Publikationsserver der Universitätsbibliothek Marburg

Titel:Modulation of Saccadic Curvature by Spatial Memory and Associative Learning
Autor:Koenig, Stephan
Weitere Beteiligte: Lachnit, Harald (Prof. Dr.)
Veröffentlicht:2010
URI:https://archiv.ub.uni-marburg.de/diss/z2010/0636
URN: urn:nbn:de:hebis:04-z2010-06364
DOI: https://doi.org/10.17192/z2010.0636
DDC: Psychologie
Titel (trans.):Modulation von Sakkadenkrümmung durch Räumliches Gedächtnis und Assoziatives Lernen
Publikationsdatum:2010-12-02
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Eye movements, Saccades, Selektion, Inhibition, Selection, Associative learning, Assoziatives Lernen, Sakkaden, Blickbewegungen, Inhibition, Allgemeine Psychologie

Summary:
The way the eye travels during a saccade typically does not follow a straight line but rather shows some curvature instead. Converging empirical evidence has demonstrated that curvature results from conflicting saccade goals when multiple stimuli in the visual periphery compete for selection as the saccade target (Van der Stigchel, Meeter, & Theeuwes, 2006). Curvature away from a competing stimulus has been proposed to result from the inhibitory deselection of the motor program representing the saccade towards that stimulus (Sheliga, Riggio, & Rizzolatti, 1994; Tipper, Howard, & Houghton, 2000). For example, if participants are instructed to perform a saccade towards a defined target stimulus and to ignore a simultaneously presented nearby distractor stimulus, a saccade landing on the target typically exhibits curvature away from the distractor (e. g. Doyle & Walker, 2001). The present thesis reports how trajectories of saccadic eye movements are affected by spatial memory and associative learning. The final objective was to explore if the curvature effect can be used to investigate associative learning in an experimental paradigm where competing saccade targets are retrieved from associative memory rather than being sensory events. The thesis incorporates manuscripts on the following working steps to accomplish this objective: The first manuscript presents the computer software that was written in order to derive measure of saccadic curvature from the recorded eye movement traces. The second manuscript replicates and extends prior reports on the effect of (non-associative) spatial working memory on saccade deviations (Theeuwes, Olivers, & Chizk, 2005). The third manuscript uses a novel associative learning task to demonstrate that changes in saccadic curvature during associative learning comply with the acquisition and extinction of competing associations as predicted by the Rescorla-Wagner model (Rescorla & Wagner, 1972), originally put forward to explain classical conditioning in animals.

Bibliographie / References

  1. Walker, R., McSorley, E., & Haggard, P. (2006). The control of saccade trajectories: direction of curvature depends on prior knowledge of target location and saccade latency. Perception and Psychophysics, 68, 129-138. Retrieved from http://app.psychonomic-journals.org/
  2. McSorley, E., & McCloy, R. (2009). Saccadic eye movements as an index of perceptual decision-making. Experimental Brain Research, 198, 513-520. doi:10.1007/s00221- 009-1952-9
  3. Anderson, M. C., Bjork, R. A., & Bjork, E. L. (1994). Remembering can cause forgetting: retrieval dynamics in long-term memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 20, 1063-1087. doi:10.1037/0278- 7393.20.5.1063
  4. Pratt, J., & Hommel, B. (2003). Symbolic control of visual attention: The role of working memory and attentional control settings. Journal of Experimental Psychology: Human Perception and Performance, 29, 835-845. doi:10.1037/0096- 1523.29.5.835
  5. Theeuwes, J., Olivers, C. N. L., & Chizk, C. L. (2005). Remembering a location makes the eyes curve away. Psychological Science, 16, 196-199. doi:10.1111/j.0956- 7976.2005.00803.x
  6. Savastano, H. I., Cole, R. P., Barnet, R. C., & Miller, R. R. (1999). Reconsidering conditioned inhibition. Learning and Motivation, 30, 101-127. doi:10.1006/lmot.1998.1020
  7. McSorley, E., Haggard, P., & Walker, R. (2004). Distractor modulation of saccade trajectories: Spatial separation and symmetry effects. Experimental Brain Research, 155, 320-333. doi:10.1007/s00221-003-1729-5
  8. Van der Stigchel, S., & Theeuwes, J. (2006). Our eyes deviate away from a location where a distractor is expected to appear. Experimental Brain Research, 169, 338-349. doi:10.1007/s00221-005-0147-2
  9. Doyle, M., & Walker, R. (2001). Curved saccade trajectories: voluntary and reflexive saccades curve away from irrelevant distractors. Experimental Brain Research, 139, 333-344. doi:10.1007/s002210100742
  10. Bahill, A., & Stark, L. (1975). Neurological control of horizontal and vertical components of oblique saccadic eye movements. Mathematical Biosciences, 24, 287– 298. doi:10.1016/0025-5564(75)90107-8
  11. Van der Stigchel, S., Meeter, M., & Theeuwes, J. (2006). Eye movement trajectories and what they tell us. Neuroscience & Biobehavioral Reviews, 30, 666-679. doi:10.1016/j.neubiorev.2005.12.001
  12. McSorley, E., Haggard, P., & Walker, R. (2009). The spatial and temporal shape of oculomotor inhibition. Vision Research, 49, 608-614. doi:10.1016/j.visres.2009.01.015
  13. Findlay, J. M. (1997). Saccade target selection during visual search. Vision Research, 37, 617-631. doi:10.1016/S0042-6989(96)00218-0
  14. Brandon, S., Vogel, E., & Wagner, A. (2003). Stimulus representation in SOP: I. Theoretical rationalization and some implications. Behavioural Processes, 62, 5-25. doi:10.1016/S0376-6357(03)00016-0
  15. Monsell, S. (2003). Task switching. Trends in Cognitive Sciences, 7, 134-140. doi:10.1016/S1364-6613(03)00028-7
  16. Langton, S. R., & Bruce, V. (2000). You must see the point: Automatic processing of cues to the direction of social attention. Journal of Experimental Psychology: Human Perception and Performance, 26, 747-757. doi:10.1037//0096-1523.26.2.747
  17. Anderson, M. C., & Spellman, B. A. (1995). On the status of inhibitory mechanisms in cognition: memory retrieval as a model case. Psychological Review, 102, 68-100. doi:10.1037/0033-295X.102.1.68
  18. Stout, S. C., & Miller, R. R. (2007). Sometimes-competing retrieval (SOCR): A formalization of the comparator hypothesis. Psychological Review, 114, 759-783. doi:10.1037/0033-295X.114.3.759
  19. Pearce, J. M., & Hall, G. (1980). A model for Pavlovian learning: Variations in the effectiveness of conditioned but not of unconditioned stimuli. Psychological Review, 87, 532-552. doi:10.1037/0033-295X.87.6.532
  20. Pearce, J. M. (1987). A model for stimulus generalization in Pavlovian conditioning. Psychological Review, 94, 61-73. doi:10.1037/0033-295X.94.1.61
  21. Müller, H. J., & Rabbitt, P. M. (1989). Reflexive and voluntary orienting of visual attention: Time course of activation and resistance to interruption. Journal of Experimental Psychology: Human Perception and Performance, 15, 315-330. doi:10.1037/0096-1523.15.2.315
  22. McClelland, J. L., & Rumelhart, D. E. (1985). Distributed memory and the representation of general and specific information. Journal of Experimental Psychology: General, 114, 159-197. doi:10.1037/0096-3445.114.2.159
  23. Gluck, M. A., & Bower, G. H. (1988). From conditioning to category learning: an adaptive network model. Journal of Experimental Psychology: General, 117, 227- 247. doi:10.1037/0096-3445.117.3.227
  24. Williams, D. A. (1995). Forms of inhibition in animal and human learning. Journal of Experimental Psychology: Animal Behavior Processes, 21, 129-142. doi:10.1037/0097-7403.21.2.129
  25. Shanks, D. R. (1991). Categorization by a Connectionist Network. Journal of Experimental Psychology: Learning, Memory, and Cognition, 17, 433-443. doi:10.1037/0278-7393.17.3.433
  26. Rescorla, R. A. (1969). Pavlovian conditioned inhibition. Psychological Bulletin, 72, 77-94. doi:10.1037/h0027760
  27. Schall, J. D. (2001). Neural basis of deciding, choosing and acting. Nature Reviews. Neuroscience, 2, 33-42. doi:10.1038/35049054
  28. Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews. Neuroscience, 3, 201-215. doi:10.1038/nrn755 Deubel, H., & Schneider, W. X. (1996). Saccade target selection and object recognition: evidence for a common attentional mechanism. Vision Research, 36, 1827-1837. doi:10.1016/0042-6989(95)00294-4
  29. Posner, M. I. (1980). Orienting of attention. Quarterly Journal of Experimental Psychology, 32, 3-25. doi:10.1080/00335558008248231
  30. Tipper, S. P. (2001). Does negative priming reflect inhibitory mechanisms? A review and integration of conflicting views. Quarterly Journal of Experimental Psychology. A, Human Experimental Psychology, 54, 321-343. doi:10.1080/02724980042000183
  31. Wagner, A. R. (2003). Context-sensitive elemental theory. Quarterly Journal of Experimental Psychology. B, Comparative And Physiological Psychology, 56, 7-29. doi:10.1080/02724990244000133
  32. Karazinov, D. M., & Boakes, R. A. (2004). Learning about cues that prevent an outcome: conditioned inhibition and differential inhibition in human predictive learning. Quarterly Journal of Experimental Psychology. B, Comparative And Physiological Psychology, 57, 153-178. doi:10.1080/02724990344000033
  33. Ristic, J., & Kingstone, A. (2006). Attention to arrows: Pointing to a new direction. Quarterly Journal Of Experimental Psychology, 59, 1921-1930. doi:10.1080/17470210500416367
  34. Tipper, S. P., Howard, L. A., & Jackson, S. R. (1997). Selective reaching to grasp: Evidence for distractor interference effects. Visual Cognition, 4, 1-38. doi:10.1080/713756749
  35. Hommel, B., Pratt, J., Colzato, L., & Godijn, R. (2001). Symbolic control of visual attention. Psychological Science, 12, 360-365. doi:doi:10.1111/1467-9280.00367
  36. Schall, J. D., & Thompson, K. G. (1999). Neural selection and control of visually guided eye movements. Annual Review of Neuroscience, 22, 241-259. doi:10.1146/annurev.neuro.22.1.241
  37. McSorley, E., Haggard, P., & Walker, R. (2006). Time course of oculomotor inhibition revealed by saccade trajectory modulation. Journal of Neurophysiology, 96, 1420- 1424. doi:10.1152/jn.00315.2006
  38. McPeek, R. M. (2006). Incomplete suppression of distractor-related activity in the frontal eye field results in curved saccades. Journal of Neurophysiology, 96, 2699- 2711. doi:10.1152/jn.00564.2006
  39. McPeek, R. M., Han, J. H., & Keller, E. L. (2003). Competition between saccade goals in the superior colliculus produces saccade curvature. Journal of Neurophysiology, 89, 2577-2590. doi:10.1152/jn.00657.2002
  40. Huynh, H., & Feldt, L. S. (1976). Estimation of the Box correction for degrees of freedom from sample data in the randomized block and split-plot designs. Journal of Educational Statistics, 1, 69-82. doi:doi:10.2307/1164736
  41. Comparing Elemental and Configural Associative Theories in Human Causal Learning: A Case for Attention Journal of Experimental Psychology: Animal Behavior Processes, 34, 303–313.
  42. Quaia, C., Lefevre, P., & Optican, L. M. (1999). Model of the control of saccades by superior colliculus and cerebellum. Journal of Neurophysiology, 82, 999-1018. Retrieved from http://jn.physiology.org/
  43. Wagner, A. R., & Brandon, S. E. (2001). A componential theory of Pavlovian conditioning. In S. B. Klein, & R. R. Mowrer (Eds.), Handbook of contemporary learning theories (pp. 23-64). Mahwah, NJ, US: Lawrence Erlbaum Associates Publishers.
  44. Widrow, G., & Hoff, M. E. (1960). Adaptive switching circuits. Institute of Radio Engineers: Western electronic show and convention (Convention Record, Pt. 4), 96- 104.
  45. Thorwart, A., Schultheis, H., König, S., & Lachnit, H. (2009). ALTSim: a MATLAB simulator for current associative learning theories. Behavior Research Methods, 41, 29-34.
  46. König, S., Lachnit, H., & Reinhard, G. (2006). Anticipatory eye movements as a measure of associative strength. Poster presented at the Third Magnetic Island Australian Learning Group Conference, Magnetic Island, Queensland.
  47. Koenig, S., & Lachnit, H. (2010a). A Software Package for the Analysis of Eye Movement Trajectories with MATLAB. Manuscript in preparation
  48. Rescorla, R. A., & Wagner, A. R. (1972). A theory of Pavlovian conditioning: Variations in the effectiveness of reinforcement and nonreinforcement. In A. H. Black, & W. F. Prokasy (Eds.), Classical conditioning II (pp. 64-99). New York: Appleton Century Crofts.
  49. In J. B. Long, & A. D. Baddeley (Eds.), Attention and Performance (pp. 187–203).
  50. Tipper, S. P., Howard, D. V., & Houghton, G. (2000). Behavioral consequences of selection from population codes. In S. Monsell, & J. Driver (Eds.), Attention and Performance (pp. 223-245). Cambridge: MIT Press.
  51. Greenlee, M. Hammerl, & A. Zimmer (Eds.). Beiträge zur 47. Tagung experimentell arbeitender Psychologen. Lengerich: Pabst Science Publishers.
  52. König, S., Lachnit, H., & Reinhard, G. (2006). Blickbewegungen als Indikator assoziativen Lernens. In H. Hecht, S. Berti, G. Meinhardt, & M. Gamer (Eds.), Beiträge zur 48. Tagung experimentell arbeitender Psychologen. Lengerich: Pabst Science Publishers.
  53. Project DFG LA 564/13-1, " Pupillenreaktionen als Indikatoren menschlicher Informationsverarbeitung " granted to Prof. Dr. Harald Lachnit 2007-(2010) Project DFG LA 564/20-1, " Blickbewegungen als Indikatoren assoziativen Lernens " granted to Prof. Dr. Harald Lachnit, including installation and startup of the eye tracking lab at the Department of Psychology 2008-(2010) Regular lecturing in Perception, Learning and Methods of Cognitive Neuroscience at the Department of Psychology, Philipps-Universität Marburg Seminars " Lernen und Verhalten " (WiSe 2008/09), " Ausgewählte Themen der Wahrnehmungspsychologie " (WiSe 2008/09), " Grundlagen der Lernpsychologie " (SoSe 2009) Laboratory courses " Peripherphysiologische Indikatoren von Lernprozessen " (SoSe 2008), " Einführung in die Methoden der Kognitiven Neurowissenschaften: Blickbewegungsmessung " (SoSe 2008-2010), " Methoden der Kognitiven Neurowissenschaften: Programmierung von Versuchssteuerungen " (WiSe 2008/10, 2009/10) Lecture " Einführung in die Kognitiven Neurowissenschaften: Blickbewegungen " (SoSe 2010) Related Experience 2003 Internship Clinical Neuropsychology, Neurologische Klinik Westend, Bad Wildungen (Dr. med. Karin Schoof-Tams)
  54. Anderson, J. A. (1983). Cognitive and psychological computation with neural models. IEEE Transactions on Systems, Man, and Cybernetic, 13, 799-815.
  55. Pavlov, I. P. (1927). Conditioned reflexes. London: Oxford University Press.
  56. Konorski, J. (1948). Conditioned reflexes and neuron organization. Cambridge: University Press.
  57. Koenig, S., & Lachnit, H. (2010c). Curved Saccade Trajectories Reveal Conflicting Predictions in Associative Learning. Manuscript submitted for publication.
  58. König, S., Reinhard, G., & Lachnit, H. (2003). Der Stimulus-Probability-Effekt bei der Konditionierung des Hautleitwertes. In J. Golz, F. Faul, & R. Mausfeld (Eds.), Beiträge zur 45. Tagung experimentell arbeitender Psychologen. Lengerich: Pabst Science Publishers.
  59. Reinhard, G., Lachnit, H., & König, S. (2007). Effects of stimulus probability on pupillary dilation and reaction time in categorization. Psychophysiology, 44, 469-475.
  60. Harris, J. A. (2006). Elemental representations of stimuli in associative learning. Psychological Review, 113, 584-605.
  61. König, S., & Lachnit., H. (2008). Exploring Summation and Cue Competition Using Oculomotor Responses. Poster presented at the Associative Learning Symposium (XII), Gregynog Hall, Wales.
  62. Hinton, G. E. (1981). Implementing semantic networks in parallel hardware. In G. E.
  63. Levy, B. J., & Anderson, M. C. (2002). Inhibitory processes and the control of memory retrieval. Trends in Cognitive Sciences, 6, 299-305. doi:10.1016/S1364- 6613(02)01923-X
  64. Konorski, J. (1967). Integrative activity of the brain. An interdisciplinary approach. Chicago: University of Chicago Press.
  65. Co-Organization of the NeuroAct graduate program workshop " Learning and Memory " , Schloß Rauischholzhausen, 31.5.-1.6.2005, with invited lectures of Prof. Dr. Geoffrey Hall, Prof. Dr. Randolf Menzel, Dr. Gernot Riedel, Dr. Peter König 2005 Laboratory course " Computational Neuroscience " (Prof. Dr. Michael Wenger), Justus-Liebig-Universität Gießen Co-Organization of the poster session of the " 50. Tagung Experimentell arbeitender Psychologen (TeaP) " , Philipps-Universität Marburg Publications Koenig, S., & Lachnit, H. (2010a). A Software Package for the Analysis of Eye Movements Trajectories with MATLAB. Manuscript in preparation.
  66. Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning internal representations by error propagation. In J. L. McClelland, D. E. Rumelhart, & the PDP Research Group (Eds.), Parallel distributed processing: Explorations in the microstructure of cognition (pp. 318-362). Cambridge, MA: MIT Press.
  67. Whitlow, J. W., & Wagner, A. R. (1972). Negative patterning in classical conditioning: Summation of response tendencies to isolable and configural components. Psychonomic Science, 27, 299–301.
  68. Hinton, & J. A. Anderson (Eds.), Parallel models of associative memory. Hillsdale, NJ: Erlbaum.
  69. Koenig, S., & Lachnit, H. (2010b). Revisiting the Memory-Based Saccadic Curvature Effect. Manuscript submitted for publication.
  70. König, S., & Lachnit, H. (2009). Saccadic Curvature in Oculomotor Conditioned Inhibition Training. Poster presented at the Annual Meeting of the Pavlovian Society, Burlington, Vermont.
  71. Pearce, J. M. (1994). Similarity and discrimination: A selective review and a connectionist model. Psychological Review, 101, 587-607. doi:10.1037/0033- 295X.101.4.587
  72. Rao, M. M. (1960). Some asymptotic results on transformations in the analysis of variance. ARL Technical Note, 60-126. Aerospace Research Laboratory, Wright- Patterson Air Force Base.
  73. Wagner, A. R. (1981). SOP: A model of automatic memory processing in animal behavior. In N. E. Spear, & R. R. Miller (Eds.), Information processing in animals: Memory mechanisms (pp. 5–47). Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.
  74. Abstracts and Conference Contributions König, S., & Lachnit, H. (2008). Summation und Cue Competition beim okulomotorischen Lernen. In P. Khader, K. Jost, H. Lachnit, & F. Rösler (Eds.), Beiträge zur 50. Tagung experimentell arbeitender Psychologen. Lengerich: Pabst Science Publishers.
  75. Miller, R. R., & Matzel, L. D. (1988). The comparator hypothesis: A response rule for the expression of associations. In Gordon H. Bower (Ed.), The psychology of learning and motivation (pp. 51-92). San Diego, CA, US: Academic Press.
  76. Reinhard, G., Lachnit, H., & König, S. (2006). Tracking stimulus processing in Pavlovian pupillary conditioning. Psychophysiology, 43, 73-83.
  77. Jonides, J. (1981). Voluntary versus automatic control over the mind's eye's movement.
  78. O'Boyle, E. A., & Bouton, M. E. (1996). Conditioned inhibition in a multiple-category learning task. Quarterly Journal of Experimental Psychology. B, Comparative And Physiological Psychology, 49B, 1-23. Retrieved from http://www.ingentaconnect.com/content/psych/pqjb
  79. Basso, M. A., & Wurtz, R. H. (1998). Modulation of neuronal activity in superior colliculus by changes in target probability. Journal of Neuroscience, 18, 7519-34. Retrieved from http://www.jneurosci.org
  80. Yarbus, A. (1967). Eye Movements and Vision. New York: Plenium Press. 2004-2007


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten