255: 330-332, 1975.
  38. Mappes M, Homberg U. Surgical lesion of the anterior optic tract abolishes polarotaxis in tethered flying locusts, Schistocerca gregaria. J Comp Physiol A 193: 43-50, 2007.
  39. Järvilehto M. The eye: Vision and perception. In: Comprehensive Insect Physiology Biochemistry and Pharmacology. Volume 6 Nervous System: Sensory, edited by Kerkut GA, Gilbert LI. Pergamon Press Ltd., 1985, p 355-429.
  40. Kien J, Land M. The fast phase of optokinetic nystagmus in the locust. Physiol Entomol 3: 53-57, 1978.
  41. Gewecke M. The influence of the air-current sense organs on the flight behaviour of Locusta migratoria. J Comp Physiol 103: 79-95, 1975.
  42. Gewecke M, Hou T. Visual brain neurons in Locusta migratoria. In: Sensory systems of arthropods, edited by Wiese K, Gri- bakin FG, Popov AV, Renninger G. Basel: Birkhäuser, 1993, p. 119–144.
  43. Heinze S, Gotthardt S, Homberg U. Transformation of polarized light information in the central complex of the locust. J Neu- rosci 29: 11783-11793, 2009.
  44. Heinze S, Homberg U. Linking the input to the output: new sets of neurons complement the polarization vision network of the locust central complex. J Neurosci 29: 4911-4921, 2009.
  45. Heinze S, Homberg U. Neuroarchitecture of the central complex of the desert locust: Intrinsic and columnar neurons. J Comp Neurol 511: 454-478, 2008.
  46. el Jundi B, Homberg U. Evidence for the possible existence of a second polarization-vision pathway in the locust brain. J In- sect Physiol 56: 971-979, 2010.
  47. Vitzthum H, Müller M, Homberg U. Neurons of the central complex of the locust Schistocerca gregaria are sensitive to polarized light. J Neurosci 22: 1114-1125, 2002.
  48. Egelhaaf M, Borst A. A look into the cockpit of the fly: visual orientation, algorithms, and identified neurons. J Neurosci 13: 4563-4574, 1993.
  49. Egelhaaf M. The neural computation of visual motion information. In: Invertebrate Vision, edited by Warrant E, Nilsson D-E. Cambridge University Press, 2006, p. 399-461.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten