Publikationsserver der Universitätsbibliothek Marburg

Titel:Production of glutaconic acid in recombinant Escherichia coli
Autor:Djurdjevic, Ivana
Weitere Beteiligte: Buckel, Wolfgang (Prof. Dr.)
Veröffentlicht:2010
URI:https://archiv.ub.uni-marburg.de/diss/z2010/0647
DOI: https://doi.org/10.17192/z2010.0647
URN: urn:nbn:de:hebis:04-z2010-06472
DDC: Biowissenschaften, Biologie
Titel (trans.):Die Produktion von Glutaconsäure in rekombinanten Escherichia coli
Publikationsdatum:2010-12-29
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Escherichia coli, Escherichia coli, Glutaconate, Polymers, Polymers, Glutaconate

Summary:
Glutaric and glutaconic acids serve as monomers for the production of polymers. Glutaric acid (pentanedioic acid) might be used for polyester synthesis, related to the biodegradable Ecoflex available from BASF. Glutaconic acid (pentenedioic acid) could be applied for the formation of polyamides by polymerization with diamines. Furthermore this α,β-unsaturated dicarboxylic acid is suitable for radical polymerization. Therefore we became interested in the biological production of these dicarboxylic acids. The ideal material for biotechnological production of glutaconic acid would be glutamic acid, obtained by sugar fermentation. The chemical deamination of this α-amino acid to glutaconate is not executable. In contrary to this, strictly anaerobic bacteria, as are Acidaminococcus fermentans and Clostridium symbiosum can easily ferment glutamate to ammonia, acetate, butyrate, CO2 and H2 via 2-oxoglutarate, (R)-2-hydroxyglutarate, (R)-2-hydroxyglutaryl-CoA, and glutaconyl-CoA. Inhibition of the subsequent decarboxylation to crotonyl-CoA would lead to glutaconate. We achieved this aim on another route, the conversion of Escherichia coli into a glutaconate producer by introducing six genes encoding (R)-2-hydroxyglutarate dehydrogenase (HgdH), glutaconate CoA-transferase (GctAB), and the extremely oxygen sensitive activator of the dehydratase (HgdC) from A. fermentans as well as the also oxygen sensitive (R)-2-hydroxyglutaryl-CoA dehydratase (HgdAB) from C. symbiosum. Hence, within 5 h after induction of gene expression the recombinant E. coli produced 2.7 ± 0.2 mM glutaconate on a medium containing 1.5% peptone, 0.3 % yeast extract, 100 mM NaCl, 5 mM glucose, 3 mM cysteine, 10 mM glutamate, 2 mM ferric citrate, 0.2 mM riboflavin, and antibiotics. Interestingly, initially the concentration of glutamate decreased by 30% but later regained its original level, whereas glucose was almost quantitatively converted to two ethanol. The reduction of glutaconyl-CoA to glutaryl-CoA is catalyzed by an enzyme involved in the synthesis of cyclohexanecarboxylate and benzoate in Syntrophus aciditrophicus. Preliminary experiments indicate that coexpression of the genes encoding glutaryl-CoA dehydrogenase and electron-transferring flavoprotein (EtfAB) from S. aciditrophicus in E. coli yield an enzyme system that together with hydrogenase catalyzes the bifurcation of 2 NAD(P)H to glutaconyl-CoA and ferredoxin. Thus glutaryl-CoA and H2 were formed though at a very low rate.

Bibliographie / References

  1. Parthasarathy, A. (2009). Substrates and mechanism of 2-hydroxyglutaryl-CoA- dehydratase from Clostridium symbiosum (Marburg, Philipps-Universität).
  2. Crystal structure of the Acidaminococcus fermentans 2-hydroxyglutaryl-CoA dehydratase component A. J Mol Biol 307, 297-308.
  3. Farrell, A.E., Plevin, R.J., Turner, B.T., Jones, A.D., O'Hare, M., and Kammen, D.M. (2006). Ethanol can contribute to energy and environmental goals. Science References 79
  4. McInerney, M.J., Rohlin, L., Mouttaki, H., Kim, U., Krupp, R.S., Rios-Hernandez, L., Sieber, J., Struchtemeyer, C.G., Bhattacharyya, A., Campbell, J.W., et al. (2007). The genome of Syntrophus aciditrophicus: life at the thermodynamic limit of microbial growth. Proc Natl Acad Sci U S A 104, 7600-7605.
  5. Wischgoll, S., Demmer, U., Warkentin, E., Günther, R., Boll, M., and Ermler, U. (2010). Structural basis for promoting and preventing decarboxylation in glutaryl-coenzyme A dehydrogenases. Biochemistry 49, 5350-5357.
  6. Stahmann, K.P., Revuelta, J.L., and Seulberger, H. (2000). Three biotechnical processes using Ashbya gossypii, Candida famata, or Bacillus subtilis compete with chemical riboflavin production. Appl Microbiol Biotechnol 53, 509-516.
  7. Klees, A.G., Linder, D., and Buckel, W. (1992). 2-Hydroxyglutaryl-CoA dehydratase from Fusobacterium nucleatum (subsp. nucleatum): an iron-sulfur flavoprotein. Arch Microbiol 158, 294-301. References 81
  8. Kim, J., Darley, D., and Buckel, W. (2005). 2-Hydroxyisocaproyl-CoA dehydratase and its activator from Clostridium difficile. FEBS J 272, 550-561.
  9. Gokarn, R.R., Selifonova, O., Jessen, H.J., Gort, S.J., Selmer, T., and Buckel, W. (2004). 3-hydroxypropionic acid and other organic compounds, Cargill, ed. (USA).
  10. Lehman, T.C., and Thorpe, C. (1990). Alternate electron acceptors for medium-chain acyl-CoA dehydrogenase: use of ferricenium salts. Biochemistry 29, 10594- 10602.
  11. Kim, J., Darley, D.J., Buckel, W., and Pierik, A.J. (2008). An allylic ketyl radical intermediate in clostridial amino-acid fermentation. Nature 452, 239-242.
  12. Buckel, W. (1980a). Analysis of the fermentation pathways of clostridia using double labelled glutamate. Arch Microbiol 127, 167-169.
  13. Grant, G.A. (1989). A new family of 2-hydroxyacid dehydrogenases. Biochem Biophys Res Commun 165, 1371-1374.
  14. Heider, J. (2001). A new family of CoA-transferases. FEBS Lett 509, 345-349.
  15. Witt, U., Einig, T., Yamamoto, M., Kleeberg, I., Deckwer, W.D., and Muller, R.J. (2001). Biodegradation of aliphatic-aromatic copolyesters: evaluation of the final biodegradability and ecotoxicological impact of degradation intermediates. Chemosphere 44, 289-299.
  16. Buckel, W. (1986). Biotin-dependent decarboxylases as bacterial sodium pumps: Purification and reconstitution of glutaconyl-CoA decarboxylase from Acidaminococcus fermentans. Methods Enzymol 125, 547-558
  17. O'Neill, H., Mayhew, S.G., and Butler, G. (1998). Cloning and analysis of the genes for a novel electron-transferring flavoprotein from Megasphaera elsdenii. Expression and characterization of the recombinant protein. J Biol Chem 273, 21015-21024.
  18. Crystal structures of human glutaryl-CoA dehydrogenase with and without an alternate substrate: structural bases of dehydrogenation and decarboxylation reactions. Biochemistry 43, 9674-9684.
  19. Janausch, I.G., Kim, O.B., and Unden, G. (2001). DctA-and Dcu-independent transport of succinate in Escherichia coli: contribution of diffusion and of alternative carriers. Arch Microbiol 176, 224-230.
  20. Smith, D.M., Buckel, W., and Zipse, H. (2003). Deprotonation of enoxy radicals: theoretical validation of a 50-year-old mechanistic proposal. Angew Chem Int Ed Engl 42, 1867-1870.
  21. Herrmann, G., Jayamani, E., Mai, G., and Buckel, W. (2008). Energy conservation via electron-transferring flavoprotein in anaerobic bacteria. J Bacteriol 190, References 80
  22. Buckel, W., and Miller, S.L. (1987). Equilibrium constants of several reactions involved in the fermentation of glutamate. Eur J Biochem 164, 565-569.
  23. Inui, M., Suda, M., Kimura, S., Yasuda, K., Suzuki, H., Toda, H., Yamamoto, S., Okino, S., Suzuki, N., and Yukawa, H. (2008). Expression of Clostridium acetobutylicum butanol synthetic genes in Escherichia coli. Appl Microbiol Biotechnol 77, 1305-1316.
  24. Buckel, W., Dorn, U., and Semmler, R. (1981). Glutaconate CoA-transferase from Acidaminococcus fermentans. Eur J Biochem 118, 315-321.
  25. Hoffmann, G.F., and Zschocke, J. (1999). Glutaric aciduria type I: from clinical, biochemical and molecular diversity to successful therapy. J Inherit Metab Dis 22, 381-391.
  26. Willke, T., and Vorlop, K.D. (2004). Industrial bioconversion of renewable resources as an alternative to conventional chemistry. Appl Microbiol Biotechnol 66, 131-142.
  27. Hermann, T. (2003). Industrial production of amino acids by coryneform bacteria. J Biotechnol 104, 155-172.
  28. Location of the two genes encoding glutaconate coenzyme A-transferase at the beginning of the hydroxyglutarate operon in Acidaminococcus fermentans. Eur J Biochem 226, 41-51.
  29. Dickert, S., Pierik, A.J., and Buckel, W. (2002). Molecular characterization of phenyllactate dehydratase and its initiator from Clostridium sporogenes. Mol Microbiol 44, 49-60.
  30. Brock, M., and Buckel, W. (2004). On the mechanism of action of the antifungal agent propionate. Eur J Biochem 271, 3227-3241.
  31. Parthasarathy, A., Buckel, W., and Smith, D.M. (2010). On the thermodynamic equilibrium between (R)-2-hydroxyacyl-CoA and 2-enoyl-CoA. FEBS J 277, 1738-1746. References 82
  32. Yamanishi, Y., Mihara, H., Osaki, M., Muramatsu, H., Esaki, N., Sato, T., Hizukuri, Y., Goto, S., and Kanehisa, M. (2007). Prediction of missing enzyme genes in a bacterial metabolic network. Reconstruction of the lysine-degradation pathway of Pseudomonas aeruginosa. FEBS J 274, 2262-2273.
  33. Process for the production of cadaverine, BASF, ed.
  34. Song, H., and Lee, S.Y. (2006). Production of succinic acid by bacterial fermentation. Enzyme Microb Tech 39, 352-361.
  35. Buckel, W., and Semmler, R. (1983). Purification, characterisation and reconstitution of glutaconyl-CoA decarboxylase, a biotin-dependent sodium pump from anaerobic bacteria. Eur J Biochem 136, 427-434.
  36. Schweiger, G., Dutscho, R., and Buckel, W. (1987). Purification of 2-hydroxyglutaryl- CoA dehydratase from Acidaminococcus fermentans. An iron-sulfur protein.
  37. Hofmeister, A.E., and Buckel, W. (1992). (R)-lactyl-CoA dehydratase from Clostridium propionicum. Stereochemistry of the dehydration of (R)-2- hydroxybutyryl-CoA to crotonyl-CoA. Eur J Biochem 206, 547-552.
  38. Härtel, U., and Buckel, W. (1996). Sodium ion-dependent hydrogen production in Acidaminococcus fermentans. Arch Microbiol 166, 350-356.
  39. Buckel, W. (2001a). Sodium ion-translocating decarboxylases. Biochim Biophys Acta 1505, 15-27.
  40. Thorpe, C., and Kim, J.J. (1995). Structure and mechanism of action of the acyl-CoA dehydrogenases. FASEB J 9, 718-725.
  41. Dickert, S., Pierik, A.J., Linder, D., and Buckel, W. (2000). The involvement of coenzyme A esters in the dehydration of (R)-phenyllactate to (E)-cinnamate by Clostridium sporogenes. Eur J Biochem 267, 3874-3884.
  42. Hans, M., Buckel, W., and Bill, E. (2000). The iron-sulfur clusters in 2- hydroxyglutaryl-CoA dehydratase from Acidaminococcus fermentans, Biochemical and spectroscopic investigations. Eur J Biochem 267, 7082- 7093.
  43. Simon, E.J., and Shemin, D. (1953). The preparation of S-succinyl Coenzyme A. J Am Chem Soc 75, 2520.
  44. Buckel, W. (1980b). The reversible dehydration of (R)-2-hydroxyglutarate to (E)- glutaconate. Eur J Biochem 106, 439-447.
  45. Buckel, W. (2001b). Unusual enzymes involved in five pathways of glutamate fermentation. Appl Microbiol Biotechnol 57, 263-273.
  46. Wischgoll, S., Taubert, M., Peters, F., Jehmlich, N., von Bergen, M., and Boll, M. (2009). Decarboxylating and nondecarboxylating glutaryl-coenzyme A dehydrogenases in the aromatic metabolism of obligately anaerobic bacteria.
  47. Adenosine triphosphate-induced electron transfer in 2-hydroxyglutaryl-CoA dehydratase from Acidaminococcus fermentans. Biochemistry 41, 5873- 5882.
  48. Jimenez, A., Santos, M.A., Pompejus, M., and Revuelta, J.L. (2005). Metabolic engineering of the purine pathway for riboflavin production in Ashbya gossypii. Appl Environ Microbiol 71, 5743-5751.
  49. Prijambada, I.D., Negoro, S., Yomo, T., and Urabe, I. (1995). Emergence of nylon oligomer degradation enzymes in Pseudomonas aeruginosa PAO through experimental evolution. Appl Environ Microbiol 61, 2020-2022.
  50. Smith, M.W., and Neidhardt, F.C. (1983). 2-Oxoacid dehydrogenase complexes of Escherichia coli: cellular amounts and patterns of synthesis. J Bacteriol 156, 81-88.
  51. Coupled ferredoxin and crotonyl coenzyme A (CoA) reduction with NADH catalyzed by the butyryl-CoA dehydrogenase/Etf complex from Clostridium kluyveri. J Bacteriol 190, 843-850.
  52. Buckel, W., and Barker, H.A. (1974). Two pathways of glutamate fermentation by anaerobic bacteria. J Bacteriol 117, 1248-1260.
  53. Quantifying reductive carboxylation flux of glutamine to lipid in a brown adipocyte cell line. J Biol Chem 283, 20621-20627.
  54. Jackins, H.C., and Barker, H.A. (1951). Fermentative processes of the fusiform bacteria. J Bacteriol 61, 101-114.
  55. Freneaux, E., Sheffield, V.C., Molin, L., Shires, A., and Rhead, W.J. (1992). Glutaric acidemia type II. Heterogeneity in beta-oxidation flux, polypeptide synthesis, and complementary DNA mutations in the alpha subunit of electron transfer flavoprotein in eight patients. J Clin Invest 90, 1679-1686.
  56. Iuchi, S., and Lin, E.C. (1988). arcA (dye), a global regulatory gene in Escherichia coli mediating repression of enzymes in aerobic pathways. Proc Natl Acad Sci U S A 85, 1888-1892.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten