Strukturchemie und Phasenbeziehungen der intermetallischen Phasen des Zweistoffsystems Iridium-Zink und ternärer Substitutionsvarianten mit Magnesium

Bericht über die erstmalige Synthese und Charakterisierung von intermetallischen Phasen des Zweistoffsystems Iridium-Zink, sowie einiger ternärer Substitutionsvarianten mit Magnesium. Die Synthese erfolgte mittels Hochtemperaturmethoden aus den Elementen. Zur Strukturaufklärung wurden Röntgenbeugung...

Ausführliche Beschreibung

Gespeichert in:
1. Verfasser: Hornfeck, Wolfgang
Beteiligte: Harbrecht, Bernd (Prof. Dr.) (BetreuerIn (Doktorarbeit))
Format: Dissertation
Sprache:Deutsch
Veröffentlicht: Philipps-Universität Marburg 2010
Chemie
Schlagworte:
Online Zugang:PDF-Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

1. http://archiv.ub.uni-marburg.de/diss/z2006/0103


2. G. M. Grason, Braided bundles and compact coils: The structure and thermodynamics of hexagonally packed chiral filament assemblies. Phys. Rev. E 2009, 79, 041 919–1–041 919–15.


3. O. Delgado Friedrichs, A. W. M. Dress, D. H. Huson, J. Klinowski und A. L. Mackay, Systematic enume- ration of crystalline networks. Nature 1999, 400, 644–647.


4. J. S. Shiner, M. Davison und P. T. Landsberg, Simple measure for complexity. Phys. Rev. B 1999, 59 (2), 1459–1464.


5. J. Roth und A. R. Denton, Solid-phase structures of the Dzugutov pair potential. Phys. Rev. E 2000, 61 (6), 6845–6856.


6. J. P. K. Doye und D. J. Wales, Polytetrahedral Clusters. Phys. Rrv. Lett. 2001, 86 (25), 5719–5722.


7. M. Uhlarz, C. Pfleiderer und S. M. Hayden, Quantum Phase Transitions in the Itinerant Ferromagnet ZrZn 2 . Phys. Rev. Lett. 2004, 93, 256 404(1–4).


8. R. D. Kamien und D. R. Nelson, Iterated Moiré Maps and Braiding of Chiral Polymer Crystals. Phys. Rev. Lett. 1995, 74 (13), 2499–2502.


9. R. D. Kamien und D. R. Nelson, Defect in chiral columnar phases: Tilt-grain boundaries and iterated moiré maps. Phys. Rev. E 1996, 53 (1), 650–.


10. M. Dzugutov, Formation of a Dodecagonal Quasicrystalline Phase in a Simple Monatomic Liquid. Phys. Rev. Lett. 1993, 70 (19), 2924–2927.


11. M. Baake, D. Frettlöh und U. Grimm, Pinwheel patterns and powder diffraction. Phil. Mag. 2007, 87 (18– 21), 2831–2838.


12. N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences 2007, www.research.att.com/\~{}njas/ sequences/ (Abfrage am 4.4.2010).


13. B. Grünbaum und G. C. Shephard, Tilings and patterns. W. H. Freeman and Company, New York, 1. Aufl. 1987.


14. P. Zeiner, Symmetries of coincidence site lattices of cubic lattices. Z. Kristallogr. 2005, 220, 915–925.


15. M. Baake, Solution of the coincidence problem in dimensions d 4, In: The Mathematics of Long-Range Aperiodic Order (R. V. Moody, Hrsg.). Kluwer, Dordrecht 1997, 9–44, auch als preprint unter http: //arXiv.org: arXiv:math/0605222v1 (Abfrage am 4.4.2010).


16. D. R. Lide (Hrsg.), CRC Handbook of Chemistry and Physics. CRC Press, Boca Raton – London – New York – Washington, D.C., 81. Aufl. 2000–2001.


17. A. Ash und R. Gross, Fearless Symmetry – Exposing the Hidden Patterns of Numbers. Princeton University Press, Princeton – Woodstock, 1. Aufl. 2006.


18. P. J. Withers und H. K. D. H. Bhadeshia, Residual stress. Part 1 – Measurement techniques. Mater. Sci. Technol. 2001, 17, 355–365.


19. J. H. Conway und D. A. Smith, On Quaternions and Octonions – Their Geometry, Arithmetic and Sym- metry. A K Peters, Ltd., Wellesley, MA, USA, 3. Aufl. 2005.


20. H. Takakura, C. P. Gómez, A. Yamamoto, M. de Boissieu und A. P. Tsai, Atomic structure of the binary icosahedral Yb-Cd quasicrystal. Nature Materials 2007, 6, 58–63.


21. P. L'Ecuyer, Tables of linear congruential generators of different sizes and good lattice structure. Math. Comput. 1999, 68 (225), 249–260.


22. P. C. Canfield und I. R. Fisher, High-temperature solution growth of intermetallic single crystals and quasicrystals. J. Crystal Growth 2001, 225, 155–161.


23. H. M. Rietveld, A Profile Refinement Method for Nuclear and Magnetic Structures. J. Appl. Cryst. 1969, 2, 65–71.


24. E. A. Lord, Helical Structures: The Geometry of Protein Helices and Nanotubes. Struct. Chem. 2002, 13 (3/4), 305–314.


25. W. E. Klee, Crystallographic nets and their quotient graphs. Cryst. Res. Technol. 2004, 39 (11), 959–968.


26. R. T. Downs und R. M. Hazen, Chiral indices of crystalline surfaces as a measure of enantioselective potential. J. Mol. Catal. A 2004, 216 (2), 273–285.


27. G. Chapuis, Crystallographic excursion in superspace. Cryst. Eng. 2003, 6, 187–195.


28. E. A. Lord, Coincidence sites for rational lattices. Z. Kristallogr. 2006, 221, 705–715.


29. [834] R. ˇ Cerný und G. Renaudin, The intermetallic compound Mg 21 Zn 25 . Acta Cryst. C 2002, 58 (11), i154–i155.


30. M. Deza, P. W. Fowler, M. Shtogrin und K. Vietze, Pentaheptite Modifications of the Graphite Sheet. J. Chem. Inf. Comput. Sci. 2000, 40, 1325–1332.


31. L. Yan und J. A. Woollam, Optical constants and roughness study of dc magnetron sputtered iridium films. J. Appl. Phys. 2002, 92 (8), 4386–4392.


32. H. D. Flack, G. Bernardinelli, D. A. Clemente, A. Linden und A. L. Spek, Centrosymmetric and pseudo- centrosymmetric structures refined as non-centrosymmetric. Acta Cryst. B 2006, 62, 695–701.


33. T. J. Prior, D. Nguyen-Manh, V. J. Couper und P. D. Battle, Ferromagnetism in the beta-manganese structure: Fe 1.5 Pd 0.5 Mo 3 N. J. Phys.: Condens. Matter 2004, 16, 2273–2281.


34. E. Abe, H. Takakura und A. P. Tsai, Ho arrangement in the Zn 6 Mg 3 Ho icosahedral quasicrystal studied by atomic-resolution Z-contrast STEM. J. Electron Microsc. 2001, 50 (3), 187–195.


35. Z. H. Mai, L. Xu, N. Wang, K. H. Kuo, Z. C. Jin und G. Cheng, Effect of phason strain on the transition of an octagonal quasicrystal to a β-Mn-type structure. Phys. Rev. B 1989, 40 (18), 12 183–12 186.


36. A. Menth, Elektronische Eigenschaften von γ-Messing. Phys. kondens. Materie 1967, 6, 145–170.


37. S. Ranganathan, E. A. Lord, N. K. Mukhopadhyay und A. Singh, A symmetrical indexing scheme for decagonal quasicrystals analogous to Miller-Bravais indexing of hexagonal crystals. Acta Cryst. A 2007, 63, 1–10.


38. E. A. Lord und S. Ranganathan, Sphere packing, helices and the polytope {3, 3, 5}. Eur. Phys. J. D 2001, 15, 335–343.


39. S. Ranganathan, A. Singh und A. P. Tsai, Frank's 'cubic' hexagonal phase: an intermetallic cluster compound as an example. Phil. Mag. Lett. 2002, 82 (1), 13–19.


40. E. A. Lord, S. Ranganathan und A. Subramaniam, Stacking sequences and symmetry properties of trigonal vacancy-ordered phases (τ phases). Phil. Mag. A 2002, 82 (2), 255–268.


41. S. Ranganathan, A. K. Srivastava und E. A. Lord, Coincidence-site lattices as rational approximants to irrational twins. J. Mater. Sci. 2006, 41, 7696–7703.


42. M. Nespolo und G. Ferraris, Applied geminography – symmetry analysis of twinned crystals and definition of twinning by reticular polyholohedry. Acta Cryst. A 2004, 60, 89–95.


43. C. Oguey und J.-F. Sadoc, Crystallographic aspects of the Bonnet transformation for periodic minimal surfaces (and crystals of films). J. Phys. I France 1993, 3, 839–854.


44. M. Hirabayashi, S. Yamaguchi, K. Hiraga, N. Ino, H. Sato und R. S. Toth, A new type of long period superlattice with hexagonal symmetry in Au–Cd alloys. J. Phys. Chem. Solids 1970, 31, 77–94.


45. P. Serp, R. Feurer, P. Kalck, H. Gomes, J. L. Faria und J. L. Figueiredo, A New OMCVD Iridium Precursor for Thin Film Deposition. Chem. Vap. Deposition 2001, 7 (2), 59–62.


46. A. Vantomme, J. E. Mahan, G. Langouche, J. P. Becker, M. Van Bael, K. Temst und C. Van Haesendonck, Thin film growth of semiconducting Mg 2 Si by codeposition. Appl. Phys. Lett. 1997, 70 (9), 1086–1088.


47. A. D. Novaco und J. P. McTague, Orientational Epitaxy—the Orientational Ordering of Incommensurate Structures. Phys. Rev. Lett. 1977, 38 (22), 1286–1289.


48. L. B. McCusker, R. B. von Dreele, D. E. Cox, D. Louër und P. Scardi, Rietveld Refinement Guidelines. J. Appl. Cryst. 1999, 32, 36–50.


49. A. Leineweber, Variation of the crystal structures of incommensurate LT'-Ni 1+δ Sn (δ = 0.35, 0.38, 0.41) and commensurate LT-Ni 1+δ Sn (δ = 0.47, 0.50) with composition and annealing temperature. J. Solid State Chem. 2004, 177, 1197–1212.


50. J. P. A. Makongo, Y. Prots, U. Burkhardt, R. Niewa, C. Kudla und G. Kreiner, A case study of complex metallic alloy phases: Structure and disorder phenomena of Mg-Pd compounds. Phil. Mag. 2006, 86 (3–5), 427–433.


51. A. A. Isaeva, A. I. Baranov, T. Doert, B. A. Popovkin, V. A. Kulbachinskii, P. V. Gurin, V. G. Kytin und V. I. Shtanov, Ni 7−δ SnTe 2 : Modulated crystal structure refinement, electronic structure and anisotropy of electroconductivity. J. Solid State Chem. 2007, 180, 221–232.


52. E. Uhrig, S. Brühne, W. Assmus, D. Grüner und G. Kreiner, Quasicrystals in the Zn–Mg–RE system: growth and new phases. J. Cryst. Growth 2005, 275, e1987–e1991.


53. R. Nesper und S. Leoni, On Tilings and Patterns on Hyperbolic Surfaces and Their Relation to Structural Chemistry. ChemPhysChem 2001, 2, 413–422.


54. U. S. Schwarz und G. Gompper, Systematic approach to bicontinuous cubic phases in ternary amphiphilic systems. Phys. Rev. B 1999, 59 (5), 5528–5541.


55. G. E. Schröder, S. J. Ramsden, A. Fogden und S. T. Hyde, A rhombohedral family of minimal surfaces as a pathway between the P and D cubic mesophases. Physica A 2004, 339, 137–144.


56. R. L. Withers, Disorder, structured diffuse scattering and the transmission electron microscope. Z. Kristal- logr. 2005, 220, 1027–1034.


57. R. L. Withers, L. Norén und Y. Liu, Flexible phases, modulated structures and the transmission electron microscope. Z. Kristallogr. 2004, 219, 701–710.


58. T. R. Welberry, Diffuse X-ray scattering and strain effects in disordered crystals. Acta Cryst. A 2001, 57, 244–255.


59. A. Fogden und S. T. Hyde, Continuous transformations of cubic minimal surfaces. Eur. Phys. J. B 1999, 7, 91–104.


60. D. Borwein, J. M. Borwein und K. F. Taylor, Convergence of lattice sums and Madelung's constant. J. Math. Phys. 1985, 26 (11), 2999–3009.


61. N. Akiya und P. E. Savage, Role of Water in Formic Acid Decomposition. AIChE Journal 1998, 44 (2), 405–415.


62. T. Janssen und O. Radulescu, Domain wall motion in aperiodic crystal systems and magnetoelectrics. Z. Phys. B – Cond. Mater. 1997, 104, 657–660.


63. P. A. Stadelmann, EMS – A Software Package for Electron-Diffraction Analysis and HREM Image Simula- tion in Materials Science. Ultramicroscopy 1987, 21 (2), 131–146.


64. I. Orlov, Application of the Superspace Approach to Members of the Ferrite Family. Dissertation, École Polytechnique Fédérale de Lausanne, EPFL 2007.


65. S. Y. Piao, L. Palatinus und S. Lidin, All the Disorder Mechanisms in the 13 : 58 Phases Come Together. Out of the Modulated Confusion Rises the Remarkable Phase Ce 12.60 Cd 58.68(2) . Inorg. Chem. 2008, 47 (3), 1079–1086.


66. S. van Smaalen, Incommensurate Crystallography (IUCr Monographs on Crystallography No. 21) . Oxford University Press, Oxford – New York 2007.


67. K. Parlinski und G. Chapuis, Phase-transition mechanisms between hexagonal commensurate and incom- mensurate structures. Phys. Rev. B 1994, 49 (17), 11 643–11 651.


68. L. Bindi, P. Bonazzi, M. Dusek, V. Petricek und G. Chapuis, Five-dimensional structure refinement of natural melilite, (Ca 1,89 Sr 0,01 Na 0,08 K 0,02 )(Mg 0,92 Al 0,08 )(Si 1,98 Al 0,02 )O 7 . Acta Cryst. B 2001, 57, 739–746.


69. M. Kenzelmann, G. Lawes, A. B. Harris, G. Gasparovic, C. Broholm, A. P. Ramirez, G. A. Jorge, M. Jaime, S. Park, Q. Huang, A. Y. Shapiro und L. A. Demianets, Direct Transition from a Disordered to a Multiferroic Phase on a Triangular Lattice. Phys. Rev. Lett. 2007, 98, 267 205–1–267 205–4.


70. M. Bode, M. Heide, K. von Bergmann, P. Ferriani, S. Heinze, G. Gihlmayer, A. Kubetzka, O. Pietzsch, S. Blügel und R. Wiesendanger, Chiral magnetic order at surfaces driven by inversion asymmetry. Nature 2007, 447, 190–193.


71. O. Gourdon und G. J. Miller, Intergrowth Compounds in the Zn-Rich Zn–Pd System: Toward 1D Quasi- crystal Approximants. Chem. Mater. 2006, 18, 1848–1856.


72. X-SHAPE (2.01)–Crystal Optimization for Numerical Absorption Correction. Stoe & Cie., Darmstadt (Ger- many) 2001.


73. X-RED (1.02)–Data Reduction Program. Stoe & Cie., Darmstadt (Germany) 2001.


74. X-PREP (5.05)–Data Preparation & Reciprocal Space Exploration. Siemens Analytical X-ray Insts. 1996.


75. V. G. Kotlyar, A. A. Saranin, A. V. Zotov, T. V. Kasyanova, E. N. Chukurov, I. V. Pisarenko und V. G. Lifshits, Atomic structure of the Al/Si(1 1 1) phases studied using STM and total-energy calculations. e-J. Surf. Sci. Nanotech. 2005, 3, 55–62.


76. [700] B. C. Russell und M. R. Castell, √ 13 × √ 13 R13.9 @BULLET and √ 7 × √ 7 R19.1 @BULLET reconstructions of the polar SrTiO 3 (1 1 1) surface. Phys. Rev. B 2007, 75, 155 433–1–155 433–7.


77. Poster (7×) (16) On the Crystallization and Morphology of a Quasicrystalline Tantalum Telluride and its Crystalline Approximants Wolfgang Hornfeck, Matthias Conrad, Bernd Harbrecht Posterbeitrag, Materialforschungstag 2003, Philipps-Universität Marburg, 14.2.2003


78. K. M. Merz, Jr., R. Hoffmann und A. T. Balaban, 3,4-Connected Carbon Nets: Through-Space and Through- Bond Interactions in the Solid State. J. Am. Chem. Soc. 1987, 109, 6742–6751.


79. Universitätsausbildung WS 1997/98 bis SS 1999 Studium der Chemie (Diplom), Grundstudium, Philipps Universität Marburg Oktober 1999 Vordiplom (Note: 2,0)


80. Abb. 262: Rietveld -Verfeinerung des Ir(Mg,Zn) 3 . Abgebildet sind die Röntgenpulverdiffraktogramme bzw. Aus- schnitte daraus von Legierungen der Zusammensetzung Ir 25 Mg 10 Zn 65 (Proben ch03 und ch11). Aufgetragen ist jeweils die relative Intensität I rel gegen den Beugungswinkel 2 θ im Winkelbereich von 10 < 2 θ/ @BULLET < 100. Ab- gebildet sind die beobachteten (rot) und berechneten Beugungsintensitäten, die Differenzkurve (grün), sowie die Bragg-Orte (senkrechte Striche). Die beigefügten Ausschnitte zeigen den Kleinwinkelbereich (12 < 2 θ/ @BULLET < 32, ch03) und den (im Hauptdiffraktogramm nicht erfassten) Hochwinkelbereich (100 < 2 θ/ @BULLET < 120, ch11). Man beachte die nahezu perfekte Profilanpassung an die Pulverdaten des Ir(Mg,Zn) 3 , insbesondere im Hinblick auf die ausgeprägten Reflexlagenverschiebungen der binären Stammphase IrZn 3 .


81. W. Longley und T. J. McIntosh, A bicontinuous tetrahedral structure in a liquid-crystalline lipid. Nature 1983, 303, 612–614.


82. A. L. Loeb, A Binary Algebra Describing Crystal Structures with Closely-Packed Anions. Acta Cryst. 1958, 11, 469–476.


83. V. Demange, J. Ghanbaja, F. Machizaud und J. M. Dubois, About γ-brass phases in the Al–Cr–Fe system and their relationships to quasicrystals and approximants. Phil. Mag. 2005, 85 (12), 1261–1272.


84. H. D. Flack und G. Bernardinelli, Absolute structure and absolute configuration. Acta Cryst. A 1999, 55, 908–915.


85. R. de Ridder, G. van Tendeloo und S. Amelinckx, A Cluster Model for the Transition from the Short-Range Order to the Long-Range Order State in F.c.c. Based Binary Systems and its Study by Means of Electron Diffraction. Acta Cryst. A 1976, 32, 216–224.


86. R. de Ridder, G. van Tendeloo, D. van Dyck und S. Amelinckx, A Cluster Model for the Transition State and Its Study by Means of Electron Diffraction. I. Theoretical Model. Phys. Stat. Sol. A 1976, 38, 663–674.


87. E. Hellner und E. Koch, A comparison of the crystal structures of Sb 2 Tl 7 , Cu 5 Zn 8 (γ-brass), and Ir 3 Ge 7 . Can. J. Chem. 1980, 58, 708–713.


88. G. F. Stuntz und J. R. Shapley, A convenient low-pressure, high-yield synthesis of Ir 4 (CO) 12 . Inorg. Nucl. Chem. Lett. 1976, 12, 49–51.


89. T. Hyde, S. Andersson, B. Ericsson und K. Larsson, A cubic structure consisting of a lipid bilayer forming an infinite periodic minimum surface of the gyroid type in the glycerolmonooleat-water system. Z. Krist. 1984, 168, 213–219.


90. G. O. Brunner, A definition of coordination and its relevance in the structure types AlB 2 and NiAs. Acta Cryst. A 1977, 33, 226–227.


91. A. L. Mackay, A dense non-crystallographic packing of equal spheres. Acta Cryst. 1962, 15, 916–918.


92. J. Inukai, M. Wakisaka, M. Yamagishi und K. Itaya, Adlayer of Hydroquinone on Pt(1 1 1) in Solution an in a Vacuum Studied by STM and LEED. Langmuir 2004, 20, 7507–7511.


93. P. Stämpfli, A Dodecagonal Quasiperiodic Lattice in Two Dimensions. Helv. Phys. Acta 1986, 59, 1260– 1263.


94. P. T. Davies, A four-dimensional view of some cubic lattices. Acta Cryst. 1967, 23, 673–674.


95. H. Mitani und K. Niizeki, A fractal energy surface and a successive lock-in transition of a repulsive atomic monolayer system in a periodic substrate potential. J. Phys. C: Solid State Phys. 1988, 21, 1895–1903.


96. H. Lind und S. Lidin, A general structure model for Bi–Se phases using a superspace formalism. Solid State Sciences 2003, 5, 47–57.


97. C. Zheng, R. Hoffmann und D. R. Nelson, A Helical Face-Sharing Tetrahedron Chain with Irrational Twist, Stella Quadrangula, and Related Matters. J. Am. Chem. Soc. 1990, 112, 3784–3791.


98. A. Singh, E. Abe und A. P. Tsai, A hexagonal phase related to quasicrystalline phases in Zn–Mg–rare-earth system. Phil. Mag. Lett. 1998, 77 (2), 95–103.


99. R. Whyman, A High Pressure Infrared Spectral Study of the Reactions of Dodecacarbonyltetrairidium with Carbon Monoxide and Hydrogen. J. Chem. Soc., Dalton Trans. 1972, 2294–2296.


100. L. B. Hunt, A History of Iridium -Overcoming the difficulties of melting and fabrication. Platinum Metals Rev. 1987, 31 (1), 32–41.


101. M. J. Bucknum und R. Hoffmann, A Hypothetical Dense 3,4-Connected Carbon Net and related B 2 C and CN 2 Nets Built from 1,4-Cyclohexanoid Units. J. Am. Chem. Soc. 1994, 116, 11 456–11 464.


102. Binäre Phasen des Iridiums mit Zink Wolfgang Hornfeck Vortrag, Seminar " Aktuelle Fragen aus der Anorganischen Chemie " WS 2004/2005, Marburg, 28.10.2004 (10) Struktur und Eigenschaften des IrZn 3


103. Mahne und B. Harbrecht, Al 69 Ta 39 – a new variant of a face-centered cubic giant cell structure. J. Alloys Comp. 1994, 203, 271–279.


104. A. R. Bradshaw und D. Fort, A laboratory-scale arc furnace for melting volatile metals under elevated inert gas pressures. Re. Sci. Instrum. 1992, 63 (11), 5459–5463.


105. G. Harburn, R. J. D. Tilley, J. M. Williams und R. P. Williams, A lattice-like construction to explain diffraction patterns of some non-stoichiometric phases. Nature 1991, 350, 214–216.


106. R.-D. Hoffmann und R. Pöttgen, AlB 2 -related intermetallic compounds – a comprehensive view based on group-subgroup relations. Z. Kristallogr. 2001, 216, 127–145.


107. V. S. Kraposhin, Algebra and geometry of martensitic transformations in the iron alloys. Met. Sci. Heat Treat. 1994, 36 (7), 341–346.


108. Sowohl in der Schicht h k 0, als auch in der Schicht 0 k l (bzw. h 0 l) ist eine deutliche Reflexauf- spaltung zu erkennen. Die entlang der Zonenachse Z[0 0 1] aufgenommenen Hochauflösungsabbil- dungen zeigen entsprechend dazu eine Anhäufung von Realstrukturdefekten, wobei intermediär geordnete Bereiche auftreten. Phänomenologisch handelt es sich um die Ausbildung einer Drei- ecksdomänenstruktur wie für das IrZn 3 beschrieben (Abb. 268 und 269; vgl. Abschnitt 20).


109. C. E. Shannon, A mathematical theory of communication. The Bell System Technical Journal 1948, 27, 379–423 und 623–656.


110. A. L. Patterson, Ambiguities in the X-Ray Analysis of Crystal Structures. Phys. Rev. 1944, 65 (5–6), 195–201.


111. M. Kohout, A Measure of Electron Localizability. Int. J. Quantum Chem. 2004, 97, 651–658.


112. V. A. Blatov, A method for hierarchical comparative analysis of crystal structures. Acta Cryst. A 2006, 62, 356–364.


113. S. Samson, A Method for the Determination of Complex Cubic Metal Structures and its Application to the Solution of the Structure of NaCd 2 . Acta Cryst. 1964, 17, 491–495.


114. A. L. Loeb, A Modular Algebra for the Description of Crystal Structures. Acta Cryst. 1962, 15, 219–226.


115. J. Schroers, C. Veazey und W. L. Johnson, Amorphous metallic foam. Appl. Phys. Lett. 2003, 82 (3), 370–372.


116. Y. L. Yao, A Mutual Solid Solubility Scale for Metals. Transactions of the Metallurgical Society of AIME 1960, 218, 632–633.


117. Q.-B. Yang, S. Andersson und L. Stenberg, An Alternative Description of the Structure of NaCd 2 . Acta Cryst. B 1987, 43, 14–16.


118. H. Mitani und K. Niizeki, An analysis of two-dimensional modulated structures on a triangular lattice in terms of a complex quadratic field. J. Phys. C: Solid State Phys. 1987, 20, 1017–1030.


119. E. J. W. Whittaker, An atlas of hyperstereogramms of the four-dimensional crystal classes. Clarendon Press, Oxford 1985.


120. J.-Y. Pivan, R. Guérin und M. Sergent, A New Classification Scheme to Describe and predict Structure Types in Pnictide and Silicide Chemistry. J. Solid State Chem. 1987, 68, 11–21.


121. B. A. Cook, J. L. Harringa, T. L. Lewis und A. M. Russell, A new class of ultra-hard materials based on AlMgB 14 . Scripta Mater. 2000, 42, 597–602.


122. G. Kreiner und H. F. Franzen, A new cluster concept and its application to quasi-crystals of the i-AlMnSi family and closely related crystalline structures. J. Alloys Comp. 1995, 221, 15–36.


123. P. C. Burns, A new complex sheet of uranyl polyhedra in the structure of wölsendorfite. Am. Miner. 1999, 84, 1661–1673.


124. F. P. Pruchnik, K. Wajda-Hermanowicz und M. Koralewicz, A new convenient method for the high-yield synthesis of Ir 4 (CO) 12 . J. Organomet. Chem. 1990, 384, 381–383.


125. G. Kreiner und M. Schäpers, A new description of Samson's Cd 3 Cu 4 and a model of icosahedral i-CdCu.


126. J. D. H. Donnay und D. Harker, A new law of crystal morphology extending the law of Bravais. Am. Mineral. 1937, 22 (5), 446–467.


127. M. W. Anderson, C. C. Egger, G. J. T. Tiddy, J. L. Casci und K. A. Brakke, A New Minimal Surface and the Structure of Mesoporous Silicas. Angew. Chem. 2005, 117 (21), 3307–3312, auch: A New Minimal Surface and the Structure of Mesoporous Silicas. Angew. Chem. Int. Ed. 2005, 44 (21), 3243–3248.


128. B. Lu, F. H. Li, Y. H. Zhang, G. H. Chao und Y. T. Qian, A new Nd–Ca–Co–O compound with a two- dimensional incommensurate modulated structure. Phil. Mag. A 1996, 74 (6), 1399–1406.


129. M. Uchida und Y. Matsui, A new stacking motif: complex alloy structures interpreted as modulated struc- tures. Acta Cryst. B 2000, 56, 654–658.


130. J. van Landuyt, G. A. Wiegers und S. Amelinckx, A New Type of Deformation Modulated Superstructure in lT-VSe and Its Relation with Other Superstructures in Transition Metal Dichalcogenides. Phys. Stat. Sol. A 1978, 46, 479–492.


131. N. W. Thomas, An Extension of the Voronoi Analysis of Crystal Structures. Acta Cryst. B 1996, 52, 939–953.


132. P. Hartman und W. G. Perdok, An interpretation of the law of Donnay and Harker. Am. Mineral. 1956, 41 (5–6), 449–459.


133. M. J. Cleare und W. P. Griffith, Anionic Halogenocarbonyls of Rhodium, Iridium, and Platinum. J. Chem. Soc. (A) Inorg. Phys. Theor. 1970, 2788–2794.


134. U. Müller, Anorganische Strukturchemie. Teubner, Wiesbaden, 5. überarb. und erw. Aufl. 2006.


135. J. Inukai, M. Wakisaka und K. Itaya, An STM study on the growth process of vapor-deposited hydroquinone adlayers on Rh(1 1 1) and Pt(1 1 1). Chem. Phys. Lett. 2004, 399, 373–377.


136. Y. Koyama, M. Hatano und M. Tanimura, Antiphase boundaries, inversion, and ferroelastic domains in the striped-type superstructure of γ-brass Cu-Al alloys. Phys. Rev. B 1996, 53 (17), 11 462–11 468.


137. M. Hostettler und H. D. Flack, Anti-wurtzite reoriented. Acta Cryst. B 2003, 59, 537–538.


138. H. Bärnighausen, U. Müller, R. Pöttgen und H. Wondratschek, Anwendungen der kristallographischen Gruppentheorie in der Kristallchemie 2005, typoskript des an der evangelischen Akademie Hofgeismar abgehaltenen Kurses.


139. A. J. Bradley und P. Jones, An X-ray investigation of the copper–aluminium alloys. J. Inst. Met. 1933, 51, 131–162.


140. T. Janssen, G. Chapuis und M. de Boissieu, Aperiodic Crystals -From Modulated Phases to Quasicrystals (IUCr Monographs on Crystallography No. 20) . Oxford University Press, Oxford – New York 2007.


141. L. Pauling, Apparent icosahedral symmetry is due to directed multiple twinning of cubic crystals. Nature 1985, 317, 512–514.


142. A. Yamamoto, Application of Modulated Structure Analysis to Two-Dimensional Antiphase-Domain Struc- ture of Au 2+x Cd 1−x . Acta Cryst. B 1983, 39, 17–20.


143. H. Jones, Applications of the Bloch Theory to the Study of Alloys and of the Properties of Bismuth. Proc. R. Soc. Lond. A 1934, 147, 396–417.


144. H. Selke, U. Vogg und P. L. Ryder, Approximants of the icosahedral phase in as-cast Al 65 Cu 20 Cr 15 . Phil. Mag. B 1992, 65 (3), 421–433.


145. H. Burzlaff und Y. Malinovsky, A Procedure for the Classification of Non-Organic Crystal Structures. I. Theoretical Background. Acta Cryst. A 1997, 53, 217–224.


146. M. O'Keeffe, A Proposed Rigorous Definition of Coordination Number. Acta Cryst. A 1979, 35, 772–775.


147. R. F. Berger, S. Lee und R. Hoffmann, A Quantum Mechanically Guided View of Mg 44 Rh 7 . Chem. Eur. J. 2007, 13, 7852–7863.


148. J. W. Arblaster, Densities of Osmium and Iridium – Recalculations based upon a review of the latest crystallographic data. Platinum Metals Rev. 1989, 33 (1), 14–16.


149. J. W. Arblaster, Osmium, the Densest Metal Known. Platinum Metals Rev. 1995, 39 (4), 164.


150. K.-J. Range und P. Hafner, A redetermination of the crystal structure of trimagnesium platinum, Mg 3 Pt. J. Alloys Comp. 1992, 183, 430–437.


151. E. J. W. Whittaker, A Representation of Hyper-Cubic Symmetry and its Projections. Acta Cryst. A 1973, 29, 678–684.


152. L. Ruan, I. Steensgard, F. Besenbacher und E. Laegsgaard, A scanning tunneling microscopy study of the interaction of S with the Cu(1 1 1) surface. Ultramicroscopy 1992, 42–44, 498–504.


153. Y. L. Yao, A solubility factor series for solid metals. J. Less-Common Metals 1960, 2, 321–330.


154. J. D. H. Donnay und G. Donnay, " Assemblage liaisons " et structure cristalline. Compt. Rend. Hebd. Seanc. Acad. Sci. 1961, 252, 908–909.


155. M. Kremers, H. Meekes, P. Bennema, K. Balzuweit und M. A. Verheijen, A superspace description for the morphology of modulated crystals: An explanation for the occurence of faces (hklm). Phil. Mag. B 1994, 69 (1), 69–82.


156. A. P. Tsai, A test of Hume-Rothery rules for stable quasicrystals. J. Non.-Cryst. Solids 2004, 334 & 335, 317–322.


157. K. Hiraga, T. Ohsuna und K. Sugiyama, Atom clusters with icosahedral symmetry in cubic alloy phases related to icosahedral quasicrystals. The Rigaku Journal 1999, 16 (1), 38–45.


158. J. Roth, Atomistic Simulation of Shock Waves: From Simple Crystals to Complex Quasicrystals 2005.


159. C. A. Taylor und F. A. Underwood, A twinning interpretation of ‚superlattice' reflexions in X-ray photo- graphs of synthetic klockmannite, CuSe. Acta Cryst. 1960, 13, 361–362.


160. K. Schubert, A Two-Correlations Model for Brass-Like Phases. Acta Cryst. B 1976, 32, 1646–1654.


161. J. Hulliger, Chemie und Kristallzüchtung. Angew. Chem. 1994, 106 (2), 151–171, auch: Chemistry and Crystal Growth. Angew. Chem. Int. Ed. 1994, 33 (2), 143–162.


162. R. Hoppe, Die Koordinationszahl – ein " anorganisches Chamäleon " . Angew. Chem. 1970, 82 (1), 7–16, auch: The Coordination Number – an " Inorganic Chameleon " . Angew. Chem. Int. Ed. 1970, 9 (1), 25–34.


163. Abb. 263: Abhängigkeit der Modulation in Abhängigkeit des Mg-Stoffmengenanteils. Aufgetragen sind jeweils die beobachteten (rot) und berechneten (blau) relativen Intensitäten I rel gegen den Beugungswinkel 2 θ im Intervall 12 < 2 θ/ @BULLET < 32. Ternäre Phasen mit einem Mg-Stoffmengenanteil von χ Mg 10% (ch11; auch ch03, kw16) zeigen eine Übereinstimmung der berechneten und beobachteten Bragg-Lagen aller Reflexe (kommensurable lock- in Phase), während ternäre Phasen mit höheren Mg-Stoffmengenanteilen (ch13; auch ch09, kw15) eine deutliche, in Richtung und Stärke unterschiedliche Reflexlagenverschiebung zeigen (inkommensurabel modulierte Phase).


164. J. Wolny, A. Wnek, J.-L. Verger-Gaugry und L. Pytlik, Average unit-cell approach to diffraction on Thue– Morse sequence and decorated quasicrystals. Mat. Sci. Eng. 2000, 294–296, 381–384.


165. H.-J. Bernhardt und K. Schmetzer, Belendorffite, a new copper amalgam dimorphous with kolymite. Neues Jahrb. Mineral., Monatsh. 1992, 2, 21–28.


166. H. Sainte-Claire Deville und H. Debray, Über das Platin und die es begleitenden Metalle. Annal. Chem. Pharm. 1860, 114 (1), 78–106.


167. S. Andersson, S. Lidin, M. Jacob und O. Terasaki, Über den quasikristallinen Zustand. Angew. Chem. 1991, 103 (7), 771–775, auch: On the Quasicrystalline State. Angew. Chem. Int. Ed. 1991, 30 (7), 754–758.


168. U. Müller, Berechnung der Anzahl möglicher Strukturtypen für Verbindungen mit dichtest gepackter An- ionenteilstruktur. I. Das Rechenverfahren. Acta Cryst. B 1992, 48, 172–178.


169. J. Lenz und K. Schubert, Über einige Leerstellen-und Stapelvarianten der Beta-Messing Strukturfamilie. Z. Metallkde. 1971, 62 (11), 810–816.


170. W. P. Griffith, Bicentenary of Four Platinum Group Metals. Part II: Osmium and Iridium – Events sur- rounding their discoveries. Platinum Metals Rev. 2004, 48, 182–189.


171. N. Gross, G. Kotzyba, B. Künnen und W. Jeitschko, Binary Compounds of Rhodium and Zinc: RhZn, Rh 2 Zn 11 , and RhZn 13 . Z. Anorg. Allg. Chem. 2001, 627, 155–163.


172. C. Allio, Binäre, zinkreiche Phasen der Elemente Rhodium, Ruthenium und Osmium. Dissertation, Philipps- Universität Marburg 2010.


173. J. F. Sadoc und N. Rivier, Boerdijk–Coxeter helix and biological helices as quasicrystals. Mat. Sci. Eng. 2000, 294–296, 397–400.


174. J. C. A. Boeyens und D. C. Levendis, Number Theory and the Periodicity of Matter. Springer, Berlin – Heidelberg – New York, 1. Aufl. 2008.


175. S. Lidin und S. Larsson, Bonnet Transformation of Infinite Periodic Minimal Surfaces with Hexagonal Symmetry. J. Chem. Soc. Faraday Trans. 1990, 86 (5), 769–775.


176. B. D. Butler und T. R. Welberry, Calculation of Diffuse Scattering from Simulated Disordered Crystals: a Comparison with Optical Transforms. J. Appl. Cryst. 1992, 25, 391–399.


177. A. Arakcheeva und G. Chapuis, Capabilities and limitations of a (3 + d)-dimensional incommensurately modulated structure as a model for the derivation of an extended family of compounds: example of the scheelite-like structures. Acta Cryst. B 2008, 64, 12–25.


178. R. Bruce King, A. D. King, Jr. und N. K. Bhattacharyya, Catalytic reactions of formate. 3. Noble metal chlorides as catalyst precursors for formic acid reactions. Transition Met. Chem. 1995, 20, 321–326.


179. Z. P. Hu, N. J. Wu und A. Ignatiev, Cesium adsorption on graphite (0 0 0 1) surface: The phase diagram. Phys. Rev. B 1986, 33 (11), 7683–7687.


180. D. Broddin, G. van Tendeloo, J. van Landuyt und S. Amelinckx, Chaotic and uniform regimes in in- commensurate antiphase boundary modulated Cu 3 Pd alloys (18–21 a. % Pd)). Phil. Mag. B 1988, 57 (1), 31–48.


181. O. Lukin und F. Vögtle, Verknoten und Durchfädeln von Molekülen: Chemie und Chiralität molekularer Knoten und ihrer Ensembles. Angew. Chem. 2005, 117 (10), 1480–1501, auch: Knotting and Threading of Molecules: Chemistry and Chirality of Molecular Knots and Their Assemblies. Angew. Chem. Int. Ed. 2005, 44 (10), 1456–1477.


182. H. Schäfer, Chemische Transportreaktionen – Der Transport anorganischer Stoffe über die Gasphase und seine Anwendungen (Monographien zu " Angewandte Chemie " und " Chemie-Ingenieur-Technik " Nummer 76). Verlag Chemie, Weinheim 1962.


183. R. Della Pergola, L. Garlaschelli und S. Martinengo, Chemistry of iridium carbonyl clusters. Preparation of Ir 4 (CO) 12 . J. Organomet. Chem. 1987, 331, 271–274.


184. S. H. H. Chaston und F. G. A. Stone, Chemistry of the Metal Carbonyls. Part LIV. Synthesis of Rhodium and Iridium Carbonyls. J. Chem. Soc. (A) Inorg. Phys. Theor. 1969, 500–502.


185. J. K. Brandon, W. B. Pearson, P. W. Riley, C. Chieh und R. Stokhuyzen, γ-Brasses with R cells. Acta Cryst. B 1977, 33, 1088–1095.


186. H. D. Flack, Chiral and Achiral Crystal Structures. Helv. Chim. Acta 2003, 86, 905–921.


187. R. M. Hazen, Chiral Crystal Faces of Common Rock-Forming Minerals, In: Progress in Biological Chirality (G. Palyi, C. Zucchi und L. Caglioti, Hrsg.). Elsevier, Oxford – New York 2004, 137–151.


188. A. W. S. Johnson, Chiral determination: direct interpretation of convergent-beam electron diffraction pat- terns using the series expansion of Cowley and Moodie. Acta Cryst. B 2007, 63, 511–520.


189. R. E. Thomson, U. Walter, E. Ganz, J. Clarke und A. Zettl, Local charge-density-wave structure in 1T -TaS 2 determined by scanning tunneling microscopy. Phys. Rev. B 1988, 38 (15), 10 734–10 743.


190. K. C. Nicolaou und E. J. Sorensen, Classics in total synthesis. VCH, Weinheim -New York -Basel - Cambridge -Tokyo, 1. Aufl. 1996.


191. E. Hellner und E. Koch, Cluster or Framework Considerations for the Structures of Tl 7 Sb 2 , α-Mn, Cu 5 Zn 8 and their Variants Li 22 Si 51 , Cu 41 Sn 11 , Sm 11 Cd 45 , Mg 6 Pd and Na 6 Tl with Octuple Unit Cells. Acta Cryst. A 1981, 37, 1–6.


192. R. Hundt, J. C. Schön und N. Jansen, CMPZ – an algorithm for the efficient comparison of periodic structures. J. Appl. Cryst. 2006, 39, 6–16.


193. H. Grimmer, Coincidence-Site Lattices. Acta Cryst. A 1976, 32, 783–785.


194. P. Bak, D. Mukamel, J. Villain und K. Wentowska, Commensurate-incommensurate transitions in rare-gas monolayers adsorbed on graphite and in layered charge-density-wave systems. Phys. Rev. B 1979, 19 (3), 1610–1613.


195. P. Bak, Commensurate phases, incommensurate phases and the devil's staircase. Rep. Prog. Phys. 1982, 45, 587–629.


196. Zn 19 and IrZn 3 , two new γ-brass-related phases classified as AlB 2 -type derivatives with ordered vacancies Wolfgang Hornfeck, Samuel Freistein, Bernd Harbrecht Posterbeitrag, 12. Vortragstagung der Fachgruppe Festkörperchemie und Materialforschung in der GDCh - " Struktur-Eigenschaftsbeziehungen " , Marburg, 13.9. bis 15.9.2004 Kurzzusammenfassung erschienen in Z. Anorg. Allg. Chem., 2004, 630, 1730 auch: Materialforschungstag Mittelhessen 2005, Schloß Rauischholzhausen, 24.6.2005 (18) IrZn 10±δ and Pt 5±δ Zn 21−δ : Comparative study of γ-related Hume-Rothery phases Wolfgang Hornfeck, Srinivasa Thimmaiah, Matthias Conrad, Bernd Harbrecht Posterbeitrag, 9. European Conference on Solid State Chemistry (ECSSC IX), Stuttgart, 3.9. bis 6.9.2003 auch: 12. Vortragstagung der Wöhler-Vereinigung für Anorganische Chemie in der GDCh, Mar- burg, 15. bis 17.9.2004


197. N. Flytzanis und G. Vlastou-Tsinganos, Competitive interactions and 2–D structures at finite temperatu- res, In: Lecture Notes in Physics: Nonlinear Coherent Structures in Physics and Biology. Part IV: Two- Dimensional Structures, vol. 393. Springer, Berlin – Heidelberg 1991, 234–241.


198. F. C. Frank und J. S. Kasper, Complex Alloy Structures Regarded as Sphere Packings. I. Definitions and Basic Principles. Acta Cryst. 1958, 11, 184–190.


199. S. Samson, Complex Cubic A 6 B Compounds. II. The Crystal Structure of Mg 6 Pd. Acta Cryst. B 1972, 28, 936–945.


200. S. Samson und D. A. Hansen, Complex Cubic A 6 B Compounds. I. The Crystal Structure of Mg 6 Pd. Acta Cryst. B 1972, 28, 930–935.


201. S. H. Bertz, Complexity of synthetic reactions. The use of complexity indices to evaluate reactions, trans- forms and disconnections. New J. Chem. 2003, 27, 860–869.


202. H. Bertz, Complexity of synthetic routes: Linear, convergent and reflexive syntheses. New J. Chem. 2003, 27, 870–879.


203. E. Parthé, B. A. Chabot und K. Cenzual, Complex Structures of Intermetallic Compounds Interpreted as Intergrowth of Segments of Simple Structures. Chimia 1985, 39 (6), 164–174.


204. M. O. Zacate und G. S. Collins, Composition-driven changes in lattice sites occupied by indium solutes in Ni 2 Al 3 phases. Phys. Rev. B 2004, 70, 024 202–1–024 202–17.


205. L. Malatesta, G. Caglio und M. Angoletta, 3 (Compounds containing metal-to-metal bonds): 18. Dode- cacarbonyltetrairidium, In: Inorganic Syntheses (F. A. Cotton, Hrsg.), vol. XIII. McGraw-Hill, New York 1972, 95–99.


206. H. Takeda und J. D. H. Donnay, Compound tessellations in crystal structures. Acta Cryst. 1965, 19, 474–476.


207. Y. Cerenius und L. Dubrovinsky, Compressibility measurements on iridium. J. Alloys. Comp. 2000, 306, 26–29.


208. A. G. Christy und A.-K. Larsson, Computer Simulation of Modulated Structures and Diffuse Scattering in B8-type (Co,Ni,Cu) 1+x (Ge,Sn) Phases. J. Solid State Chem. 1998, 135, 269–281.


209. G. Bergerhoff, M. Berndt, K. Brandenburg und T. Degen, Concerning inorganic crystal structure types. Acta Cryst. B 1999, 55, 147–156.


210. D. P. Shoemaker und C. B. Shoemaker, Concerning the Relative Numbers of Atomic Coordination Types in Tetrahedrally Close Packed Metal Structures. Acta Cryst. B 1986, 42, 3–11.


211. N. W. Johnson, Convex polyhedra with regular faces. Can. J. Math. 1966, 18, 169–200.


212. J. Prywer, Correlation between growth of high-index faces, relative growth rates and crystallographic struc- ture of crystal. Eur. Phys. J. B 2002, 25, 61–68.


213. C. Li und P. Wu, Correlation of Bulk Modulus and the Constituent Element Properties of Binary Interme- tallic Compounds. Chem. Mater. 2001, 13, 4642–4648.


214. H. S. M. Coxeter, introduction to GEOMETRY. John Wiley & Sons, New York – London, 3. Aufl. 1963, deutsch als: Unvergängliche Geometrie. Birkhäuser Verlag, Basel – Stuttgart, 1963.


215. Stølen und F. Grønvold, Critical assessment of the enthalpy of fusion of metals used as enthalpy standards at moderate to high temperatures. Thermochim. Acta 1999, 327, 1–32.


216. W. H. Zachariasen, Crystal Chemical Studies of the 5f -Series of Elements. IX. The Crystal Structure of Th 7 S 12 . Acta Cryst. 1949, 2, 288–291.


217. L. E. Levine, J. C. Holzer, P. C. Gibbons und K. F. Kelton, Crystalline approximants to quasicrystalline Ti–Mn. Phil. Mag. B 1992, 65 (3), 435–462.


218. H. Brown, R. Bülow, J. Neubüser, H. Wondratschek und H. Zassenhaus, Crystallographic groups of four- dimensional space. John Wiley & Sons, New York – Chichester – Brisbane – Toronto 1978.


219. A. Janner, Crystallographic structural organization of human rhinovirus serotype 16, 14, 3, 2 and 1A. Acta Cryst. A 2006, 62, 270–286.


220. P. Coppens, Crystallography in Four and Five Dimensions as Applied to Multi-Sublattice (Composite) Structures. Acta Cryst. B 1995, 51, 402–410.


221. O. Delgado-Friedrichs und M. O'Keeffe, Crystal nets as graphs: Terminology and definitions. J. Solid State Chem. 2005, 178, 2480–2485.


222. O. S. Kushnir, Crystal optical properties of incommensurate phases in the plane-wave modulation region. J. Phys.: Condens. Matter 1997, 9, 9259–9273.


223. J. Maddox, Crystals from first principles. Nature 1988, 335, 201.


224. S. Samson, Crystal Structure of NaCd 2 . Nature 1962, 195, 259–262.


225. M. R. Churchill und J. P. Hutchinson, Crystal Structure of Tetrairidium Dodecacarbonyl, Ir 4 (CO) 12 . An Unpleasant Case of Disorder. Inorg. Chem. 1978, 17 (12), 3528–3535.


226. M. G. Mys'kiv, O. I. Bodak und E. I. Gladyshevskii, Crystal Structure of the compound Ce 15 Ni 4 Si 13 . Sov. Phys. Crystallogr. 1974, 18 (4), 450–453, Übersetzt aus: Kristallografiya 1973, 18 (4), 715–719.


227. Geller, Crystal Structure of the Solid Electrolyte (C 5 H 5 NH)Ag 5 I 6 at −30 @BULLET C. Science 1972, 176, 1016– 1019.


228. M. Boström, Crystal Structures and Phase Equilibria in the Mn–Ga System. Dissertation, Stockholm Uni- versity (Structural Chemistry) 2002.


229. O. I. Bodak, E. I. Gladyshevskii und O. I. Kharchenko, Crystal structures of Ce 6 Ni 2 Si 3 and related com- pounds. Sov. Phys. Crystallogr. 1974, 19 (1), 45–46, Übersetzt aus: Kristallografiya 1974, 19 (1), 80–83.


230. ∞ [[Cu 3 I 4 ]] – die erste Verbindung mit einer Tetra- ederhelix als Bauelement. Angew. Chem. 1994, 106 (18), 1929–1931, auch: [(C 6 H 5 ) 4 P ] 1


231. ∞ [[Cu 3 I 4 ]] – The First Compound with a Helical chain of Face-Sharing Tetrahedra as a Structural Element. Angew. Chem.


232. F. Bonhomme und K. Yvon, Cubic Mg 29 Ir 4 crystallizing with an ordered variant of the Mg 6 Pd-type struc- ture. J. Alloys Comp. 1995, 227, L1–L3.


233. A. Beukemann und W. E. Klee, Cycle classes as topological invariants of crystal structures. Z. Kristallogr. 1994, 209, 709–713.


234. J. Evers, P. Klüfers, R. Staudigl und P. Stallhofer, Czochralskis schöpferischer Fehlgriff: ein Meilenstein auf dem Weg in die Gigabit-Ära. Angew. Chem. 2003, 115 (46), 5862–5877, auch: Czochralski's Creative Mistake: A Milestone on the Way to the Gigabit Era. Angew. Chem. Int. Ed. 2003, 42 (46), 5684–5698.


235. H. Boller, Das Helixmodell der " Chimney-Ladder " -Strukturen. Monatsh. Chem. 1974, 105, 934–943.


236. T. Strengers, De explosieve platina-metalen. Dissertation, Universität Utrecht 1907, veröffentlicht durch P. J. Zandvliet, 123 Seiten.


237. M. E. Wise, Dense random packing of unequal spheres. Philips Res. Rep. 1952, 7, 321–343.


238. S. Andersson, Description of Virus Capsid Structures with Methods from Inorganic Solid State Chemistry. Z. Anorg. Allg. Chem. 2008, 634, 2504–2510.


239. H. Grimmer, Determination of all misorientations of tetragonal lattices with low multiplicity; connection with Mallard's rule of twinning. Acta Cryst. A 2003, 59, 287–296.


240. Geburtsort, -land Fulda, Deutschland Familienstand ledig Schulausbildung 1984 bis 1988


241. E. Koch und W. Fischer, DIDO95 and VOID95 – programs for the calculation of Dirichlet domains and coordination polyhedra. Z. Kristallogr. 1996, 211, 251–253.


242. D. Babel und P. Deigner, Die Kristallstruktur von β-Iridium(III)-Chlorid. Z. Anorg. Allg. Chem. 1965, 339, 57–66.


243. H. G. von Schnering und R. Nesper, Die natürliche Anpassung von chemischen Strukturen an gekrümmte Flächen. Angew. Chem. 1987, 99 (11), 1097–1230, auch: How Nature Adapts Chemical Structures to Curved Surfaces. Angew. Chem. Int. Ed. 1987, 26 (11), 1059–1080.


244. P. Basieux, Die Top Seven der mathematischen Vermutungen. Rowohlt Taschenbuch Verlag, Reinbek bei Hamburg 2004.


245. A. Wnek und J. Wolny, Diffraction analysis of decorated aperiodic structure; decorated Thue–Morse se- quence. J. Alloys Comp. 2002, 342, 217–220.


246. X.-J. Wu, E. Takayama-Muromachi, S. Suehara und S. Horiuchi, Diffraction Streaks from the Chimney Ladder Structure in an (Sr 1.5 Ca 1.5 )Cu 5+δ O y Crystal. Acta Cryst. A 1991, 47, 727–735.


247. R. de Ridder, D. van Dyck und S. Amelinckx, Diffuse Intensity Contours Observed in Electron Diffraction Patterns of Transition Metal Tri-and Di-Chalcogenides. A. Structural Interpretation. Phys. Stat. Sol. A 1978, 50, 349–362.


248. T. R. Welberry, Diffuse scattering in aperiodic crystals, In: Aperiodic '97 Proceedings of the International Conference on Aperiodic Crystals (M. de Boissieu, J.-L. Verger-Gaugry, R. Currat, Hrsg.). World Scientific 1997, 423–432.


249. C. Le Sénéchal, V. S. Babizhetsky, S. Députier, J.-Y. Pivan und R. Guérin, Direct and Reverse Limiting Series of Transition Metal Phosphides with Ordered Defects and Metal/Non Metal Ratio Close to 2. Z. Anorg. Allg. Chem. 2001, 627, 1325–1333.


250. W. D. Pyrz, D. A. Blom, T. Vogt und D. J. Buttrey, Direct Imaging of the MoVTeNbO M1 Phase Using An Aberration-Corrected High-Resolution Scanning Transmission Electron Microscope. Angew. Chem. 2008, 120 (15), 2830–2833, auch: Direct Imaging of the MoVTeNbO M1 Phase Using An Aberration-Corrected High-Resolution Scanning Transmission Electron Microscope. Angew. Chem. Int. Ed. 2008, 47 (15), 2788– 2791.


251. M. van Sande, J. van Landuyt und S. Amelinckx, Direct Imaging of the Structure and Structural Defects of Rhombohedral γ-Brasses. Phys. Stat. Sol. A 1979, 55, 41–49.


252. H. Ohta, T. Takase, Y. Komiya, H. Miyamoto, S. Mishima, T. Okada und K. Nomura, Direct Observation of the Discommensuration in the Nearly Commensurate Charge-Density Wave Phase in 1T-TaS 2 by Scanning Tunneling Microscopy. Phys. Stat. Sol. B 1992, 169, 313–322.


253. A. A. Golovin und A. A. Nepomnyashchy, Disclinations in square and hexagonal patterns. Phys. Rev. E 2003, 67, 056


254. S. N. Coppersmith, D. S. Fisher, B. I. Halperin, P. A. Lee und W. F. Brinkman, Dislocations and the commensurate-incommensurate transition in two dimensions. Phys. Rev. B 1982, 25 (1), 349–363.


255. F. L. Lambert, Disorder – A Cracked Crutch for Supporting Entropy Discussions. J. Chem. Educ. 2002, 79 (2), 187–192.


256. X. Ren, K. Otsuka und M. Kogachi, Do " constitutional vacancies " in intermetallic compounds exist? Scripta Mat. 1999, 41 (9), 907–913.


257. M. Nespolo, Does mathematical crystallography still have a role in the XXI century? Acta Cryst. A 2008, 64, 96–111.


258. D. A. Huse und M. E. Fisher, Domain Walls and the Melting of Commensurate Surface Phases. Phys. Rev. Lett. 1982, 49 (11), 793–796.


259. K. P. Velikov, C. G. Christova, R. P. A. Dullens und A. van Blaaderen, Layer-by-Layer Growth of Binary Colloidal Crystals. Science 2002, 296, 106–109.


260. I. Stewart, Easter is a Quasicrystal. Scientific American 2001, 3, 72–73.


261. H. Sato und R. S. Toth, Effect of Additional Elements on the Period of CuAu II and the Origin of the Long-Period Superlattice. Phys. Rev. 1961, 124 (6), 1833–1847.


262. C. Wakai, K. Yoshida, Y. Tsujino, N. Matubayasi und M. Nakahara, Effect of Concentration, Acid, Tempe- rature, and Metal on Competitive Reaction Pathways for Decarbonylation and Decarboxylation of Formic Acid in Hot Water. Chem. Lett. 2004, 33 (5), 572–573.


263. J. N. Grin, Ein Aufbaumodell für " Chimney-Ladder " -Strukturen. Monatsh. Chem. 1986, 117, 921–932.


264. K. Wagner, Eine quantenchemische Untersuchung der Bindungsverhältnisse in ZnRh und ZnIr. Diplomar- beit, Philipps-Universität Marburg 2007.


265. A. J. Bradley, Electron-Atom Ratios in Alloy Phases as a Monotonic Sequence. Nature 1949, 163, 683–684.


266. A.-K. Larsson, R. L. Withers und L. Stenberg, Electron Diffraction Study of Interstitial Transition Metal Ordering in T 2+x Sn 2 (T = Co, Ni) B8-Type Solid Solutions. J. Solid State Chem. 1996, 127, 222–230.


267. L. A. Bendersky und F. W. Gayle, Electron diffraction Using Transmission Electron Microscopy. J. Res. Natl. Inst. Stand. Technol. 2001, 106 (6), 997–1012.


268. G. B. Grad, P. Blaha, J. Luitz, K. Schwarz, A. Fernández Guillermet und S. J. Sferco, Electronic structure and chemical bonding effects upon the bcc to Ω phase transition: Ab initio study of Y, Zr, Nb, and Mo. Phys. Rev. B 2000-I, 62 (19), 12 743–12 753.


269. T. B. Massalski und U. Mizutani, Electronic structure of Hume-Rothery phases. Prog. Mat. Sci. 1978, 22, 151–262.


270. R. de Ridder, G. van Tendeloo und S. Amelinckx, Electron Microscopic Study of the Chimney Ladder Structures MnSi 2−x and MoGe 2−x . Phys. Stat. Sol. A 1976, 33, 383–393.


271. T. Ishiguro und H. Sato, Electron microscopy of phase transformations in 1T -TaS 2 . Phys. Rev. B. 1991, 44 (5), 2046–2060.


272. A. R. Landa-Cánovas, A. Gómez-Herrero und L. C. Otero-Díaz, Electron microscopy study of incommen- surate modulated structures in misfit ternary chalcogenides. Micron 2001, 32, 481–495.


273. S. Leoni und R. Nesper, Elucidation of simple pathways for reconstructive phase transitions using periodic equi-surface (PES) descriptors. The silica phase system. I. Quartz-tridymite. Acta Cryst. A 2000, 56, 383– 393.


274. B. Souvignier, Enantiomorphism of crystallographic groups in higher dimensions with results in dimensions up to 6. Acta Cryst. A 2003, 59, 210–220.


275. J. H. Carpenter, Equilibrium reaction of iridium and oxygen at high temperatures. J. Less-Common Met. 1989, 152 (1), 35–45.


276. G. Bergerhoff, M. Berndt und K. Brandenburg, Evaluation of Crystallographic Data with the Program DIAMOND. J. Res. Natl. Inst. Stand. Technol. 1996, 101, 221–225.


277. R. Clarke, J. N. gray, H. Homma und M. J. Winokur, Evidence for Discommensurations in Graphite Intercalation Compounds. Phys. Rev. Lett. 1981, 47 (19), 1407–1410.


278. D. Semwogerere und M. F. Schatz, Evolution of Hexagonal Patterns from Controlled Initial Conditions in a Bénard-Marangoni Convection Experiment. Phys. Rev. Lett. 2002, 88 (5), 054 501–1–054 501–4.


279. P. J. F. Gandy und J. Klinowski, Exact computation of the triply periodic G ('gyroid') minimal surface. Chem. Phys. Lett. 2000, 321, 363–371.


280. L. Jiang und Q. Xu, Experimental and Theoretical Evidence for the Formation of Zinc Tricarbonyl in Solid Argon. J. Am. Chem. Soc. 2005, 127, 8906–8907.


281. W. Steurer und S. Deloudi, Fascinating quasicrystals. Acta Cryst. A 2008, 64, 1–11.


282. Abb. 267: Feinbereichselektronenbeugungsaufnahme des inkommensurabel modulierten Ir(Mg,Zn) 3 (Zonenachse- norientierungen: Z[0 0 1] links, Z[1 0 0] rechts; Probe ch13; vgl. Abb. 228 in Abschnitt 20 für den Fall der binären Stammverbindung IrZn 3 ). Deutlich erkennbar sind die charakteristischen Reflexaufspaltungen, die sich als Folge der inkommensurablen Modulation (beinahe-kommensurabler Fall, ähnlich dem des IrZn 3 ergeben. Siehe auch Abb. 265 für den echt-kommensurablen Fall.


283. S. Lidin, M. Jacob und A.-K. Larsson, (Fe,Ni)Zn 6.5 , a Superstructure of γ-Brass. Acta Cryst. C 1994, 50, 340–342.


284. H. Sato und R. S. Toth, Fermi surface of alloys. Phys. Rev. Lett. 1962, 8 (6), 239–241.


285. H. Sachdev, Festkörper für Extrembedingungen – Hauptgruppenelement-Hartstoffe. Nachr. Chem. 2003, 51, 911–916.


286. K. Y. Szeto und J. Villain, Filling three-dimensional space with tetrahedra: A geometric and crystallographic problem. Phys. Rev. B 1987, 36 (9), 4715–4724, siehe auch: D. P. Shoemaker, C. B. Shoemaker. Comment on " Filling three-dimensional space with tetrahedra: A geometric and crystallographic problem " , Phys. Rev. B, 1988, 38(9), 6319–6321.


287. M. Evain, V. Petricek, Y. Moëlo und C. Maurel, First (3+2)-dimensional superspace approach to the structure of levyclaudite-(Sb), a member of the cylindrite-type minerals. Acta Cryst. B 2006, 62, 775–789.


288. C. Veazey, M. D. Demetriou, J. Schroers, J. C. Hanan, L. A. Dunning, W. F. Kaukler und W. L. Johnson, Foaming of Amorphous Metals Approaches the Limit of Microgravity Foaming. J. Adv. Mater. 2008, 40 (1), 7–11.


289. I. S. Kolomnikov, V. P. Kukolev, Y. D. Koreshkov, V. A. Mosin und M. E. Vol'pin, Formation of Metal Carboylic Acid in Reaction of Formic Acid with Iridium Complexes. Russian Chem. Bull. 1972, 21 (10), 2318, aus dem Russischen übersetzte Zusammenfassung des unter Izv. Akad. Nauk SSSR, Khim. 1972, 10, 2371 erschienenen Originalartikels.


290. M. A. Fortes, N -Dimensional Coincidence-Site-Lattice Theory. Acta Cryst. A 1983, 39, 351–357.


291. J. Sun, S. Lee und J. Lin, Four-Dimensional Space Groups for Pedestrians: Composite Structures. Chem. Asian J. 2007, 2, 1204–1229.


292. M. W. Shelley, Frankenstein oder Der neue Prometheus. Carl Hanser Verlag, München – Wien, 5. Aufl. 1994, aus dem Englischen von Friedrich Polakovics.


293. M. A. Pimenta und P. Licinio, Frustration on the triangular lattice and incommensurability. Phys. Rev. B 1994, 50 (2), 722–726.


294. M. Nespolo und G. Ferraris, Geminography – The science of twinning applied to the early-stage derivation of non-meroherdic twin laws. Z. Kristallogr. 2003, 218, 178–181.


295. A. T. Balaban, T. G. Schmalz, H. Zhu und D. J. Klein, Generalizations of the Stone–Wales rearrangement for cage compounds, including fullerenes. J. Mol. Struct. (Theochem) 1996, 363, 291–301.


296. A. Mackay, Generalized crystallography. Izvj. Jugosl. Centr. Krist. (Zagreb) 1975, 10, 15–36.


297. A. L. Mackay, Generalized Structural Geometry. Acta Cryst. A 1974, 30, 440–447.


298. H. S. M. Coxeter und W. O. J. Moser, Generators and relations for discrete groups (Ergebnisse der Ma- thematik und ihrer Grenzgebiete. Reihe: Gruppentheorie, Band 14). Springer Verlag, Berlin – Göttingen – Heidelberg – New York, 2. Aufl. 1965.


299. J.-F. Sadoc und R. Mosseri, Geometrical Frustration. Cambridge University Press, Cambridge – New York 1999.


300. [686] S. Yang und J. M. Phillips, Geometric and electronic structure of commensurate 4Ar/Ag(1 1 1)- √ 7 × √ 7 R19.1 @BULLET by density functional theory. Phys. Rev. B 2007, 75, 235 408–1–235 408–7.


301. H. Alig und M. Trömel, Geometrische und chemische Koordination. Z. Kristallogr. 1992, 211, 213–222.


302. M. Dzugutov, Glass formation in a simple monatomic liquid with icosahedral inherent local order. Phys. Rev. A 1992, 46 (6), R2984–R2987.


303. H. Schäfer und H.-J. Heitland, Gleichgewichtsmessungen im System Iridium–Sauerstoff – Gasförmiges Iri- diumtrioxid. Z. Anorg. Allg. Chem. 1960, 304, 249–265.


304. G.-I. für Anorganische Chemie und Grenzgebiete (Hrsg.), Gmelin Handbuch der Anorganischen Chemie - Platin, System Nr. 68, Teil A 6 (Legierungen der Platinmetalle: Os, Ir, Pt). Verlag Chemie, Weinheim, 8. völlig neu bearb. Aufl. 1951.


305. V. S. Kraposhin, Golden section in the structure of metals. Met. Sci. Heat Treat. 2005, 47 (7–8), 351–358.


306. E. Starodub, S. Maier, I. Stass, N. C. Bartelt, P. J. Feibelman, M. Salmeron und K. F. McCarty, Graphene growth by metal etching on Ru(0001). Phys. Rev. B 2009, 80, 235 422–1–235 422–8.


307. E. J. W. Whittaker, Graphic Representation and Nomenclature of the Four-Dimensional Crystal Classes. III. A notation for the Crystal Classes. Acta Cryst. A 1984, 40, 404–410.


308. H. Bärnighausen, Group-subgroup relations between space groups: A useful tool in crystal chemistry. MATCH, Commun. Math. Chem. 1980, 9, 139–175.


309. K. Chattopadhyay, Growth and morphology of quasicrystals. Phase Transitions 1993, 44, 69–79.


310. I. R. Fisher, Z. Islam, A. F. Panchula, K. O. Cheon, M. J. Kramer, P. C. Canfield und A. I. Goldman, Growth of large-grain R–Mg–Zn quasicrystals from the ternary melt (R = Y, Er, Ho, Dy and Tb). Phil. Mag. B 1998, 77 (6), 1601–1615.


311. I. R. Fisher, M. J. Kramer, Z. Islam, T. A. Wiener, A. Kracher, A. R. Ross, T. A. Lograsso, A. I. Goldman und P. C. Canfield, Growth of large single-grain quasicrystals from high-temperature metallic solutions. Mater. Sci. Eng. A 2000, 294-296, 10–16.


312. A. Langsdorf und W. Assmus, Growth of large single grains of the icosahedral quasicrystal ZnMgY. J. Cryst. Growth 1998, 192, 152–156.


313. Grundschule Poppenhausen 1988 bis 1994 Rhönschule Gersfeld – Gymnasialer Zweig 1994 bis 1997 Freiherr-vom-Stein Gymnasium Fulda 19.6.1997 Abitur (Note: 1,6)


314. M. J. Cleare und W. P. Griffith, Halogeno-carbonyl and -nitrosyl Complexes of the Platinum Metals, and their Vibrational Spectra. J. Chem. Soc. (A) Inorg. Phys. Theor. 1969, 372–380.


315. S. Thimmaiah, K. W. Richter, S. Lee und B. Harbrecht, γ 1 -Pt 5 Zn 21 —a reappraisal of a γ-brass type complex alloy phase. Solid State Sciences 2003, 5 (9), 1309–1317.


316. T. Weber, J. Dshemuchadse, M. Kobas, M. Conrad, B. Harbrecht und W. Steurer, Large, larger, largest – a family of cluster-based tantalum copper aluminides with giant unit cells. I. Structure solution and refinement. Acta Cryst. B 2009, 65, 308–317.


317. J. C. Chaston, Henri Sainte-Claire Deville -His outstanding contributions to the chemistry and metallurgy of the platinum metals. Platinum Metals Rev. 1981, 25 (3), 121–128.


318. A. Yamamoto, Hexagonal domainlike structure of 1T -TaS 2 . Phys. Rev. B 1983, 27 (12), 7823–7826.


319. M. Uchida und Y. Matsui, Hexagonal Frank-Kasper phases interpreted as modulated crystals. Acta Cryst. B 2001, 57, 466–470.


320. M. J. Bucknum und E. A. Castro, Hexagonite: A hypothetical organic zeolite. J. Math. Chem. 2006, 39 (3/4), 611–627.


321. S. Kapral und J. Wolny, Higher-dimensional analysis of hexagonal layers, In: Aperiodic '97 Proceedings of the International Conference on Aperiodic Crystals (M. de Boissieu, J.-L. Verger-Gaugry, R. Currat, Hrsg.). World Scientific 1997, 253–258.


322. A. Janner, Higher-dimensional point groups in superspace crystallography. Acta Cryst. A 2008, 64, 280–283.


323. L. Zhang, J. van Ek und U. Diebold, Highly ordered nanoscale surface alloy formed through Cr-induced Pt(1 1 1) reconstruction. Phys. Rev. B 1998, 57 (8), R4285–R4288.


324. T. Ishiguro und H. Sato, High-resolution electron microscopy of discommensuration in the nearly commen- surate phase on warming of 1T -TaS 2 . Phys. Rev. B 1995, 52 (2), 759–765.


325. M. Hirabayashi, K. Hiraga und D. Shindo, High-Voltage, High-Resolution Electron Microscopy of Au–Cd Alloys. I. Hexagonal Long-Period Superstructures near 30 at. % Cd. J. Appl. Cryst. 1981, 14, 169–177.


326. Wolfgang Hornfeck Kurzvortrag, Hirschegg-Seminar Festkörperchemie, Hirschegg, Kleinwalsertal, 26. bis 29.5.2005


327. A. Mishra, V. D. Gordon, L. Yang, R. Coridan und G. C. L. Wong, HIV TAT forms Pores in Membra- nes by Inducing Saddle-Splay Curvature: Potential Role of Bidentate Hydrogen Bonding. Angew. Chem. 2008, 120 (16), 3028–3031, auch: HIV TAT forms Pores in Membranes by Inducing Saddle-Splay Curvature: Potential Role of Bidentate Hydrogen Bonding. Angew. Chem. Int. Ed. 2008, 47 (16), 2986–2989.


328. Abb. 266: Hochauflösungsaufnahme der kommensurablen lock-in Phase Ir(Mg 2/15 Zn 13/15 ) 3 (ch11) senkrecht zur hexagonalen c-Achse. Die Realstruktur ist bis an die Grenzen des Kristallits in einem geordneten Zustand. In Korrespondenz zum beobachteten hohen Ordnungsgrad der Realstruktur lassen sich in der Feinbereichselektro- nenbeugung (Abb. 265) keine Reflexaufspaltungen beobachten.


329. S. Bauer und N. Stock, Hochdurchsatz-Methoden in der Festkörperchemie. Schneller zum Ziel. Chem. Unserer Zeit 2007, 41 (5), 390–398.


330. P. I. Kripyakevich, Homologous series of structural types. Sov. Phys. Crystallogr. 1971, 15 (4), 596–601, Übersetzt aus: Kristallografiya 1970, 15 (4), 690–697.


331. L. Bru, M. Cubero und J. Garrido, Homometric Diffraction Gratings. Proc. Phys. Soc. B 1952, 65 (4), 255–256.


332. E. Zobetz, Homometric Polytypes. Cryst. Res. Technol. 1994, 29 (3), 379–385.


333. K. Fichtner, Homometric Polytypes in Cadmium Iodide. Acta Cryst. A 1986, 42, 98–101.


334. E. Zobetz, Homometrische kubische Punktkonfigurationen. Z. Kristallogr. 1993, 205, 177–199.


335. E. Zobetz, Homometrische Punktmengen in Ebenengruppen. Z. Kristallogr. 1993, 207, 209–222.


336. P. Villars, J. C. Phillips und H. S. Chen, Icosahedral Quasicrystals and Quantum Structural Diagrams. Phys. Rev. Lett. 1986, 57 (24), 3085–3088.


337. J. Wolny und B. Lebech, Icosahedral symmetry described by an incommensurately modulated crystal struc- ture model. J. Phys. C: Solid State Phys. 1986, 19, L161–L167.


338. R. K. Mandal, Identification of a hyperlattice of a quasiperiodic structure based on experimental observa- tions. Phys. Rev. B 1994, 50 (18), 13 225–13 227.


339. P. Goodmann und A. W. S. Johnson, Identification of Enantiomorphically-Related Space Groups by Elec- tron Diffraction – a Second Method. Acta Cryst. 1977, A33, 997–1001.


340. P. Goodmann und T. W. Secomb, Identification of Enantiomorphously Related Space Groups by Electron Diffraction. Acta Cryst. 1977, A33, 126–133.


341. S. Fujio, H. Sakamoto, K. Tanaka und H. Inui, Identification of the chirality of intermetallic compounds by electron diffraction. Mater. Res. Soc. Symp. Proc. 2005, S5.8, 491–496.


342. W. Rasband, ImageJ – Image Processing and Analysis in Java Version 1.36b, 2006/3, national Institutes of Health, USA.


343. T. Janssen und J. A. Tjon, Incommensurate crystal phases in a mean-field approximation. J. Phys. C: Solid State Phys. 1983, 16, 4789–4810.


344. J. Kobayashi, Incommensurate phase transitions and optical activity. Phys. Rev. B 1990, 42 (13), 8332– 8338.


345. L. A. Bendersky und R. M. Waterstrat, Incommensurate structure of the phase Zr 3 Rh 4 . J. Alloys Comp. 1997, 252, L5–L7.


346. J.-G. Eon, Infinite geodesic paths and fibers, new topological invariants in periodic graphs. Acta Cryst. A 2007, 63, 53–65.


347. A. H. Schoen, Infinite periodic minimal surfaces without self-intersections. NASA technical note 1970, TN D-5541, 1–92.


348. M. Gell-Mann und S. Lloyd, Informations Measures, Effective Complexity, and Total Information. Comple- xity 1996, 2 (1), 44–52.


349. FIZ/NIST, FindIt -Inorganic Crystal Structure Database (ICSD) Version 1.4.1, 2005-2, fachinformati- onszentrum, Karlsruhe und National Institute of Standards and Technology, Gaithersburg. 89 368 Einträge.


350. B. G. Hyde und S. Andersson, Inorganic Crystal Structures. John Wiley & Sons, New York – Chichester – Brisbane – Toronto – Singapur 1989. [612] S. Lidin, T. Popp, M. Somer und H. G. von Schnering, Verallgemeinerte Edshammar-Polyeder zur Beschrei- bung einer Familie von Festkörperstrukturen. Angew. Chem. 1992, 104 (7), 936–939, auch: Generalized Edshammar Polyhedra for the Description of a Family of Solid-State Structures. Angew. Chem. Int. Ed. 1992, 31 (7), 924–927.


351. Y. Fujino, H. Sato, M. Hirabayashi, E. Aoyagi und Y. Koyama, In Situ Observation of Commensuration Process of Long-Period Superlattice in the Ag-Mg Alloys. Phys. Rev. Lett. 1987, 58 (10), 1012–1015.


352. A. Janner, Integral Lattices. Acta Cryst. A 2004, 60, 198–200.


353. S. T. Hyde, Interfacial architecture in surfactant-water mixtures: Beyond spheres, cylinders and planes. Pure & Appl. Chem. 1992, 64 (11), 1617–1622.


354. L. Elcoro, J. M. Perez-Mato und R. L. Withers, Intergrowth polytypoids as modulated structures: a super- space description of the Sr n (Nb,Ti) n O 3 n+2 compound series. Acta Cryst. B 2001, 57, 471–484.


355. V. Y. Shevchenko, V. A. Blatov und G. D. Ilyushin, Intermetallic compounds of the NaCd 2 family perceived as assemblies of nanoclusters. Struct. Chem. 2009, 20 (6), 975–982.


356. I. R. McGill, Intermetallic Compounds of the Platinum Group Metals – Selected Materials and their Pro- perties. Platinum Metals Rev. 1977, 21 (3), 85–89.


357. J. H. Westbrook und R. L. Fleischer (Hrsg.), Intermetallic Compounds: Principles and Practice. John Wiley & Sons, Chichester – New York 1995, 2 Bände: I Principles, II Practice.


358. R. Lux, Intermetallische Verbindungen mit hochschmelzenden Übergangsmetallen und niedrigschmelzenden Metallen. Dissertation, Universität Freiburg 2004.


359. T. Hahn (Hrsg.), International Tables for Crystallography – Volume A: Space Group Symmetry. Kluwer Academic Publishers, Dordrecht -Boston -London, 4. überarb. Aufl. 1996.


360. J. Van Landuyt, G. Van Tendeloo, S. Amelinckx und M. B. Walker, Interpretation of Dauphiné-twin-domain configurations resulting from the α-β phase transition in quartz and aluminum phosphate. Phys. Rev. B 1985, 31 (5), 2986–2992.


361. A. Janner, Introduction to a general crystallography. Acta Cryst. A 2001, 57, 378–388.


362. A. J. Morton, Inversion Anti-Phase Domains in Cu-Rich γ-Brasses. I. The Domain Structures. Phys. Stat. Sol. A 1975, 31, 661–674.


363. A. J. Morton, Inversion Domains in γ-Brass Type Phases. Stabilisation Mechanism – The Role of Electron Concentration. Phys. Stat. Sol. A 1977, 44, 205–214.


364. E. Sukedai, H. Hashimoto und M. Tomita, Investigation of omega-phase in Ti–Mo alloys by high resolution electron microscopy, image processing and dark-field methods. Phil. Mag. A 1991, 64 (6), 1201–1208.


365. F. A. Sadi und C. Servant, Investigation of the ω-phase precipitation in the 0.506 at.% Ti–0.129 at.% Nb– 0.365 at.% Al alloy by transmission electron microscopy and anomalous small-angle X-ray scattering. Phil. Mag. A 2000, 80 (3), 639–658.


366. H. Jehn, R. Völker und M. I. Ismail, Iridium Losses During Oxidation -Reactions at high temperatures in low-pressure oxygen atmospheres. Platinum Metals Rev. 1978, 22 (3), 92–97.


367. M. Conrad, B. Harbrecht, T. Weber, D. Y. Jung und W. Steurer, Large, larger, largest – a family of cluster- based tantalum copper aluminides with giant unit cells. II. The cluster structure. Acta Cryst. B 2009, 65, 318–325.


368. R. Hoppe, Kann man Kristallstrukturen von Festkörpern quantitativ charakterisieren. Z. Anorg. Allg. Chem. 1998, 624, 1877–1885.


369. U. Müller, Kristallographische Gruppe-Untergruppe-Beziehungen und ihre Anwendung in der Kristallche- mie. Z. Anorg. Allg. Chem. 2004, 630, 1519–1537.


370. S. I. Chykhrij, V. S. Babizhetsky und Y. B. Kuz'ma, New Ternary Phosphides Ln 25 Ni 49 P 33 (Ln = Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er). Z. Anorg. Allg. Chem. 2001, 627, 1319–1324.


371. S. P. Ge und K. H. Kuo, Lattice Correspondence and Fivefold Twins of the Orthorhombic (2/1, 1/1) and (1/0, 2/1) Approximants in a Ga-Fe-Cu-Si Alloy. Metallur. Mater. Trans. A 1999, 30, 697–705.


372. C. Stassis, J. Zarestky und N. Wakabayashi, Lattice Dynamics of bcc Zirconium. Phys. Rev. Lett. 1978, 41 (25), 1726–1729.


373. Y. Watanabe und H. Iwasaki, Lattice Modulation in the Hexagonal-Type Antiphase Domain Structure of Au-33at.%Cd Alloy. J. Appl. Cryst. 1982, 15, 174–181.


374. R. F. Berger, S. Lee, J. Johnson, B. Nebgen und A. C.-Y. So, Laves Phases, γ-Brass, and 2 × 2 × 2 Superstructures: A New Class of Quasicrystal Approximants and the Suggestion of a New Quasicrystal. Chem. Eur. J. 2008, 14 (22), 6627–6639.


375. G. Bernardinelli und H. D. Flack, Least-Squares Absolute-Structure Refinement. Practical Experience and Ancillary Calculations. Acta Cryst. A 1985, 41, 500–511.


376. R. Nesper und H.-G. von Schnering, Li 21 Si 5 , a Zintl as Well as a Hume-Rothery Phase. J. Solid State Chem. 1987, 70, 48–57.


377. V. Smetana, V. Babizhetskyy, G. V. Vajenine und A. Simon, Li 26 -Cluster in der Verbindung Li 13 Na 29 Ba 19 . Angew. Chem. 2006, 118 (36), 6197–6200, auch: Li 26 Clusters in the Compound Li 13 Na 29 Ba 19 . Angew. Chem. Int. Ed. 2006, 45 (36), 6051–6053.


378. H. M. Rietveld, Line Profiles of Neutron Powder-diffraction Peaks for Structure Refinement. Acta Cryst. 1967, 22, 151–152.


379. A. J. Morton, Long-Period Superlattice Formation in Cu-Rich γ-Brasses. Phys. Stat. Sol. A 1974, 23, 275–289.


380. A. Chow, Losses of iridium during heating in various atmospheres. Talanta 1972, 19, 899–902.


381. H. D. Flack, Louis Pasteur's discovery of molecular chirality and spontaneous resolution in 1848, together with a complete review of his crystallographic and chemical work. Acta Cryst. A 2009, 65, 371–389.


382. J. B. Hoke, E. W. Stern und H. H. Murray, Low-temperature Vapour Deposition of High-purity Iridium Coatings from Cyclooctadiene Complexes of Iridium. J. Mater. Chem. 1991, 1 (4), 551–554.


383. J. Y. Pivan und R. Guérin, M 2 X Intermetallics: Nonmetal Insertion in a h.c.-Like Metallic Distribution. J. Solid State Chem. 1998, 135, 218–227.


384. B. K. Teo und N. J. A. Sloane, Magic Numbers in Polygonal and Polyhedral Clusters. Inorg. Chem. 1985, 24, 4545–4558.


385. I. R. Fisher, K. O. Cheon, A. F. Pachula, P. C. Canfield, M. Chernikov, H. R. Ott und K. Dennis, Magnetic and transport properties of single-grain R-Mg-Zn icoshedral quasicrystals [R = Y, (Y 1−x Gd x ), (Y 1−x Tb x ), Tb, Dy, Ho, and Er]. Phys. Rev. B 1999, 59 (1), 308–321.


386. L. H. Bennett, R. M. Waterstrat, L. J. Swartzendruber, L. A. Bendersky, H. J. Brown und R. E. Watson, Magnetism and incommensurate waves in Zr 3 (Rh 1−x Pd x ) 4 . J. Appl. Phys. 2000, 87 (9), 6016–6018.


387. M. J. Hÿtch, J.-L. Putaux und J.-M. Pénisson, Measurement of the displacement field of dislocations to 0.03 Åby electron microscopy. Nature 2003, 423, 270–273.


388. E. N. Yurtchenko und N. P. Anikeenko, Mechanism of the dehydrogenation of formic acid by iridium and rhodium complexes. React. Kin. Cat. Lett. 1975, 2 (1-2), 65–72.


389. D. Shechtman, I. Blech, D. Gratias und J. W. Cahn, Metallic phase with long-range orientational order and no translational symmetry. Phys. Rev. Lett. 1984, 53, 1951–1953.


390. M. G. Kanatzidis, R. Pöttgen und W. Jeitschko, Metallische Schmelzen – Reaktionsmedien zur Präpara- tion intermetallischer Verbindungen. Angew. Chem. 2005, 117 (43), 7156–7184, auch: The Metal Flux: A Preparative Tool for the Exploration of Intermetallic Compounds. Angew. Chem. Int. Ed. 2005, 44 (43), 6996–7023.


391. [188] R. ˇ Cerný, G. Renaudin, V. Favre-Nicolin, V. Hlukhyy und R. Pöttgen, Mg 1+x Ir 1−x (x = 0, 0.037 and 0.054), a binary intermetallic compound with a new orthorhombic structure type determined from powder and single-crystal X-ray diffraction. Acta Cryst. B 2004, 60, 272–281.


392. V. Hlukhyy und R. Pöttgen, Mg 2+x Ir 3−x (x = 0.30)—a binary variant of the monoclinic V 2 (Co 0.57 Si 0.43 ) 3 type. Solid State Sci. 2004, 6, 1175–1180.


393. W. Jung, Mg 3 Ir 3 Si 8 , ein neues Magnesium-Iridium-Silicid mit Tetraedern und gekappten Tetraedern aus Silicium-Atomen. Z. Anorg. Allg. Chem. 2006, 632, 2461–2466.


394. A. Leineweber und V. Petricek, Microstrain-like diffraction-line broadening as exhibited by incommensurate phases in powder diffraction patterns. J. Appl. Cryst. 2007, 40, 1027–1034.


395. R. Sterzel, W. Assmus, A. Kounis, G. Miehe und H. Fuess, A cubic approximant in the Zn–Mg–Er alloy. Phil. Mag. Lett. 2000, 80 (4), 239–247.


396. T. Ressler, B. L. Kniep, I. Kasatkin und R. Schlögl, Mikrostruktur von Kupfer-Zinkoxid-Katalysatoren – Überbrückung der " Materiallücke " in der heterogenen Katalyse. Angew. Chem. 2005, 117 (30), 4782–4785, auch: The Microstructure of Copper Zinc Oxide Catalysts: Bridging the Materials Gap. Angew. Chem. Int.


397. T. Raber, Mineralbestimmung per REM und EDX-Analyse. Lapis 1996, 12, 21–25.


398. S. Andersson, S. T. Hyde, K. Larsson und S. Lidin, Minimal Surfaces and Structures: From Inorganic and Metal Crystals to Cell Membranes and Biopolymers. Chem. Rev. 1988, 88, 221–242.


399. D. Nguyen-Manh, D. G. Pettifor, G. shao, A. P. Miodownik und A. Pasturel, Metastability of the ω-phase in transition-metal aluminides: first principles structural predictions. Phil. Mag. A 1996, 74 (6), 1385–1397.


400. O. I. Bodak, E. I. Gladyshevskii und M. G. Mis'kiv, Crystal Structure of Ce 2 NiSi and related compounds. Sov. Phys. Crystallogr. 1972, 17 (3), 439–441, Übersetzt aus: Kristallografiya 1972, 17 (3), 502–505.


401. M. Uchida und S. Horiuchi, Modulated-Crystal Model for the Twelvefold Quasicrystal Ta 62 Te 38 . J. Appl. Cryst. 1998, 31, 634–637.


402. K. Nakanishi und H. Shiba, Modulated Structures of an Ising Spin System on a Triangular Lattice. I. Triangular Domain Structure. J. Phys. Soc. Jpn. 1982, 51 (7), 2089–2097.


403. L. Elcoro, I. Etxebarria und J. M. Perez-Mato, Modulation parameters in incommensurate modulated structures with inflation symmetry. J. Phys.: Condens. Matter 2000, 12, 841–848.


404. H. Lind, Modulations in Intermetallic Families of Compounds. Dissertation, Stockholm University (Inorga- nic Chemistry) 2004.


405. K. Balzuweit, H. Meekes und P. Bennema, Morphology and crystal growth of pure calaverite. J. Phys. D: Appl. Phys. 1991, 24, 203–208.


406. W. Eerenstein, N. D. Mathur und J. F. Scott, Multiferroic and magnetoelectric materials. Nature 2006, 442, 759–765.


407. M. Baake und U. Grimm, Multiple planar coincidences with N -fold symmetry. Z. Krist. 2006, 221 (8), 571–581.


408. W. Hornfeck und B. Harbrecht, Multiplicative congruential generators, their lattice structure, its relation to lattice–sublattice transformations and applications in crystallography. Acta Cryst. A 2009, 65, 532–542.


409. D. Y. Downham und F. D. K. Roberts, Multiplicative congruential pseudo-random number generators. Comput. J. 1967, 10 (1), 74–77.


410. A. Janner, Mysterious crystallography -From Snow Flake to Virus, In: Models, mysteries and magic of molecules (J. C. A. Boeyens and J. F. Ogilvie, Hrsg.). Springer, Dordrecht, 1. Aufl. 2008, 233–254.


411. A. Schnepf und C. Schenk, Na 6 [Ge 10 {Fe(CO) 4 } 8 ] · 18 THF: Ein Zentaurpolyeder aus Germaniumatomen. Angew. Chem. 2006, 118 (32), 5499–5502, auch: Na 6 [Ge 10 {Fe(CO) 4 } 8 ] · 18 THF: A Centaur Polyhedron of Germanium Atoms. Angew. Chem. Int. Ed. 2006, 45 (32), 5373–5376.


412. M. Wang und A. Mar, Nb 9 PdAs 7 : A Unique Arrangement in the M n 2 +3 n+2 X n 2 +n Y Family of Hexagonal Structures. Inorg. Chem. 2001, 40, 5365–5370.


413. S. Hagège, Near-Coincidence Orientations in Hexagonal Materials: from a Unified Twin Approach to a Quasiperiodic Description. Acta Cryst. A 1991, 47, 119–127.


414. B. Chabot, K. Cenzual und E. Parthé, Nested Polyhedra Units: A Geometrical Concept for Describing Complicated Cubic Structures. Acta Cryst. A 1981, 37, 6–11.


415. R. Gruehn und R. Glaum, Neues zum chemischen Transport als Methode zur Präparation und thermo- chemischen Untersuchung von Festkörpern. Angew. Chem. 2000, 112 (4), 706–731, auch: New Results of Chemical Transport as a Method for the Preparation and Thermochemical Investigation of Solids. Angew. Chem. Int. Ed. 2000, 39 (4), 692–716.


416. K. D. A. S. S. Sidhu und D. D. Zauberis, Neutron and X-ray Diffraction Study of LiRh. Acta Cryst. 1965, 18, 906–907.


417. D. C. Hofmann und V. A. Lubarda, New method for determining hexagonal dircetion indices and their relationship to crystallographic directions. J. Appl. Cryst. 2003, 36, 23–28.


418. W. A. Smeaton, Nicolas Louis Vauquelin -Early work on iridium and osmium. Platinum Metals Rev. 1963, 7 (3), 106–109.


419. T. Nash und W. Jeitschko, Niobium and Molybdenum Compounds with High Zinc Content: NbZn 3 , NbZn 16 , and MoZn 20.44 . J. Solid State Chem. 1999, 143, 95–103.


420. P. J. F. Gandy, S. Bardhan, A. L. Mackay und J. Klinowski, Nodal surface approximations to the P, G, D, and I-WP triply periodic minimal surfaces. Chem. Phys. Lett. 2001, 336, 187–195.


421. H. G. von Schnering und R. Nesper, Nodal surfaces of Fourier series: fundamental invariants of structured matter. Z. Phys. B – Cond. Mater. 1991, 83, 407–412.


422. S. J. Chung, T. Hahn und W. E. Klee, Nomenclature and Generation of Three-Periodic Nets: the Vector Method. Acta Cryst. A 1984, 40, 42–50.


423. F. R. de Boer, R. Boom, W. C. M. Mattens, A. R. Miedema und A. K. Niessen, Cohesion in Metals – Transition Metal Alloys (Cohesion and Structure Vol. 1, F. R. de Boer und D. G. Pettifor (Hrsg.)). North-Holland, Amsterdam, 2. Aufl. 1989. [182] O. Krätz und E. Vaupel, 1807 – Betrachtungen zur Chemie im angelsächsischen Kulturkreis zur Zeit Napo- leons I. Angew. Chem. 2007, 119 (1), 24–51, auch: 1807: Observations Regarding Chemistry in the Anglo- Saxon World during the Napoleonic Period. Angew. Chem. Int. Ed. 2006, 46 (1), 24–51.


424. D. Schwarzenbach, Note on Bravais–Miller indices. J. Appl. Cryst. 2003, 36, 1270–1271.


425. J. H. N. Van Vucht und K. H. J. Buschow, Note on the occurrence of intermetallic compounds in the lithium-palladium system. J. Less-Common Met. 1976, 48, 345–347.


426. L. Arnberg und S. Westman, Note on the Structure of the Gamma Brass Like Phase Ir 4 Zn 22 . Acta Chem. Scand. 1972, 26, 513–517.


427. J. D. H. Donnay und D. Harker, Nouvelles tables d'extinctions pour les 230 groupes de recouvrements cristallographiques. Le Naturaliste Canadien (Québec) 1940, 67 (2&3), 33–69.


428. B. B. van Aken, J.-P. Rivera, H. Schmid und M. Fiebig, Observation of ferrotoroidic domains. Nature 2007, 449, 702–705.


429. P. J. Heaney und D. R. Veblen, Observations of the α-β phase transition in quartz: A review of imaging and diffraction studies and some new results. American Mineralogist 1991, 76, 1018–1032.


430. I. U. of Crystallography, Report of the executive committee for 1991. Acta Cryst. A 1992, 48, 922–946.


431. D. of novel method for measuring optical activity of solids und its applications, Adv. Colloid Interface Sci. 1997 71–72, 403–425.


432. H. D. Flack, On Enantiomorph-Polarity Estimation. Acta Cryst. A 1983, 39, 876–881.


433. A. K. Sra, T. D. Ewers, Q. Xu, H. Zandbergen und R. E. Schaak, One-pot synthesis of bi-disperse FePt nanoparticles and size-selective self-assembly into AB 2 , AB 5 , and AB 13 superlattices. Chem. Commun. 2006, 750–752.


434. J. S. Anderson, On Infinitely Adaptive Structures. J. Chem. Soc. Dalton Trans. 1973, 1107–1115.


435. F. C. Frank, On Miller-Bravais Indices and four-dimensional Vectors. Acta Cryst. 1965, 18, 862–866.


436. H. Burzlaff und W. Rothammel, On Quantitative Relations among Crystal Structures. Acta Cryst. A 1992, 48, 483–490.


437. L. Lundheim, On Shannon and " Shannon's formula " . Telektronikk 2002, 98 (1), 20–29.


438. S. H. Bertz, On the complexity of graphs and molecules. Bull. Math. Biol. 1983, 45, 849–855.


439. L. Stenberg, R. Sjövall und S. Lidin, On the Compound Coordination Polyhedron in MnAl 6 and Fe 2 Al 5 . J. Solid State Chem. 1996, 124, 65–68.


440. W. Fischer und E. Koch, On the Equivalence of Point Configurations due to Euclidean Normalizers (Cheshire Groups) of Space Groups. Acta Cryst. 1983, A39, 907–915.


441. T. Janssen, A. Janner und P. Bennema, On the morphology of quasicrystals. Phil. Mag. B 1989, 59 (2), 233–242.


442. G. van Tendeloo, S. Amelinckx und D. de Fontaine, On the Nature of the ‚Short-Range Order' in 1 1 2 0


443. E. C. Kirby, On the Partially Random Generation of Fullerenes. Croat. Chem. Acta 2000, 73 (4), 983–991.


444. F. E. Rohrer, H. Lind, L. Eriksson, A.-K. Larsson und S. Lidin, On the question of commensurability – The Nowotny chimney-ladder structures revisited. Z. Kristallogr. 2000, 215 (11), 650–660.


445. S. Andersson und M. Jacob, On the structure of mathematical expressions and crystals. Z. Kristallogr. 1997, 212, 334–346.


446. H. Nyman und S. Andersson, On the Structure of Mn 5 Si 3 , Th 6 Mn 23 and γ-Brass. Acta Cryst. A 1979, 35, 580–583.


447. Y. Yamada und S. Koh, On the triangular incommensurate phase in γ-brass. I. J. Phys. F: Met. Phys. 1988, 18, 1371–1386.


448. V. Petricek, A. van der Lee und M. Evain, On the use of crenel functions for occupationally modulated structures. Acta Cryst. A 1995, 51, 529–535.


449. S. Tennant, On two Metals, found in the black Powder remaining after the Solution of Platina. Phil. Trans. R. Soc. Lond. 1804, 94, 411–418, auch: J. Nat. Philos., Chem. Arts (1804), 8, 220–221 (Kurzzusammen- fassung) und ibid. (1805), 10, 24–30 (Reproduktion).


450. C. L. Folcia, J. Ortega, J. Etxebarria und T. Breczewski, Optical properties and symmetry restrictions in the incommensurate phase of [N(CH 3 ) 4 ] 2 ZnCl 4 . Phys. Rev. B 1993, 48 (2), 695–700.


451. T. R. Welberry, Optical Transform and Monte-Carlo Study of Phason Fluctuations in Quasi-Periodic Ti- lings. J. Appl. Cryst. 1991, 24, 203–211.


452. T. R. Welberry und R. L. Withers, Optical Transforms of Disordered Systems Displaying Diffuse Intensity Loci. J. Appl. Cryst. 1987, 20, 280–288.


453. G. A. Landrum und R. Dronskowski, Orbitale als Ausgangspunkt des Magnetismus: von Atomen über Moleküle zu ferromagnetischen Legierungen. Angew. Chem. 2000, 112 (9), 1598–1627, auch: The Orbital Origins of Magnetism: From Atoms to Molecules to Ferromagnetic Alloys. Angew. Chem. Int. Ed. 2000, 39 (9), 1560–1585.


454. A. van der Lee, S. van Smaalen, G. A. Wiegers und J. L. de Boer, Order-disorder transition in silver- intercalated niobium disulfide compounds. I. Structural determination of Ag 0.6 NbS 2 . Phys. Rev. B 1991, 43 (12), 9420–9430.


455. S. P. Ge und K. H. Kuo, Ordered γ-brass structures coexisting with the decagonal quasicrystal in a Ga 46 Fe 23 Cu 23 Si 8 alloy. J. Mater. Res. 1999, 14 (7), 2799–2805.


456. J. Hauck, D. Henkel und K. Mika, Ordering of metal atoms in binary ccp, hcp, and bcc alloys. Z. Phys. B – Cond. Mater. 1988, 71, 187–192.


457. M. B. Gordon, J. Villain und R. Clarke, Orientation of discommensurations in asymmetric geometries. Phys. Rev. B 1982, 25 (12), 7871–7874.


458. M. H. Booth, J. K. Brandon, R. Y. Brizard, C. Chieh und W. B. Pearson, γ-Brasses with F Cells. Acta Cryst. B 1977, 33, 30–36.


459. P. Villars und K. Cenzual, Pearson's Crystal Data -Crystal Structure Database for Inorganic Compounds (on CD-ROM) Version 1.0, Release 2007/8, aSM International, Materials Park, Ohio, USA. 149 986 Einträge.


460. P. Villars und L. D. Calvert, Pearson's Handbook of Crystallographic Data for Intermetallic Phases. ASM International, Materials Park, Ohio 44073, 2. Aufl. 1996, 4 Bände.


461. H. Iwanaga, M. Fujii, T. Hikita, M. Tanimoto und S. Takeuchi, Pentagonal-dodecahedral crystals of solution- grown K 2 Mn 2 (SO 4 ) 3 . J. Cryst. Growth 1999, 206, 93–98.


462. R. Penrose, Pentaplexity – A Class of Non-Periodic Tilings of the Plane. Math. Intell. 1979, 2, 32–37, reproduktion des erstmals in Eureka 1978, 39, 16–22 veröffentlichten Artikels.


463. A. L. Mackay, Periodic minimal surfaces from finite element methods. Chem. Phys. Lett. 1994, 221, 317–321.


464. E. A. Lord und A. L. Mackay, Periodic minimal surfaces of cubic symmetry. Curr. Sci. 2003, 85 (3), 346–362.


465. R. Nesper und H.-G. von Schnering, Periodische Potentialflächen in Kristallstrukturen. Angew. Chem. 1986, 98 (1), 111–113, auch: Periodic Potential Surfaces in Crystal Structures. Angew. Chem. Int. Ed. 1986, 25 (1), 110–112.


466. Philips Analytical, X'Pert Plus (1.0) 1999, almelo.


467. S. Westman, Phase Analysis at 660 @BULLET C of the Gamma Region of the Copper-Aluminium System. Acta Chem. Scand. 1965, 19, 2369–2372.


468. J. Roth, ω-phase and solitary waves induced by shock compression of bcc crystals. Phys. Rev. B 2005, 72, 014 126–1–014 126–12.


469. G. S. Leatherman und R. D. Diehl, Phase diagrams and rotated incommensurate phases of K, Rb, and Cs adsorbed on Ag(1 1 1). Phys. Rev. B 1996, 53 (8), 4939–4946.


470. G. M. Zatorska, V. V. Pavlyuk und V. M. Davydov, Phase equilibria and crystal structures of the compounds in the Zr–Li–{Ge,Pb} systems at 470 K. J. Alloys Comp. 2004, 367, 80–84.


471. W. B. Pearson, Phases with Nowotny chimney-ladder structures considered as " electron " phases. Acta Cryst. B 1970, 26, 1044–1046.


472. N. V. Chandra Shekar, N. Subramanian, N. R. Sanjay Kumar und P. C. Sahu, Phase transformation in CeGa 2 under high pressure. Phys. Stat. Sol. B 2004, 241 (13), 2893–2897.


473. F. Zetterling, Phase Transformations in Computer Simulated Icosahedrally Ordered Phases. Dissertation, Stockholm University (Royal Institute of Technology) 2003.


474. A. Létoublon, I. R. Fisher, T. J. Sato, M. de Boissieu, M. Boudard, S. Agliozzo, L. Mancini, J. Gastaldi, P. C. Canfield, A. I. Goldman und A.-P. Tsai, Phason strain and structural perfection in the Zn–Mg–rare-earth icosahedral phases. Mat. Sci. Eng. 2000, 294–296, 127–130.


475. Wissenschaftlicher Angestellter (BAT II A/2) am und Juli 2009 bis Januar 2010 Fachbereich Chemie, Philipps-Universität Marburg (8) Structural Disorder Phenomena in γ-Brass Type Derivatives Wolfgang Hornfeck Kurzvortrag, Workshop on the chemistry of intermetallic compounds and Zintl phases, Stockholm/Sigtuna, Schweden, 3. bis 5.9.2004


476. D. L. D. Caspar und A. Klug, Physical Principles in the Construction of Regular Viruses. Cold Spring Harbor Symp. Quant. Biol. 1962, 27, 1–24.


477. E. Cohen und T. Strengers, Physikalisch-chemische Studien an den " explosiven Platinmetallen " . Z. phys. Chem. 1908, 61, 698–752.


478. P. A. B. Pleasants, M. Baake und J. Roth, Planar coincidences for N -fold symmetry. J. Math. Phys. 1996, 37 (2), 1029–1058.


479. M. O'Keeffe und B. G. Hyde, Plane nets in crystal chemistry. Phil. Trans. Roy. Soc. London, Ser. A, Math. Phys. Sci. 1980, 295 (1417), 553–618.


480. S. Alvarez, Polyhedra in (inorganic) chemistry. Dalton Trans. 2005, 2209–2233.


481. E. V. Shevchenko, D. V. Talapin, S. O'Brien und C. B. Murray, Polymorphism in AB 13 Nanoparticle Superlattices: An example of Semiconductor–Metal Metamaterials. J. Am. Chem. Soc. 2005, 127, 8741– 8747.


482. A. V. Mironov, A. M. Abakumov und E. V. Antipov, Powder diffraction of modulated and composite structures. The Rigaku Journal 2003, 19(2)&20(1), 23–35.


483. Chem. 2006, 118, 8233–8240, siehe auch: S. Hatscher, H. Schilder, H. Lueken und W. Urland. Practical Guide to Measurement and Interpretation of Magnetic Properties Pure Appl. Chem. 2005, 77 (2), 497–511.


484. V. H. Crespi, L. X. Benedict, M. L. Cohen und S. G. Louie, Prediction of a pure-carbon planar covalent metal. Phys. Rev. B. 1996, 53 (20), R13 303–R13 305.


485. M. Sauvage und E. Parthé, Prediction of Diffuse Intensity Surfaces in Short-Range-Ordered Ternary Deri- vative Structures Based on ZnS, NaCl, CsCl and Other Structures. Acta Cryst. A 1974, 30, 239–246.


486. M. Boström und S. Lidin, Preparation and Double-Helix Icosahedra Structure of δ-Co 2 Zn 15 . J. Solid State Chem. 2002, 166, 53–57.


487. M. A. Hill und F. E. Beamish, Preparation of Iridosmine for Analysis by Dry Chlorination. Anal. Chem. 1950, 22 (4), 590–594.


488. R. Sterzel, E. Dahlmann, A. Langsdorf und W. Assmus, Preparation of Zn-Mg-rare earth quasicrystals and related crystalline phases. Mater. Sci. Eng. A 2000, 294–296, 124–126.


489. Program Package for X-ray Diffraction. Version 2.75. Stoe & Cie., Darmstadt (Germany) 1996.


490. S. Thimmaiah und B. Harbrecht, Pt 29 Zn 49 , a complex defective AlB 2 -type derivative structure. J. Alloys Comp. 2006, 417, 45–49.


491. M. J. Hÿtch, E. Snoeck und R. Kilaas, Quantitative measurement of displacement and strain fields from HREM micrographs. Ultramicroscopy 1998, 74, 131–146.


492. [144] N. D. Mermin, (Quasi)crystallography Is Better in Fourier Space, In: Quasicrystals – The state of the art (Series on Directions in Condensed Matter Physics – Vol. 16; D. P. DiVincenzo und P. J. Steinhardt, Hrsg.). World Scientific, Singapore – New Jersey – London – Hong Kong, 2. Aufl. 1999, 137–195.


493. W. Steurer, Quasicrystal structure analysis, a never-ending story? J. Non-Cryst. Solids 2004, 334&335, 137–142.


494. G. Marsaglia, Random numbers fall mainly in the planes. Proc. Nat. Acad. Sci. 1968, 61, 25–28.


495. P. W. Fowler, A. Rassat und A. Ceulemans, Symmetry generalisation of the Euler-Schläfli theorem for multi-shell polyhedra. J. Chem. Soc., Faraday Trans. 1996, 92 (24), 4877–4884.


496. K. Wagner, Reaktionen mit aktivierte Ameisensäure enthaltenden Additionsverbindungen. Angew. Chem. 1970, 82 (2), 73–77, auch: Reactions with Addition Compounds Containing Activated Formic Acid. Angew. Chem. Int. Ed. 1970, 9 (1), 50–54.


497. H. Nyman, C. E. Carroll und B. G. Hyde, Rectilinear rods of face-sharing tetrahedra and the structure of β-Mn. Z. Kristallogr. 1991, 196, 39–46.


498. J. Schoiswohl, S. Surnev, M. Sock, S. Eck, M. G. Ramsey, F. P. Netzer und G. Kresse, Reduction of vanadium-oxide monolayer structures. Phys. Rev. B 2005, 71, 165 437–1–165 437–8.


499. R. Herbst-Irmer und G. M. Sheldrick, Refinement of obverse/reverse twins. Acta Cryst. B 2002, 58, 477– 481.


500. R. Herbst-Irmer und G. M. Sheldrick, Refinement of Twinned Structures with SHELXL97. Acta Cryst. B 1998, 54, 443–449.


501. S. Lidin und S. Andersson, Regular Polyhedra Helices. Z. Anorg. Allg. Chem. 1996, 622, 164–166.


502. J. D. H. Donnay und G. Donnay, Relationships between Crystal Structure and Crystal Morphology. Ann. Rep. Geophys. Lab. Carnegie Inst. Washington D.C. 1961–1962, 130–132.


503. R. de Gelder und A. Janner, Remarkable features in lattice-parameter ratios of crystals. I. Orthorhombic, tetragonal and hexagonal crystals. Acta Cryst. 2005, B61, 287–295.


504. H. D. Flack und G. Bernardinelli, Reporting and evaluating absolute-structure and absolute-configuration determinations. J. Appl. Cryst. 2000, 33, 1143–1148.


505. Y. He und J. J. Jonas, Representation of orientation relationships in Rodrigues–Frank space for any two classes of lattice. J. Appl. Cryst. 2007, 40, 559–569.


506. R. K. Nandi und S. P. Sen Gupta, Residual stress measurements in hexagonal zinc films from x-ray peak shift analysis. J. Phys. D: Appl. Phys. 1977, 10, 1479–1485.


507. D. W. Rhys und E. G. Price, Resistance of Iridium and Ruthenium to Liquid Metal Attack. Metal Industry 1964, 105, 243–247.


508. J. Hauck und K. Mika, Review: Different Types of Ordering. Cryst. Res. Technol. 2003, 38 (10), 831–846.


509. L. Delaey, A. J. Perkins und T. B. Massalski, Review: on the structure and microstructure of quenched beta-brass type alloys. J. Mat. Sci. 1972, 7, 1197–1215.


510. Z. Izaola, S. González, L. Elcoro, J. M. Perez-Mato, G. Madariaga und A. García, Revision of pyrrhotite structures within a common superspace model. Acta Cryst. B 2007, 63, 693–702.


511. T. Lindahl, A. Pilotti und S. Westman, Rhombohedrally Distorted Gamma Phases in the Copper-Mercury and Chromium-Aluminium Systems. Acta Chem. Scand. 1968, 22, 748–752.


512. C. Buchsbaum und M. U. Schmidt, Rietveld refinement of a wrong crystal structure. Acta Cryst. B 2007, 63, 926–932.


513. G. Baldinozzi, D. Grebille und J.-F. Bérar, Rietveld refinement of incommensurate modulated phases, In: Aperiodic '97 Proceedings of the International Conference on Aperiodic Crystals (M. de Boissieu, J.-L. Verger-Gaugry, R. Currat, Hrsg.). World Scientific 1997, 297–301.


514. J. Purgahn, Röntgenographische Untersuchungen zur Dynamik struktureller Phasenumwandlungen für zwei Fallbeispiele: die inkommensurabel modulierte Struktur von Rb 2 ZnI 4 und das Ferroelastikum CaCl 2 . Disser- tation, Universität Karlsruhe 1998.


515. M. O'Keeffe und S. Andersson, Rod Packings and Crystal Chemistry. Acta Cryst. A 1977, 33, 914–923.


516. T. Janssen, O. Radulescu und A. N. Rubtsov, Phasons, sliding modes and friction. Eur. Phys. J. B 2002, 29, 85–95.


517. G. Lu, S. Lee, J. Lin, L. You, J. Sun und J. T. Schmidt, RuGa v Sn w Nowotny Chimney Ladder Phases and the 14-Electron Rule. J. Solid State Chem. 2002, 164, 210–219.


518. R. E. Thomson, B. Burk, A. Zettl und J. Clarke, Scanning tunneling microscopy of the charge-density-wave structure in 1T -TaS 2 . Phys. Rev. B 1994, 49 (24), 16 899–16 916.


519. S. Lee und L. Hoistad, Second moment scaling, metallic and covalent structure rationalization and electron counting rules. J. Alloys Comp. 1995, 229, 66–79.


520. H. S. M. Coxeter, Self-Dual configurations and regular graphs. Bull. Amer. Math. Soc. 1950, 56 (5), 413–455.


521. J. F. Zhu, H. Ellmer, H. Malissa, T. Brandstetter, D. Semrad und P. Zeppenfeld, Low-temperature phases of Xe on Pd(1 1 1). Phys. Rev. B 2003, 68, 045 406–1–045 406–9.


522. U. Müller, Setting up Trees of Group-Subgroup Relations 2005, typoskript – International School on Mathematical and Theoretical Crystallography, Université Henri Poincaré, Nancy. 1–16. http://www. crystallography.fr/mathcryst/pdf/mueller.pdf (Abfrage am 4.4.2010).


523. G. M. Sheldrick, SHELX-97–A Program Package for the Solution and Refinement of Crystal Structures. Universität Göttingen (Germany) 1997.


524. D. P. Shoemaker und C. B. Shoemaker, Sigma-Phase-Related Transition-Metal Structures with Tetrahedral Interstices, In: Structural Chemistry and Molecular Biology – A volume dedicated to Linus Pauling by his students, colleagues, and friends (A. Rich und N. Davidson, Hrsg.). W. H. Freeman and Company, San Francisco – London 1968, 718–730.


525. S. H. Bertz, C. Rücker, G. Rücker und T. J. Sommer, Simplification in Synthesis. Eur. J. Org. Chem. 2003, 4737–4740.


526. A. G. Christy und A.-K. Larsson, Simulation of Sinusoidal Diffuse Scattering Loci in the Nonstoichiometric B8-Type Alloy Phases A 1+x B, A = (Co,Ni), B = (Ge,Sn). J. Solid State Chem. 1998, 140, 402–416.


527. U. Müller, Sind Kugelpackungen mit größerer Dichte als bei den dichtesten Kugelpackungen möglich? Wie viele dichteste Kugelpackungen gibt es? Angew. Chem. 1992, 104 (6), 744–745, auch: Are Denser Packings of Spheres than Closest Packings Possible? How Many Closest Packings of Spheres Exist?. Angew. Chem. Int. Ed. 1992, 31 (6), 727–728.


528. T. Doert, B. P. Fokwa Tsinde, S. Lidin und F. J. Garcia Garcia, Site occupancy wave and charge density wave in the modulated structure of Nd 0.6 Gd 0.4 Se 1.85 . J. Solid State Chem. 2004, 177, 1598–1606.


529. M. V. Akdeniz, A. O. Mekhrabov und M. K. PehlivanoˆPehlivanoˆglu, Solidification behaviour of bulk glass-forming alloy systems. J. Alloys Comp. 2005, 386, 185–191.


530. D. M. Adams und I. D. Taylor, Solid-state Metal Carbonyls. Part 5.—Tetrairidium Dodecacarbonyl. J. Chem. Soc., Faraday Trans. 2 1982, 78, 1573–1579.


531. J. A. Wilson, Solution to the 1T 2 discommensurate state of 1T-TaS 2 . An example of rotated hexagonal discommensuration. J. Phys.: Condens. Matter 1990, 2, 1683–1704.


532. J. S. Rutherford, Some algebraic properties of crystallographic sublattices. Acta Cryst. A 2006, 62, 93–97.


533. M. Baake, Some questions of crystallography I'd like to see answered. Z. Kristallogr. 2002, 217, 393–394.


534. A. H. Boerdijk, Some remarks concerning close-packing of equal spheres. Philips Res. Rep. 1952, 7, 303–313.


535. D. Gratias, L. Bresson und M. Quiquandon, Spatial Order and Diffraction in Quasicrystals and Beyond. Annu. Rev. Mater. Res. 2005, 35, 75–98.


536. K. Niizeki, Special points of (2 + 1)-reducible quasilattices in three dimensions. J. Phys. A: Math. Gen. 1990, 23, 4569–4580.


537. J. H. Conway und N. J. A. Sloane, Sphere Packings, Lattices and Groups. Springer, Berlin -Heidelberg - New York, 3. Aufl. 1999.


538. M. J. Bucknum und E. A. Castro, Spiroconjugation in 1-, 2-, and 3-dimensions: The foundations of a spiro quantum chemistry. J. Math. Chem. 2004, 36 (4), 381–408.


539. Hemley, Stability of Hume-Rothery phases in Cu–Zn alloys at pressures up to 50 GPa. J. Phys.: Condens. Matter 2005, 17, 7955–7962.


540. B. Horovitz, J. L. Murray und J. A. Krumhansl, Stacking solitons in ω-phase systems and quasielastic scattering. Phys. Rev. B 1978, 18 (7), 3549–3558.


541. Lidin, L. Stenberg und M. Elding-Pontén, The B8 type structure of Cu 7 In 3 . J. Alloys Comp. 1997, 255, 221–226.


542. Y. Koyama, J. Yoshida, H. Hoshiya und Y. Nakamura, Striped-type superstructure in γ-brass alloys. Phys. Rev. B 1989, 40 (8), 5378–5386.


543. S. Andersson, Structural and geometrical relations between α-and β-titanium, the ω-alloy phases, δ- titanium oxide and titanium monoxide. Arkiv Kemi 1960, 15 (21), 247–252.


544. E. V. Shevchenko, D. V. Talapin, C. B. Murray und S. O'Brien, Structural Characterization of Self- Assembled Multifunctional Binary Nanoparticle Superlattices. J. Am. Chem. Soc. 2006, 128, 3620–3637.


545. E. V. Shevchenko, D. V. Talapin, N. A. Kotov, S. O'Brien und C. B. Murray, Structural diversity in binary nanoparticle superlattices. Nature 2006, 439 (5), 55–59.


546. K. Urban und M. Feuerbacher, Structurally complex alloy phases. J. Non-Cryst. Solids 2004, 334&335, 143–150.


547. M. Elenius, F. H. M. Zetterling, M. Dzugutov, D. C. Fredrickson und S. Lidin, Structural model for octa- gonal quasicrystals derived from octagonal symmetry elements arising in β-Mn crystallization of a simple monatomic liquid. Phys. Rev. B 2009, 79, 144 201–1–144 201–10.


548. J. M. Sanchez und D. de Fontaine, Structural Model for the ω-Phase Transformation. J. Appl. Cryst. 1977, 10, 220–227.


549. Y. Chen, S. Iwata, J. Liu, P. Villars und J. Rodgers, Structural stability of atomic environment types in AB intermetallic compounds. Modelling Simul. Mater. Sci. Eng. 1996, 4, 335–348.


550. E. V. Shalaeva und A. F. Prekul, Structural State of β-Solid Solution in Quenched Quasicrystal-Forming Alloys of Al 61 Cu 26 Fe 13 . Phys. Stat. Sol. A 2000, 180, 411–425.


551. C. Rocaniére, J. P. Laval, P. Dehaudt, B. Gaudreau, A. Chotard und E. Suard, Structural study of (U 0.90 Ce 0.10 ) 4 O 9−δ , an anion-excess fluorite superstructure of U 4 O 9−δ type. J. Solid State Chem. 2004, 177, 1758–1767.


552. O. Terasaki, D. Watanabe, K. Hiraga, D. Shindo und M. Hirabayashi, Structure analyses of long range ordered alloys by high-voltage, high-resolution electron microscopy. Micron 1980, 11, 235–240.


553. W. Hornfeck, S. Thimmaiah, S. Lee und B. Harbrecht, Structure–Composition Relations for the Partly Disordered Hume-Rothery Phase Ir 7+7δ Zn 97−11δ (0.31 δ 0.58). Chem. Eur. J. 2004, 10, 4616–4626.


554. P. Pearce, Structure in Nature is a Strategy for Design. The MIT Press, Cambridge, MA – London, 5. Aufl. 1990.


555. D. G. Pettifor, 18. Structure Mapping, In: Intermetallic Compounds: Principles and Practice (J. H. West- brook and R. L. Fleischer, Hrsg.). John Wiley & Sons, Chichester – New York 1995, 419–438.


556. D. G. Pettifor, Structure Maps Revisited. J. Phys.: Condens. Matter 2003, 15, V13–V16.


557. H. Lind, M. Boström, V. Petřířek und S. Lidin, Structure of δ 1 -CoZn 7.8 , an example of a phason pinning- unpinning transformation? Acta Cryst. B 2003, 59, 720–729.


558. A. Kounis, G. Miehe, K. Saitoh, H. Fuess, R. Sterzel und W. Assmus, Structure of a Zn–Mg–Er cubic phase and its relation to icosahedral phases. Phil. Mag. Lett. 2001, 81 (6), 395–403.


559. C. P. Gómez und S. Lidin, Structure of Ca 13 Cd 76 : A Novel Approximant to the MCd 5.7 Quasicrystals (M = Ca, Yb). Angew. Chem. 2001, 113 (21), 4161–4163, auch: Structure of Ca 13 Cd 76 : A Novel Approximant to the MCd 5.7 Quasicrystals (M = Ca, Yb). Angew. Chem. Int. Ed. 2001, 40 (21), 4037–4039.


560. V. Y. Shevchenko, M. I. Samoilovich, A. L. Talis und A. E. Madison, Structure of Icosahedral Nanoobjects. Glass Phys. Chem. 2005, 31 (6), 823–828.


561. A. S. Koster und J. C. Schoone, Structure of the Cubic Iron–Zinc Phase Fe 22 Zn 78 . Acta Cryst. B 1981, 37, 1905–1907.


562. G. Örlygsson und B. Harbrecht, Structure, Properties, and Bonding of ZrTe (MnP Type), a Low-Symmetry, High-Temperature Modification of ZrTe (WC Type). J. Am. Chem. Soc. 2001, 123, 4168–4173.


563. K.-J. Range und P. Hafner, Structure refinement of AuMg 3 , IrMg 3 and IrMg 2.8 . J. Alloys Comp. 1993, 191, L5–L7. [829] R. ˇ Cerný, J.-M. Joubert, H. Kohlmann und K. Yvon, Mg 6 Ir 2 H 11 , a new metal hydride containing saddle-like [IrH 4 ] 5− and square-pyramidal [IrH 5 ] 4− hydrido complexes. J. Alloys Comp. 2002, 340, 180–188.


564. R. J. D. Tilley und R. P. Williams, Structures Containing Shift-Lattice Distributed Planar Faults. Acta Cryst. B 1995, 51, 758–767.


565. Y. A. Malinovsky, H. Burzlaff und W. Rothammel, Structures of the Lovozerite Type – a Quantitative Investigation. Acta Cryst. B 1993, 49, 158–164.


566. J. Hauck und K. Mika, Structure types – a review. Cryst. Res. Technol. 2004, 39 (8), 655–674.


567. N. Hunt, R. Jardine und P. Bartlett, Superlattice formation in mixtures of hard-sphere colloids. Phys. Rev. E 2000, 62 (1), 900–913.


568. L. Elcoro und J. M. Perez-Mato, Superspace description of quasiperiodic structures and the nonuniqueness of superspace embedding. Phys. Rev. B 1996, 54 (17), 12 115–12 124.


569. L. Elcoro und J. M. Perez-Mato, Superspace description of two-dimensional distributions of defects. Appli- cation to the analysis of vacancy ordering 2004, konferenzbeitrag: 22nd European Crystallographic Meeting, ECM22; 26.-31.8.2004 Budapest, Ungarn; Mikrosymposium 11 – Modulated crystals.


570. S. Lidin, Superstructure Ordering of Intermetallics: B8 Structures in the Pseudo-Cubic Regime. Acta Cryst. B 1998, 54, 97–108.


571. A. J. Morton, Superstructures involving inversion domains: large scale incommensurate structures. In: AIP Conference Proceedings Number 53 (Modulated Structures–1979; J. M. Cowley, J. B. Cohen, M. B. Salomon, B. J. Wuensch, Hrsg.). American Institute pf Physics, New York, 1979. 241–243.


572. B. Burk, R. E. Thomson, J. Clarke und A. Zettl, Surface and Bulk Charge Density Wave Structure in 1T-TaS 2 . Science 1992, 257, 362–364.


573. R. A. Bennett, C. L. Pang, N. Perkins, R. D. Smith, P. Morrall, R. I. Kvon und M. Bowker, Surface Structures in the SMSI State; Pd on (1 × 2) Reconstructed TiO 2 (1 1 0). J. Phys. Chem. B 2002, 106, 4688–4696.


574. D. MaruˆMaruˆsiˆMaruˆsiˆc und T. Pisanski, Symmetries of Hexagonal Molecular Graphs on the Torus. Croat. Chem. Acta 2000, 73 (4), 969–981.


575. D. Steinborn, Symmetrie und Struktur in der Chemie. VCH, Weinheim -New York -Basel -Cambridge - Tokyo, 1. Aufl. 1993.


576. L. H. Bennett und R. E. Watson, Symmetry and supersymmetry in crystals. Phys. Rev. B 1987, 35 (2), 845–847.


577. A. Janner und T. Janssen, Symmetry of periodically distorted crystals. Phys. Rev. B 1977, 15 (2), 643–658.


578. V. A. Koptsik, Symmetry principle in physics. J. Phys. C: Solid State Phys. 1983, 16, 23–34.


579. A. H. Brothers und D. C. Dunand, Syntactic bulk metallic glass foam. Appl. Phys. Lett. 2004, 84 (7), 1108–1110.


580. M. Armbrüster, Synthese, Struktur und Eigenschaften der Hume-Rothery-Phasen Pd 15 Zn 54 , Pd 2 Zn 11 und (Pd x Pt 1−x ) 2.4 Zn 10.6 . Diplomarbeit, Philipps-Universität Marburg 2001.


581. J. Breu, W. Seidl und J. Senker, Synthese von dreidimensional geordneten Einlagerungsverbindungen des Hectorits. Z. Anorg. Allg. Chem. 2004, 630 (1), 80–90.


582. V. Hlukhyy, U. C. Rodewald, R.-D. Hoffmann und R. Pöttgen, Synthesis and structure of RhMg 3 and Ir 3 Mg 13 . Z. Naturforsch. B 2004, 59 (3), 251–255.


583. S. Kaskel und J. D. Corbett, Synthesis, Structure, and Bonding of A 5 Cd 2 Tl 11 , A = Cs, Rb. Naked Penta- gonal Antiprismatic Columns Centered by Cadmium. Inorg. Chem. 2000, 39, 3086–3091.


584. H. Grimmer, Systematic Determination of Coincidence Orientations for all Hexagonal Lattices with Axial Ratio c/a in a Given Interval. Acta Cryst. A 1989, 45, 320–325.


585. G. B. Grad, J. J. Pieres, A. Fernández Guillermet, G. J. Cuello, J. R. Granada und R. E. Mayer, Systematics of lattice parameters and bonding distances of the omega phase in Zr–Nb alloys. Physica B 1995, 213&214, 433–435.


586. A. Zunger, Systematization of the stable crystal structure of all AB-type binary compounds: A pseudopo- tential orbital-radii approach. Phys. Rev. B 1980, 22 (12), 5839–5872.


587. Te 4 und seiner kristallinen Approximanten. Diplomarbeit, Philipps-Universität Marburg 2002.


588. A. Mosset und M. Jacob, Teaching Crystal Structures with 3-D Surfaces. Chem. Educator 2000, 5, 296–305.


589. L. A. Bendersky, I. A. Fawcett und M. Greenblatt, TEM Study of Two-Dimensional Incommensurate Modulation in Layered La 2−2 x Ca 1+2 x Mn 2 O 7 (0.6 < x < 0.8). Chem. Mater. 2004, 16, 5304–5310.


590. M. O. Figueiredo, Tessellations and Plane Symmetry Groups as Applied to the Derivation of Closest-Packed Binary Layers. Acta Cryst. A 1973, 29, 234–243.


591. C. Dong, The δ-Al 4 Cu 9 phase as an approximant of quasicrystals. Phil. Mag. A 1996, 73 (6), 1519–1528.


592. M. Palm, The Al-Cr-Fe system–Phases and phase equilibria in the Al-rich corner. J. Alloys Comp. 1997, 252, 192–200.


593. D. E. Knuth, The art of computer programming. Addison–Wesley, Reading, MA, USA, 3. Aufl. 1998, volume 2 – Seminumerical Algorithms; Chapter 3 – Random Numbers.


594. M. M. Talianker, The athermal α → ω transformation in Zr–2 at % Nb alloy. J. Mat. Sci. 1982, 17, 3097–3100.


595. L. Spialter, The Atom Connectivity Matrix (ACM) and its Characteristic Polynomial (ACMCP): A New Computer-Oriented Chemical Nomenclature. J. Am. Chem. Soc. 1963, 85 (13), 2012–2013.


596. L. Spialter, The Atom Connectivity Matrix Characteristic Polynomial (ACMCP) and Its Physico-Geometric (Topological) Significance. J. Chem. Doc. 1964, 4 (4), 269–274.


597. H. Iwasaki und M. Okada, The γ-Brass Structure at High Pressure. Acta Cryst. B 1980, 36, 1762–1765.


598. J. K. Burdett, S. Lee und T. J. McLarnan, The Coloring Problem. J. Am. Chem. Soc. 1985, 107, 3083–3089.


599. G. J. Miller, The " Coloring Problem " in Solids: How It Affects Structure, Composition and Properties. Eur. J. Inorg. Chem. 1998, 523–536.


600. The colouring problem of γ-brass type intermetallics: The crystal structures of Ir 4 Zn 22 , Ir 6 Zn 20 , and Ir 7 Zn 19


601. R. Bucksch, The Compatibility of Primitive Zonal Nets with Cubic, Tetragonal, Hexagonal and Rhombo- hedral Lattices. J. Appl. Cryst. 1974, 7, 78–82.


602. R. Bucksch, The Construction of Orthogonal Supercells of an Arbitrary Lattice. J. Appl. Cryst. 1973, 6, 400–407.


603. N. Masciocchi, The contribution of powder diffraction methods to structural crystallography: Rietveld and ab-initio techniques. The Rigaku Journal 1997, 14 (2), 9–16.


604. W. B. Pearson, The Crystal Chemistry and Physics of Metals and Alloys. Wiley-Interscience, New York – London – Sydney – Toronto 1972. [43] P. Villars, 11. Factors Governing Crystal Structures, In: Intermetallic Compounds: Principles and Practice (J. H. Westbrook and R. L. Fleischer, Hrsg.). John Wiley & Sons, Chichester – New York 1995, 227–275.


605. L. Pauling und M. D. Shappell, The crystal structure of bixbyite and the C-modification of the sesquioxides. Z. Kristallogr. 1930, 75, 128–142.


606. O. Olofsson, The Crystal Structure of Cu 3 P. Acta Chem. Scand. 1972, 26, 2777–2787.


607. L. Westin und L.-E. Edshammar, The Crystal Structure of Ir 7 Mg 44 . Acta Chem. Scand. 1972, 26, 3619– 3626.


608. H. C. Donkersloot und J. H. N. Van Vucht, The crystal structure of IrLi, Ir 3 Li and LiRh 3 . J. Less-Common Met. 1976, 50, 279–282.


609. E. T. Lance-Gómez, J. M. Haschke, W. Butler und D. R. Peacor, The Crystal Structure of La 7 (OH) 18 I 3 . Acta Cryst. B 1978, 34, 758–762.


610. J. B. Friauf, The crystal structure of magensium di-zincide. Phys. Rev. 1927, 29, 34–40.


611. Higashi, N. Shiotani, M. Uda, T. Mizoguchi und H. Katoh, The Crystal Structure of Mg 51 Zn 20 . J. Solid State Chem. 1981, 36, 225–233.


612. J. G. Thompson, A. D. Rae, R. L. Withers, T. R. Wellberry und A. C. Willis, The crystal structure of nickel arsenide. J. Phys. C: Solid State Phys. 1988, 21, 4007–4015.


613. I. Engström, The Crystal Structure of Rh 20 Si 13 . Acta Chem. Scand. 1965, 19 (8), 1924–1932.


614. M. L. Fornasini, B. Chabot und E. Parthé, The Crystal Structure of Sm 11 Cd 45 with γ-Brass and α-Mn Clusters. Acta Cryst. B 1978, 34 (7), 2093–2099.


615. G. A. Yurko, J. W. Barton und J. G. Parr, The Crystal Structure of Ti 2 Ni. Acta Cryst. 1959, 12, 909–911.


616. C. G. Wilson, D. K. Thomas und F. J. Spooner, The crystal structure of Zr 4 Al 3 . Acta Cryst. 1960, 13, 56–57.


617. S. B. Hendricks und P. R. Kosting, The crystal structures of Fe 2 P, Fe 2 N, Fe 3 N and FeB. Z. Krist. 1930, 74, 511–533.


618. V. Petricek, K. Maly, P. Coppens, X. Bu, I. Cisarova und A. Frost-Jensen, The Description and Analysis of Composite Crystals. Acta Cryst. A 1991, 47, 210–216.


619. S. Andersson, The Description of Complex Alloy Structures. Struct. Bonding Cryst. 1981, 2, 233–258.


620. D. McDonald, The Discovery of Iridium and Osmium – Bicentenary of Smithson Tennant. Platinum Metals Rev. 1961, 5 (4), 146–148.


621. S. Aubry und P. Y. Le Daeron, The discrete Frenkel–Kontorova model and its extensions. I. Exact results for the ground states. Physica D 1983, 8, 381–422.


622. W. L. Bragg und H. Lipson, The Employment of contoured Graphs of Structure–Factor in Crystal Analysis. Z. Kristallogr. 1936, 95, 323–337.


623. W. Hume-Rothery, J. O. Betterton und J. Reynolds, The factors affecting the formation of 21/13 electron compounds in alloys of copper and of silver. J. Inst. Met. 1951-52, 80, 609–616.


624. S. H. Bertz, The First General Index of Molecular Complexity. J. Am. Chem. Soc. 1981, 103, 3599–3601.


625. H. E. Troiani und M. Ahlers, The formation of an intermediate structure during the dezincification of β Cu–Zn alloys and its relevance for the martensitic transformation. Mat. Sci. Eng. 1999, A273–275, 200–203.


626. B. S. Hickman, The Formation of Omega Phase in Titanium and Zirconium Alloys: A Review. J. Mat. Sci. 1969, 4, 554–563.


627. E. E. Hellner, The Frameworks (Bauverbände) of the Cubic Structure Types, In: Structure and Bonding: Structural Problems (J. D. Dunitz and J. B. Goodenough and P. Hemmerich and J. A. Ibers and C. K. Jørgensen and J. B. Neilands and D. Reinen and R. J. P. Williams, Hrsg.), vol. 37. Springer Verlag, Berlin – Heidelberg – New York 1979, 61–140.


628. H. R. Gault, The frequency of twin types in quartz crystals. Am. Mineral. 1949, 34, 142–162.


629. W. B. Pearson, J. K. Brandon und R. Y. Brizard, The gamma brasses. Z. Krist. 1976, 143, 387–416.


630. A. L. Mackay, The Generalized Inverse and Inverse Structure. Acta Cryst. A 1977, 33, 212–215.


631. A. F. Wells, The Geometrical Basis of Crystal Chemistry. Part 1. Acta Cryst. 1954, 7, 535–544, siehe auch: Corrigendum Acta Cryst. 1955, 8, 596.


632. W. B. Pearson, The Geometrical Factor in the Crystal Chemistry of Metals: Near-Neighbour Diagrams. Acta Cryst. B 1968, 24, 1415–1422.


633. J. P. Goral und L. Eyring, The Gold-Indium Thin Film System: A High Resolution Electron Microscopy Study. J. Less-Common Met. 1986, 116, 63–72.


634. V. Hlukhyy und R. Pöttgen, The Hexagonal Laves Phase MgIr 2 . Z. Naturforsch. B 2004, 59 (8), 943–946.


635. L. M. Hoistad und S. Lee, The Hume-Rothery Electron Concentration Rules and Second Moment Scaling. J. Am. Chem. Soc. 1991, 113, 8216–8220.


636. E. Koch, The Implications of Normalizers on Group-Subgroup Relations Between Space Groups. Acta Cryst. A 1984, 40, 593–600.


637. V. I. Sokolov, 8. The Importance of Non-Numerical Mathematics in Chemistry and Stereochemistry, In: Introduction to Theoretical Stereochemistry. Gordon and Breach, New York – London – Tokyo, überarb. Aufl. 1991, 269–308.


638. M. Boström und S. Lidin, The incommensurately modulated structure of ζ-Zn 3−x Sb 2 . J. Alloys Comp. 2004, 376, 49–57.


639. T. R. Welberry und D. J. Goossens, The interpretation and analysis of diffuse scattering using Monte Carlo simulation methods. Acta Cryst. A 2008, 64, 23–32.


640. S. Andersson, S. T. Hyde und H. G. von Schnering, The intrinsic curvature of solids. Z. Krist. 1984, 168, 1–17.


641. H. Ipser, R. Krachler und K. L. Komarek, The isopiestic method and its application to a thermodynamic study of the Au–Zn system, In: Thermochemistry of Alloys (H. Brodowsky and H.-J. Schaller, Hrsg.).


642. W. A. Beyer, R. B. Roof und D. Williamson, The Lattice Structure of Multiplicative Congruential Pseudo- Random Vectors. Math. Comput. 1971, 25 (114), 345–363.


643. B. D. Ripley, The lattice structure of pseudo-random number generators. Proc. R. Soc. Lond. A 1983, 389, 197–204.


644. D. Broddin, G. van Tendeloo, J. van Landuyt und S. Amelinckx, The long-period antiphase-boundary- modulated structures in Cu 3+x Al 1−x . Phil. Mag. A 1989, 59 (5), 979–998.


645. D. Broddin, G. van Tendeloo und S. Amelinckx, The long-period superstructures in binary Au 3+x Zn 1−x alloys: stability and off-stoichiometry effects. J. Phys.: Condens. Matter 1990, 2, 3459–3477.


646. J. U. Marshall, The Löschian Numbers As a Problem in Number Theory. Geographical Analysis 1975, 7, 421–426.


647. S. Andersson und M. Jacob, The Mathematics of Structures – The Exponential Scale. R. Oldenbourg Verlag, München, 1. Aufl. 1997.


648. J. C. Chaston, The Melting of Iridium -A historical note. Platinum Metals Rev. 1975, 19 (4), 155.


649. A. Janner und B. Dam, The Morphology of Calaverite (AuTe 2 ) from Data of 1931. Solution of an Old Problem of Rational Indices. Acta Cryst. A 1989, 45, 115–123.


650. R. F. Berger, S. Lee, J. Johnson, B. Nebgen, F. Sha und J. Xu, The Mystery of Perpendicular Fivefold Axes and the Fourth Dimension in Intermetallic Structures. Chem. Eur. J. 2008, 14 (13), 3908–3930.


651. E. Parthé, The need to standardize structures to recognize structural relationships. Acta Cryst. A 1987, 43, C–301.


652. D. C. Fredrickson, S. Lee, R. Hoffmann und J. Lin, The Nowotny Chimney Ladder Phases: Following the c pseudo Clue toward an Explanation of the 14 Electron Rule. Inorg. Chem. 2004, 43, 6151–6158.


653. D. C. Fredrickson, S. Lee und R. Hoffmann, The Nowotny Chimney Ladder Phases: Whence the 14 Electron Rule? Inorg. Chem. 2004, 43, 6159–6167.


654. H. J. Chol, D. Roundy, H. Sun, M. L. Cohen und S. G. Loule, The origin of the anomalous superconducting properties of MgB 2 . Nature 2002, 418, 758–760.


655. W. L. McMillan, Theory of discommensurations and the commensurate-incommensurate charge-density- wave phase transition. Phys. Rev. B 1976, 14 (4), 1496–1502.


656. M. B. Walker, Theory of domain structures and associated defects in the incommensurate phase of quartz. Phys. Rev. B 1983, 28 (11), 6407–6410.


657. C. A. Rogers, The packing of equal spheres. Proc. London Math. Soc. 1958, s3-8, 609–620.


658. H. Jones, The phase boundaries in binary alloys, part 1: The equilibrium between liquid and solid phases. Proc. Phys. Soc. 1937, 49, 243–249.


659. A. J. Morton, The γ-Phase Regions of the Copper-Zinc, Nickel-Zinc and Palladium-Zinc Binary Systems. Acta Metallurgica 1979, 27 (5), 863–867.


660. A. Ceulemans und E. Lijnen, The Polyhedral State of Molecular Matter. Eur. J. Inorg. Chem. 2002, 1571–1581.


661. P. M. de Wolff, The Pseudo-Symmetry of Modulated Crystal Structures. Acta Cryst. A 1974, 30, 777–785.


662. L. Pauling und F. J. Ewing, The Ratio of Valence Electrons to Atoms in Metals and Intermetallic Com- pounds. Rev. Mod. Phys. 1948, 20 (1), 112–122.


663. S. Vensky, L. Kienle, R. E. Dinnebier, A. S. Masadeh, S. J. L. Billinge und M. Jansen, The real structure of Na 3 BiO 4 by electron microscopy, HR-XRD and PDF analysis. Z. Kristallogr. 2005, 220, 231–244.


664. H. Nyman und B. G. Hyde, The Related Structures of α-Mn, Sodalite, Sb 2 Tl 7 , etc. Acta Cryst. A 1981, 37, 11–17.


665. G. P. Tiwari und R. V. Ramanujan, The relation between the electron to atom ratio and some properties of metallic systems. J. Mat. Sci. 2001, 36, 271–283.


666. R. A. Y. (Hrsg.), The Rietveld Method (IUCr Monographs on Crystallography No. 5) . Oxford University Press, Oxford – New York 1995.


667. R. Penrose, The rôle of Aesthetics in pure and applied mathematical research. Bull. Inst. Math. Appl. 1974, 10 (7/8), 266–271.


668. M. Binnewies und E. Milke, Thermochemical Data of Elements and Compounds. Wiley-VCH, Weinheim - New York 1999.


669. S. H. Bertz, The Role of Symmetry in Synthetic Analysis. The Concept of Reflexivity. J. Chem. Soc., Chem. Commun. 1984, 218–219.


670. G. Harburn, R. J. D. Tilley, J. M. Williams und R. P. Williams, The shift lattice: an interpretation of some infinitely adaptive structures. Proc. R. Soc. Lond. A 1993, 440, 23–36.


671. B. Borie, S. L. Sass und A. Andreassen, The Short-Range Structure of Ti and Zr B.C.C. Solid Solutions containing the ω-Phase. I. General Diffraction Theory and Development of Computational Techniques. Acta Cryst. A 1973, 29, 585–594.


672. J. F. Nicholas, The Simplicity of Miller–Bravais Indexing. Acta Cryst. 1966, 21, 880–881.


673. J. D. Corbett, S. von Winbush und F. C. Albers, The Solubility of the Post-Transition Metals in their Molten Halides. J. Am. Chem. Soc. 1957, 79 (12), 3020–3024.


674. W. B. Pearson, The stability of metallic phases and structures: phases with the AlB 2 and related structures. Proc. R. Soc. Lond. A 1979, 365, 523–535.


675. H. Nyman und S. Andersson, The Stella Quadrangula as a Structure Building Unit. Acta Cryst. A 1979, 35, 934–937.


676. J. Nuss, U. Wedig, A. Kirfel und M. Jansen, The Structural Anomaly of Zinc: Evolution of Lattice Constants and Parameters of Thermal Motion in the Tmeperature Range of 40 to 500 K. Z. Anorg. Allg. Chem. 2010, 636 (2), 309–313.


677. M. Uchida und S. Horiuchi, The structure of approximant µ-Al 4 Mn interpreted as modulated crystal. J. Appl. Cryst. 1999, 32, 417–420.


678. A. J. Bradley und J. Thewlis, The Structure of γ-Brass. Proc. R. Soc. Lond. A 1926, 112, 678–692.


679. S. Samson, The Structure of Complex Intermetallic Compounds, In: Structural Chemistry and Molecular Biology – A volume dedicated to Linus Pauling by his students, colleagues, and friends (A. Rich und N. Davidson, Hrsg.). W. H. Freeman and Company, San Francisco – London 1968, 687–717.


680. R. Pynn, The structure of the diffuse omega phase observed in Zr and Ti alloys. J. Phys. F: Metal Phys. 1978, 8 (1), 1–13.


681. L. Arnberg, A. Jonsson und S. Westman, The structure of the δ-phase in the copper–tin system. A phase of γ-brass type with an 18 Åsuperstructure. Acta Chem. Scand. 1976, 30 (3), 187–192.


682. T. Lindahl und S. Westman, The Structure of the Rhombohedral Gamma Brass Like Phase in the Copper- Mercury System. Acta Chem. Scand. 1969, 23, 1181–1190.


683. S. Andersson, The Structure of Virus Capsids. Z. Anorg. Allg. Chem. 2008, 634, 2161–2170.


684. D. G. Pettifor, The structures of binary compounds: I. Phenomenological structure maps. J. Phys. C: Solid State Phys. 1986, 19, 285–313.


685. L. Arnberg, The Structures of the γ-Phases in the Pd–Cd and Pt–Cd Systems. Acta Cryst. B 1980, 36, 527–532.


686. A. L. Loeb, The Subdivision of the Hexagonal Net and the Systematic Generation of Crystal Structures. Acta Cryst. 1964, 17, 179–182.


687. K. A. Brakke, The Surface Evolver (2.20/2003) – Interactive Program for the Study of Surfaces. Siehe dazu: Exp. Math. 1992, 1(2), 141–165.


688. H. Jones, The Theory of Alloys in the γ-Phase. Proc. R. Soc. Lond. A 1934, 144, 225–234.


689. H. Boller und E. Parthé, The Transposition Structure of NbAs and of Similar Monophosphides and Arsenides of Niobium and Tantalum. Acta Cryst. 1963, 16, 1095–1101.


690. N. Schönberg, The tungsten carbide and nickel arsenide structures. Acta Metall. 1954, 2, 427–432.


691. V. G. Albano, G. Ciani und S. Martinengo, The twinned and disordered crystal structure of tetrahedral Tri-µ-carbonylenneacarbonyldicobaltdiiridium. J. Organomet. Chem. 1974, 78, 265–272.


692. A. Budkowski, V. Marinković, A. Prodan und F. W. Boswell, The Two-Dimensional Modulation in Bulk and Thin-Film Au 2+x Cd 1−x . Phys. Stat. Sol. 1990, 117 (2), 351–362.


693. R. J. D. Tilley und R. P. Williams, The two-dimensional shift lattice. Phil. Mag. A 1994, 69 (1), 151–169.


694. A. S. Darling, The Vapour Pressures of the Platinum Metals – A Review of some Recent Determinations. Platinum Metals Rev. 1964, 8 (4), 134–140.


695. F. X. Redl, K.-S. Cho, C. B. Murray und S. O. O'Brien, Three-dimensional binary superlattices of magnetic nanocrystals and semiconductor quantum dots. Nature 2003, 423, 968–971.


696. A. F. Wells, Three-dimensional nets and polyhedra. John Wiley & Sons, New York – London – Sydney – Toronto 1977.


697. To be, or not to be, AlB 2 : that is the question. Wolfgang Hornfeck Kurzvortrag, Hemdsärmelkolloquium 2008, Mainz, 27.3. bis 29.3.2008


698. [830] R. ˇ Cerný, G. Renaudin, Y. Tokaychuk und V. Favre-Nicolin, Complex intermetallic compounds in the Mg-Ir system solved by powder diffraction. Z. Kristallogr. Suppl. 2006, 23, 411–416.


699. A. Zürn und H. G. von Schnering, Topological Analysis of Mesoporous Solids and Their Ordered Pore Structures by Periodic Nodal Surfaces, PNS. Z. Anorg. Allg. Chem. 2008, 634, 2761–2764.


700. A. Janner, Towards a classification of icosahedral viruses in terms of indexed polyhedra. Acta Cryst. A 2006, 62, 319–330.


701. J. K. Brandon, R. Y. Brizard, W. B. Pearson und D. J. N. Tozer, γ-Brasses with I and P cells. Acta Cryst. B 1977, 33, 527–537.


702. P. M. Clark, S. Lee und D. C. Fredrickson, Transition metal AB 3 intermetallics: Structure maps based on quantum mechanical stability. J. Sol. State Chem. 2005, 178, 1269–1283.


703. W. Tremel, R. Hoffmann und J. Silvestre, Transitions between NiAs and MnP Type Phases: An Electroni- cally Driven Distortion of Triangular 3


704. D. B. Williams und C. B. Carter, Transmission Electron Microscopy – A Textbook for Materials Science. Plenum Press, New York 1996, 4 Bände: I Basics, II Diffraction, III Imaging, IV Spectroscopy.


705. U. Müller, Trees of Group-Subgroup Relations – Solutions to the Problems 2005, typoskript – International School on Mathematical and Theoretical Crystallography, Université Henri Poincaré, Nancy. 29–34. http: //www.crystallography.fr/mathcryst/pdf/mueller.pdf (Abfrage am 4.4.2010).


706. W. Steurer, Twenty years of structure research on quasicrystals. Part I. Pentagonal, octagonal, decagonal and dodecagonal quasicrystals. Z. Kristallogr. 2004, 219, 391–446.


707. H. Wondratschek und W. Jeitschko, Twin Domains and Antiphase Domains. Acta Cryst. A 1976, 32, 664–666.


708. H. Grimmer und K. Kunze, Twinning by reticular pseudo-merohedry in trigonal, tetragonal and hexagonal crystals. Acta Cryst. A 2004, 60, 220–232.


709. J. A. Elliot, J. A. Bicknell und R. G. Colling, Twinning in the superlattice structure of CuSe, synthetic klockmannite. Acta Cryst. B 1969, 25, 2420.


710. N. Niizeki und H. Mitani, Two-dimensional dodecagonal quasilattices. J. Phys. A: Math. Gen. 1987, 20, L405–L410.


711. B. Bagautdinov, K. Hagiya, K. Kusaka, M. Ohmasa und K. Iishi, Two-dimensional incommensurately modulated structure of (Sr 0.13 Ca 0.87 ) 2 CoSi 2 O 7 crystals. Acta Cryst. B 2000, 56, 811–821.


712. D. Broddin, G. van Tendeloo, J. van Landuyt und S. Amelinckx, Two-dimensional long period structures in Cu–Pd. A study of the mechanism of the transition from a one-dimensional LPS to a two-dimensional LPS. Phil. Mag. A 1989, 59 (1), 47–61.


713. T. Besson, W. S. Edwards und L. S. Tuckerman, Two-freqquency parametric excitation of surface waves. Phys. Rev. E 1996, 54 (1), 507–513.


714. D. Watkin, U equiv : its past, present and future. Acta Cryst. B 2000, 56, 747–749.


715. J. Hafner und D. Hobbs, Understanding the complex metallic element Mn. II. Geometric frustration in β-Mn, phase stability, and phase transitions. Phys. Rev. B. 2003, 68, 014 408–1–014 408–15.


716. A. Subramaniam, Vacancy ordered phases in Al–Cu–Ni as quasiperiodic superlattice approximants. Phil. Mag. 2003, 83 (6), 667–675.


717. J. Billingham, P. S. Bell und M. H. Lewis, Vacancy Short-Range Order in Substoichiometric Transition Metal Carbides and Nitrides with the NaCl Structure. I. Electron Diffraction Studies of Short-Range Ordered Compounds. Acta Cryst. A 1972, 28, 602–606.


718. H. Ipser, Vapor Pressure Methods: A Source of Experimental Thermodynamic Data. Ber. Bunsenges. Phys. Chem. 1998, 102 (9), 1217–1224.


719. J. C. Chaston, Vapour Phase Deposition of Iridium – New Techniques for applying coatings on graphite. Platinum Metals Rev. 1968, 12 (2), 62–63.


720. B. Constant und P. J. Shlichta, Variations in abundance of known crystalline compounds as a function of lattice constants. Acta Cryst. A 2003, 59, 281–282.


721. I. Simdyankin, S. N. Taraskin, M. Dzugutov und S. R. Elliot, Vibrational properties of the one-component σ phase. Phys. Rev. B 2000, 62 (5), 3223–3231.


722. S. Andersson, Virus Evolution and the Beginning. Z. Anorg. Allg. Chem. 2009, 635, 717–724.


723. S. Andersson, Virus Structures, Stellations, Spikes, and Rods. Z. Anorg. Allg. Chem. 2009, 635, 725–731.


724. E. J. W. Whittaker, Visualising four-dimensional symmetry. Physica 1982, 114A, 617–628.


725. Y. P. Yarmolyuk und P. I. Kripyakevich, Weighted mean coordination numbers and genesis of structures with the closest packing of atoms of different dimensions and normal coordination polyhedrons. Sov. Phys. Crystallogr. 1974, 19 (3), 334–337, Übersetzt aus: Kristallografiya 1974, 19 (3), 539–545.


726. O. Delgado-Friedrichs, M. D. Foster, M. O'Keeffe, D. M. Proserpio, M. M. J. Treacy und O. M. Yaghi, What do we know about three-periodic nets? J. Solid State Chem. 2005, 178, 2533–2554.


727. L. S. Levitov, Why only Quadratic Irrationalities are Observed in Quasi-Crystals? Europhys. Lett. 1988, 6 (6), 517–522.


728. K. Volke, Wider Fälscher und Betrüger – Zu den Anfängen der Ananlytischen Chemie. Chem. Unserer Zeit 2004, 38, 268–275.


729. A. Spijkerman, J. L. de Boer, A. Meetsma, G. A. Wiegers und S. van Smaalen, X-ray crystal-structure refinement of the nearly commensurate phase of 1T -TaS 2 in (3+2)-dimensional superspace. Phys. Rev. B 1997, 56 (21), 13 757–13 767.


730. D. B. Litvin, Wreath groups—symmetry of crystals with structural distortions. Phys. Rev. B 1980, 21 (8), 3184–3192.


731. A. Westgren und G. Phragmen, X-Ray Analysis of Copper-Zinc, Silver-Zinc, and Gold-Zinc Alloys. Phil. Mag. 1925, 50, 311–341.


732. E. A. Owen und G. D. Preston, X-ray analysis of zinc-copper alloys. Proc. Phys. Soc. London 1923, 36, 49–66.


733. A. Dinu und P. Carlan, X-rays diffraction – A rapid method of monitoring the Zn concentration in recycled Ir powder. Rom. Journ. Phys. 2004, 49 (5–6), 531–537.


734. W. Hieber und H. Lagally, Über Metallcarbonyle. XXXV. Über Iridiumcarbonyl. Z. Anorg. Allg. Chem. 1940, 245, 321–333.


735. U. Burkhardt, V. Gurin, F. Haarmann, H. Borrmann, W. Schnelle, A. Yaresko und Y. Grin, On the electronic and structural properties of aluminum diboride Al 0.9 B 2 . J. Solid State Chem. 2004, 177, 389–394.


736. A. Authmann, Zinkreiche Phasen im System Iridium-Zink – Synthese, Kristallstruktur, Thermochemie und Magnetismus von IrZn 13 . Diplomarbeit, Philipps-Universität Marburg 2007.


737. O. Gourdon, Z. Izaola, L. Elcoro, V. Petricek und G. J. Miller, Zn 1−x Pd x (x = 0.14 − 0.24): a missing link between intergrowth compounds and quasicrystal approximants. Phil. Mag. 2006, 86 (3–5), 419–425.


738. A. Janner, Zones and sublattices of integral lattices. Acta Cryst. A 2004, 60, 611–620.


739. K. Cenzual, J. L. Jorda und E. Parthé, Zr 3 Rh 5 with Pu 3 Pd 5 -Type Structure, a Structure Geometrically Related to the CsCl Type. Acta Cryst. C 1988, 44, 14–18.


740. T. Plaggenborg, Zur Darstellung und Reaktivität einiger intermetallischer Verbindungen. Dissertation, Uni- versität Hannover 1999.


741. R. Hoppe, Zur Formelsprache der Chemiker. Angew. Chem. 1980, 92 (2), 106–121, auch: On the Symbolic Language of the Chemist. Angew. Chem. Int. Ed. 1980, 19 (2), 110–125.


742. K. Brodersen, F. Moers und H. G. Schnering, Zur Struktur des Iridium(III)-und des Ruthenium(III)- chlorids. Naturwissenschaften 1965, 52 (9), 205–206.


743. W. Bronger, B. Nacken und K. Ploog, Zur Synthese und Struktur von Li 2 Pt und LiPt. J. Less-Common Met. 1975, 43, 143–146.


744. M. Larsson, O. Terasaki und K. Larsson, A solid state transition in the tetragonal lipid bilayer structure at the lung alveolar surface. Solid State Sciences 2003, 5, 109–114.


745. C. Pfleiderer, M. Uhlarz, S. M. Hayden, R. Vollmer, H. von Löhneysen, N. R. Bernhoeft und G. G. Lonzarich, Coexistence of superconductivity and ferromagnetism in the d-band metal ZrZn 2 . Nature 2001, 412, 58–61.


746. R. Wang, Q. Chen, F. R. Chen, J. J. Kai und L.-M. Peng, Defects and domain structures in SBA-16 mesoporous films with 3D cubic structure. Chem. Phys. Lett. 2005, 411, 463–467.


747. R. H. Wang, Q. Chen, F. R. Chen, J. J. Kai und L.-M. Peng, Quantitative analysis of defects and domain boundaries in mesoporous SBA-16 films. Micron 2007, 38, 362–370.


748. R. Wang, H. Taub, H. Shechter, R. Brener, J. Suzanne und F. Y. Hansen, Orientational ordering of com- mensurate Fe(CO) 5 monolayers on graphite. Phys. Rev. B 1983, 27 (9), 5864–5867.


749. F. Heylighen, The Growth of Structural and Functional Complexity during Evolution (Unterthema: What is complexity?), In: The Evolution of Complexity (F. Heylighen und D. Aerts, Hrsg.). Kluwer, Dordrecht 1997, 17–44, siehe auch: http://pcp.vub.ac.be/COMPLEXI.html (Abfrage am 4.4.2010).


750. J. von Appen, R. Dronskowski und K. Hack, A theoretical search for intermetallic compounds and solution phases in the binary system Sn/Zn. J. Alloys Comp. 2004, 379, 110–116.


751. W. Koch und M. C. Holthausen, A Chemist's Guide to Density Functional Theory. Wiley-VCH, Weinheim, 2. Aufl. 2001.


752. V. V. Krishnamurthy, N. Kawamura, M. Suzuki, T. Ishikawa, G. J. Mankey, P. Raj, A. Sathyamoorthy, A. G. Joshi und S. K. Malik, Evidence for a magnetic moment on Ir in IrMnAl from x-ray magnetic circular dichroism. Phys. Rev. B 2003, 68, 214 413–1–214 413–5.


753. S. Ranganathan, A. Subramaniam, A. P. Tsai und C. Dong, BCC Derivative Structures and their Relation to Rational Approximants to Quasicrystals. Ferroelectrics 2001, 250, 201–206.


754. E. A. Lord und S. Ranganathan, The γ-brass structure and the Boerdijk-Coxeter helix. J. Non-Cryst. Solids 2004, 334&335, 121–125.


755. Y. K. Vohra, S. K. Sikka und R. Chidambaram, Electronic structure of omega phase of titanium and zirconium. J. Phys. F: Metal Phys. 1979, 9 (9), 1771–1782.


756. S. T. Hyde und G. E. Schroeder, Novel surfactant mesostructural topologies: between lamellae and columnar (hexagonal) forms. Curr. Opin. Coll. Interf. Sci. 2003, 8, 5–14.


757. M. Senechal, Tiling the Torus and Other Space Forms. Discrete Comput. Geom. 1988, 3, 55–72.


758. G. Marsaglia, Regularities in Congruential Random Number Generators. Numer. Math. 1970, 16, 8–10.


759. L. Afflerbach, The sub-lattice structure of linear congruential random number generators. Manuscripta Math. 1986, 55, 455–465.


760. W. Kleber, Die Korrespondenz zwischen Morphologie und Struktur der Kristalle. Die Naturwissenschaften 1955, 42 (7), 170–173.


761. H. Terrones, M. Terrones, E. Hernández, N. Grobert, J.-C. Charlier und P. M. Ajayan, New Metallic Allotropes of Planar and Tubular Carbon. Phys. Rev. Lett. 2000, 84 (8), 1716–1719.


762. A. Kounis, Strukturuntersuchung von ikosaedrischen Quasikristallen und deren Approximanten aus dem ternären System Zn-Mg-(Y, Er). Dissertation, Technische Universität Darmstadt 2001.


763. R. Sterzel, C. Gross, A. Kounis, G. Miehe, H. Fuess, S. Reutzel, D. Holland-Moritz und W. Assmus, A new well-ordered simple icosahedral quasicrystalline phase in the Zn–Mg–Er system. Phil. Mag. Lett. 2002, 82 (8), 443–450.


764. H. Zimmermann, Raumteilungen und Gitter. XXII. Arbeitskreistagung Nichtkristalline und Partiellkris- talline Strukturen 2001 – Räumliche und zeitliche Prozesse in nichtkristallinen Materialien (12 Seiten). http://www.chemie.uni-jena.de/DGK-AK4/VOR_01/zimmermann.pdf (Abfrage am 4.4.2010).


765. U. Müller, How many independent crystal-structure types are possible for different space groups appea- ring in a Bärnighausen tree? 2005, typoskript – International School on Mathematical and Theoretical Crystallography, Université Henri Poincaré, Nancy. 17–28. http://www.crystallography.fr/mathcryst/ pdf/mueller.pdf (Abfrage am 4.4.2010).


766. J.-P. Allouche und J. Shallit, The ubiquitous Prouhet-Thue-Morse sequence, In: Sequences and Their Ap- plications: Proceedings of SETA '98 (C. Ding, T. Helleseth und H. Niederreiter, Hrsg.). Springer-Verlag 1999, 1–16, siehe auch: http://www.cs.uwaterloo.ca/~shallit/papers.html (Abfrage am 4.4.2010).


767. P.-M. Binder, Frustration in Complexity. Science 2008, 320, 322–323.


768. J. I. Goldstein, D. E. Newbury, P. Echlin, D. C. Joy, A. D. Romig, Jr., C. E. Lyman, C. Fiori und E. Lifshin, Scanning Electron Microscopy and X-Ray Microanalysis -A Text for Biologists, Materials Scientists, and Geologists. Plenum Press, New York -London, 2. Aufl. 1992.


769. P. Lambin und L. P. Biró, Structural properties of Hackelite nanotubes. New J. Phys. 2003, 5, 141.1–141.14, http://www.njp.org/ (Abfrage am 4.4.2010).


770. J. McNeill, Johnson Solid Near Misses. http://www.orchidpalms.com/polyhedra/acrohedra/nearmiss/ jsmn.htm (Abfrage am 4.4.2010).


771. K. H. J. Buschow, P. G. van Engen und R. Jongebreur, Magneto-Optical Properties of Metallic Ferroma- gnetic Materials. J. Magn. Magn. Mat. 1983, 38, 1–22.


772. L. Elcoro, J. M. Perez-Mato, K. Friese, V. Petříček, T. Balić-ˇ Zunić und L. A. Olsen, Modular crystals as modulated structures: the case of the lillianite homologous series. Acta Cryst. B 2008, 64, 684–701.


773. G. Borzone, R. Raggio und R. Ferro, Comments on intermetallic thermochemistry. J. Min. Met. B 2002, 38 (3–4), 249–272.


774. S. van Smaalen, An elementary introduction to superspace crystallography. Z. Kristallogr. 2004, 219, 681– 691.


775. J. Lüdecke, A. Jobst, S. Geupel und S. van Smaalen, Structure of the two-dimensional incommensurate charge-density wave in (PO 2 ) 4 (WO 3 ) 8 at 20 K. Phys Rev. B 2001, 64, 104 105–1–104 105–11.


776. M. Dušek, V. Petřířek, M. Wunschel, R. E. Dinnebier und S. van Smaalen, Refinement of modulated structures against X-ray powder diffraction data with JANA2000. J. Appl. Cryst. 2001, 34, 398–404.


777. A. Ceulemans, L. F. Chibotaru, P. W. Fowler und M. Szopa, Symmetry extensions of Euler's polyhedral theorem and the band theory of solids. J. Chem. Phys. 1999, 110 (14), 6916–6926.


778. [873] A. Ceulemans und P. W. Fowler, Symmetry Extensions of Euler's Theorem for Polyhedral, Toroidal and Benzenoid Molecules. J. Chem. Soc., Faraday Trans. 1995, 91 (18), 3089–3093.