Publikationsserver der Universitätsbibliothek Marburg

Titel:Myosin heavy chain like (Mhcl) agiert während der Embryonalentwicklung und Myogenese von Drosophila melanogaster in Redundanz zu Zipper, die Funktion des C2-Domänen-Proteins CG10737-P während der Muskelentwicklung bleibt unklar
Autor:Bonn, Bettina
Weitere Beteiligte: Renkawitz-Pohl, Renate (Prof. Dr.)
Veröffentlicht:2010
URI:https://archiv.ub.uni-marburg.de/diss/z2010/0492
DOI: https://doi.org/10.17192/z2010.0492
URN: urn:nbn:de:hebis:04-z2010-04923
DDC: Biowissenschaften, Biologie
Titel (trans.):Myosin heavy chain like (Mhcl) acts during embryogenesis and myogenesis of Drosophila melanogaster in redundancy to Zipper, the function of the C2 domain protein CG10737-P during myoblast fusion remains unclear
Publikationsdatum:2010-10-13
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
C2 domain, Taufliege, Muskelentwicklung, Non-muscle myosin, Drosophila melanogaster, Muscle development, Myoblastenfusion, Nichtmuskuläres Myosin, C2-Domäne, Myoblast fusion

Zusammenfassung:
Das unkonventionelle Myosin Mhcl wurde als potenzieller Interaktionspartner von Rols7 identifiziert, welches essentiell für die Myogenese von Drosophila melanogaster ist. Die Mhcl-mRNA ist zwischen Stadium 10 und 14 spezifisch im somatischen und viszeralen Mesoderm nachweisbar (Bonn, Diplomarbeit 2006). In der vorliegenden Arbeit wurde mittels in situ-Hybridisierung gezeigt, dass die Expression, zumindest im somatischen Mesoderm, auf die FCs beschränkt ist und durch den Transkriptionsfaktor DMef2 reguliert wird. Unterschiedliche Experimente deuten darauf hin, dass mehrere Isoformen von Mhcl gebildet werden, wahrscheinlich durch alternatives Spleißen und die Verwendung unterschiedlicher Promotoren. Zudem wurden mittels RT-PCR Hinweise auf die Existenz eines nicht postulierten 5´-UTR-Bereichs erzielt. Ein generierter anti-Mhcl-Antikörper detektiert zwar ektopisch exprimiertes Protein, produziert in Embryonen aber nur unspezifische Färbung. Versuche, die potenzielle Interaktion zwischen Mhcl und Rols7 durch genetische Experimente oder Co-Immunopräzipitations-Studien zu beweisen, schlugen fehl. Es wurde gezeigt, dass Mhcl in Redundanz zu Zip agiert. Beide haben eine wichtige Funktion in frühen Stadien der Embryonalentwicklung und sind dort wahrscheinlich für die korrekte Interkalation von Zellen während der Keimstreif-Verlängerung verantwortlich. Der Verlust beider Myosine führt zu einem Stopp der somatischen Myogenese nach der ersten Fusionsphase. Daher wird postuliert, dass Mhcl die Bewegung der FCMs in Richtung der wachsenden Muskeln oder die der Muskeln in Richtung der epidermalen Anheftungsstellen regulieren könnte. Darüber hinaus erscheint eine Funktion für die Etablierung der Sarkomere plausibel. C2-Domänen sind in der Lage, in Membranen zu inserieren und dadurch deren Fusion zu fördern. Eine solche fusogene Wirkung auf die Myoblastenfusion war bisher für keines dieser Proteine bekannt. In der vorliegenden Arbeit wurde mittels in situ-Hybridisierung gezeigt, dass CG10737, welches u. a. eine C2-Domäne kodiert, während der fusionsrelevanten Stadien sowohl im somatischen als auch im viszeralen Mesoderm exprimiert ist. Diese Expression ist von dem Transkriptionsfaktor DMef2 abhängig, und zumindest im somatischen Mesoderm auf die FCs beschränkt. Durch Immunhistologie an Embryonen sowie Western-Blot-Analysen wurde gezeigt, dass der generierte Peptid-Antikörper nicht in der Lage ist, das Protein spezifisch zu detektieren. Obwohl der Verlust von CG10737 keine Störungen der Myoblastenfusion oder der Anheftung der Muskeln an die Epidermis hervorruft, wird postuliert, dass CG10737-P an der Signaltransduktion während der Myogenese sowie der Ausbildung neuromuskulärer Verbindungen beteiligt sein könnte.

Bibliographie / References

  1. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 227, 680-685.
  2. Kesper, D. A. (2005). Die Analyse der cis-Regulation des rols-Gens und die Beteiligung von Rols7 am Aufbau eines podosomenähnlichen adhäsiven Komplexes (PILMAC), der eine zentrale Rolle in der Myoblastenfusion bei Drosophila melanogaster einnimmt. Dissertation Philipps-Universität Marburg
  3. Foth, B. J., Goedecke, M. C. and Soldati, D. (2006). New insights into myosin evolution and classification. Proc Natl Acad Sci U S A. 103, 3681-3686.
  4. Dyer, N., Rebollo, E., Dominguez, P., Elkhatib, N., Chavrier, P., Daviet, L., Gonzalez, C. and Gonzalez-Gaitan, M. (2007). Spermatocyte cytokinesis requires rapid membrane addition mediated by ARF6 on central spindle recycling endosomes. Development. 134, 4437-4447.
  5. Sommer, B., Oprins, A., Rabouille, C. and Munro, S. (2005). The exocyst component Sec5 is present on endocytic vesicles in the oocyte of Drosophila melanogaster. J Cell Biol. 169, 953-963.
  6. Puig, O., Caspary, F., Rigaut, G., Rutz, B., Bouveret, E., Bragado-Nilsson, E., Wilm, M. and Séraphin, B. (2001). The tandem affinity purification (TAP) method: a general procedure of protein complex purification. Methods. 24, 218-229.
  7. Hakeda, S., Endo, S. and Saigo, K. (2000). Requirements of Kettin, a giant muscle protein highly conserved in overall structure in evolution, for normal muscle function, viability, and flight activity of Drosophila. J Cell Biol. 148, 101-114.
  8. Gonsalvez, G. B., Urbinati, C. R. and Long, R. M. (2005). RNA localization in yeast: moving towards a mechanism. Biol Cell. 97, 75-86.
  9. Cunha, P. M., Sandmann, T., Gustafson, E. H., Ciglar, L., Eichenlaub, M. P. and Furlong, E. E. (2010). Combinatorial binding leads to diverse regulatory responses: Lmd is a tissue-specific modulator of Mef2 activity. PLoS Genet. 6, e1001014.
  10. Adams, M. D., Celniker, S. E., Holt, R. A., Evans, C. A., Gocayne, J. D., Amanatides, P. G., Scherer, S. E., Li, P. W. et al. (2000). The genome sequence of Drosophila melanogaster. Science. 287, 2185-2195.
  11. Leiss, D., Hinz, U., Gasch, A., Mertz, R. and Renkawitz-Pohl, R. (1988). Beta 3 tubulin expression characterizes the differentiating mesodermal germ layer during Drosophila embryogenesis. Development. 104, 525-531.
  12. Bate, M. (1990). The embryonic development of larval muscles in Drosophila. Development. 110, 791-804.
  13. Bate, M., Rushton, E. and Currie, D. A. (1991). Cells with persistent twist expression are the embryonic precursors of adult muscles in Drosophila. Development. 113, 79-89.
  14. Bennett, R. L. and Hoffmann, F. M. (1992). Increased levels of the Drosophila Abelson tyrosine kinase in nerves and muscles: subcellular localization and mutant phenotypes imply a role in cell-cell interactions. Development. 116, 953-966.
  15. Brand, A. H. and Perrimon, N. (1993). Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development. 118, 401-415.
  16. Hay, B. A., Wolff, T. and Rubin, G. M. (1994). Expression of baculovirus P35 prevents cell death in Drosophila. Development. 120, 2121-2129.
  17. Xu, T., Wang, W., Zhang, S., Stewart, R. A. and Yu, W. (1995). Identifying tumor suppressors in genetic mosaics: the Drosophila lats gene encodes a putative protein kinase. Development. 121, 1053-1063.
  18. Mutations in a novel gene, myoblast city, provide evidence in support of the founder cell hypothesis for Drosophila muscle development. Development. 121, 1979-1988.
  19. Paululat, A., Burchard, S. and Renkawitz-Pohl, R. (1995). Fusion from myoblasts to myotubes is dependent on the rolling stone gene (rost) of Drosophila. Development. 121, 2611-2620.
  20. Baker, R. and Schubiger, G. (1996). Autonomous and nonautonomous Notch functions for embryonic muscle and epidermis development in Drosophila. Development. 122, 617-626.
  21. Wimmer, E. A., Cohen, S. M., Jackle, H. and Desplan, C. (1997). buttonhead does not contribute to a combinatorial code proposed for Drosophila head development. Development. 124, 1509-1517.
  22. Klapper, R., Heuser, S., Strasser, T. and Janning, W. (2001). A new approach reveals syncytia within the visceral musculature of Drosophila melanogaster. Development. 128, 2517-2524.
  23. San Martin,. B. and Bate, M. (2001). Hindgut visceral mesoderm requires an ectodermal template for normal development in Drosophila. Development. 128, 233-242.
  24. Dworak, H. A., Charles, M. A., Pellerano, L. B. and Sink, H. (2001). Characterization of Drosophila hibris, a gene related to human nephrin. Development. 128, 4265-4276.
  25. Schneider, I. (1972). Cell lines derived from late embryonic stages of Drosophila melanogaster. J Embryol Exp Morphol. 27, 353-365.
  26. Schumacher, S., Gryzik, T., Tannebaum, S. and Muller, H. J. (2004). The RhoGEF Pebble is required for cell shape changes during cell migration triggered by the Drosophila FGF receptor Heartless. Development. 131, 2631-2640.
  27. Bahri, S. M., Choy, J. M., Manser, E., Lim, L. and Yang, X. (2009). The Drosophila homologue of Arf-GAP GIT1, dGIT, is required for proper muscle morphogenesis and guidance during embryogenesis. Dev Biol. 325, 15-23.
  28. Önel, S. and Renkawitz-Pohl, R. (2009). FuRMAS: triggering myoblast fusion in Drosophila. Dev Dyn. 238, 1513-1525.
  29. ENA/VASP downregulation triggers cell death by impairing axonal maintenance in hippocampal neurons. Mol Cell Neurosci. 44, 154-164.
  30. García-Mata, R. and Burridge, K. (2007). Catching a GEF by its tail. Trends Cell Biol. 17, 36-43.
  31. Schäfer, G., Weber, S., Holz, A., Bogdan, S., Schumacher, S., Müller, A., Renkawitz- Pohl, R. and Önel, S. (2007). The Wiskott-Aldrich syndrome protein (WASP) is essential for myoblast fusion in Drosophila. Dev Biol. 304, 664-674.
  32. Sun, Y., McGarrigle, D. and Huang, X. (2007). When a G protein-coupled receptor does not couple to a G protein. Mol Biosyst. 3, 849-854.
  33. Mori, K., Furusawa, T., Okubo, T., Inoue, T., Ikawa, S., Yanai, N., Mori, K. J. and Obinata, M. (2003). Genome structure and differential expression of two isoforms of a novel PDZ-containing myosin (MysPDZ) (Myo18A). J Biochem. 133, 405-413.
  34. Yepiskoposyan, H., Egli, D., Fergestad, T., Selvaraj, A., Treiber, C., Multhaup, G., Georgiev, O. and Schaffner, W. (2006). Transcriptome response to heavy metal stress in Drosophila reveals a new zinc transporter that confers resistance to zinc. Nucleic Acids Res. 34, 4866-4877.
  35. Combinatorial signaling codes for the progressive determination of cell fates in the Drosophila embryonic mesoderm. Genes Dev. 12, 3910-3922.
  36. O'Donnell, P.T., Collier, V.L., Mogami, K. and Bernstein, S.I. (1989). Ultrastructural and molecular analyses of homozygous-viable Drosophila melanogaster muscle mutants indicate there is a complex pattern of myosin heavy-chain isoform distribution. Genes Dev. 3, 1233--1246.
  37. Klämbt, C., Glazer, L. and Shilo, B. Z. (1992). breathless, a Drosophila FGF receptor homolog, is essential for migration of tracheal and specific midline glial cells. Genes Dev. 6, 1668-1678.
  38. Luo, L., Liao, Y. J., Jan, L. Y. and Jan, Y. N. (1994). Distinct morphogenetic functions of similar small GTPases: Drosophila Drac1 is involved in axonal outgrowth and myoblast fusion. Genes Dev. 8, 1787-1802.
  39. Myoblast determination in the somatic and visceral mesoderm depends on Notch signalling as well as on milliways(mili(Alk)) as receptor for Jeb signalling. Development. 131, 743- 754.
  40. Arp2/3 are crucial for cytoskeletal remodeling at the site of myoblast fusion. Development. 134, 4357-4367.
  41. Önel, S., Bolke, L. and Klämbt, C. (2004). The Drosophila Arf6-GEF Schizo controls commissure formation by regulating Slit. Development. 131, 2587-2594
  42. Carrasco-Rando, M. and Ruiz-Gómez, M. (2008). Mind bomb 2, a founder myoblast- specific protein, regulates myoblast fusion and muscle stability. Development. 135, 849-857.
  43. Shelton, C., Kocherlakota, K. S., Zhuang, S. and Abmayr, S. M. (2009). The immunoglobulin superfamily member Hbs functions redundantly with Sns in interactions between founder and fusion-competent myoblasts. Development. 136, 1159-1168.
  44. Gates, J., Mahaffey, J. P., Rogers, S. L., Emerson, M., Rogers, E. M., Sottile, S. L., Van Vactor, D., Gertler, F. B. and Peifer, M. (2007). Enabled plays key roles in embryonic epithelial morphogenesis in Drosophila. Development. 134, 2027-2039.
  45. Guerin, C. M. and Kramer, S. G. (2009b). RacGAP50C directs perinuclear gamma-tubulin localization to organize the uniform microtubule array required for Drosophila myotube extension. Development. 136, 1411-1421.
  46. Castle, A. and Castle, D. (2005). Ubiquitously expressed secretory carrier membrane proteins (SCAMPs) 1-4 mark different pathways and exhibit limited constitutive trafficking to and from the cell surface. J Cell Sci. 118, 3769-3780.
  47. Sandmann, T., Jensen, L. J., Jakobsen, J. S., Karzynski, M. M., Eichenlaub, M. P., Bork, P. and Furlong, E. E. M. (2006). A temporal map of transcription factor activity: mef2 directly regulates target genes at all stages of muscle development. Dev Cell. 10, 797-807.
  48. Salamon, M., Millino, C., Raffaello, A., Mongillo, M., Sandri, C., Bean, C., Negrisolo, E., Pallavicini, A. et al. (2003). Human MYO18B, a novel unconventional myosin heavy chain expressed in striated muscles moves into the myonuclei upon differentiation. J Mol Biol. 326, 137-149.
  49. Corl, A. B., Berger, K. H., Ophir-Shohat, G., Gesch, J., Simms, J. A., Bartlett, S. E. and Heberlein, U. (2009). Happyhour, a Ste20 family kinase, implicates EGFR signaling in ethanol-induced behaviors. Cell. 137, 949-960.
  50. Eddinger, T. J. and Meer, D. P. (2007). Myosin II isoforms in smooth muscle: heterogeneity and function. Am J Physiol Cell Physiol. 293, C493-508.
  51. Rubin, G. M. and Spradling, A. C. (1982). Genetic transformation of Drosophila with transposable element vectors. Science. 218, 348-353.
  52. Schnorrer, F., Schonbauer, C., Langer, C. C. H., Dietzl, G., Novatchkova, M., Schernhuber, K., Fellner, M., Azaryan, A. et al. (2010). Systematic genetic analysis of muscle morphogenesis and function in Drosophila. Nature. 464, 287-291.
  53. Jahn, R. and Scheller, R. H. (2006). SNAREs--engines for membrane fusion. Nat Rev Mol Cell Biol. 7, 631-643.
  54. Voets, T. (2000). Dissection of three Ca2+-dependent steps leading to secretion in chromaffin cells from mouse adrenal slices. Neuron. 28, 537-545.
  55. Tzolovsky, G., Millo, H., Pathirana, S., Wood, T. and Bownes, M. (2002). Identification and phylogenetic analysis of Drosophila melanogaster myosins. Mol Biol Evol. 19, 1041- 1052.
  56. Zhang, Y., Featherstone, D., Davis, W., Rushton, E. and Broadie, K. (2000). Drosophila D-titin is required for myoblast fusion and skeletal muscle striation. J Cell Sci. 113, 3103- 3115.
  57. Cohen, P. T. W. (2002). Protein phosphatase 1--targeted in many directions. J Cell Sci. 115, 241-256.
  58. Pope, K. L. and Harris, T. J. C. (2008). Control of cell flattening and junctional remodeling during squamous epithelial morphogenesis in Drosophila. Development. 135, 2227-2238.
  59. Menon, S. D., Osman, Z., Chenchill, K. and Chia, W. (2005). A positive feedback loop between Dumbfounded and Rolling pebbles leads to myotube enlargement in Drosophila. J Cell Biol. 169, 909-920.
  60. Kim, S., Shilagardi, K., Zhang, S., Hong, S. N., Sens, K. L., Bo, J., Gonzalez, G. A. and Chen, E. H. (2007). A critical function for the actin cytoskeleton in targeted exocytosis of prefusion vesicles during myoblast fusion. Dev Cell. 12, 571-586.
  61. Önel, S. (2009). Actin regulators take the reins in Drosophila myoblast fusion. Cent Eur J Biol. 4, 11-18.
  62. Thomas, B. J. and Wassarman, D. A. (1999). A fly's eye view of biology. Trends Genet. 15, 184-190.
  63. Bonn, B. (2006). Analyse mehrerer mit Rols7 in Verbindung stehender Proteine und Strukturen und deren mögliche Bedeutung für die larvale Myogenese in Drosophila melanogaster. Diplomarbeit Philipps-Universität Marburg Bour, B. A., O'Brien, M. A., Lockwood, W. L., Goldstein, E. S., Bodmer, R., Taghert, P. H., Abmayr, S. M. and Nguyen, H. T. (1995). Drosophila MEF2, a transcription factor that is essential for myogenesis. Genes Dev. 9, 730-741.
  64. Diemer, M. (2009). Analysis of five C2-domain proteins, which most likely play no role in myoblast fusion, but are expressed in other tissues. Bachelorarbeit Philipps-Universität Marburg Doberstein, S. K., Fetter, R. D., Mehta, A. Y. and Goodman, C. S. (1997). Genetic analysis of myoblast fusion: blown fuse is required for progression beyond the prefusion complex. J Cell Biol. 136, 1249-1261.
  65. Tautz, D. and Pfeifle, C. (1989). A non-radioactive in situ hybridization method for the localization of specific RNAs in Drosophila embryos reveals translational control of the segmentation gene hunchback. Chromosoma. 98, 81-85.
  66. Sellin, J., Drechsler, M., Nguyen, H. T. and Paululat, A. (2009). Antagonistic function of Lmd and Zfh1 fine tunes cell fate decisions in the Twi and Tin positive mesoderm of Drosophila melanogaster. Dev Biol. 326, 444-455.
  67. Harlow, E. and Lane, D. P. (1988). Antibodies. A Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  68. Chen, E. H. and Olson, E. N. (2001). Antisocial, an intracellular adaptor protein, is required for myoblast fusion in Drosophila. Dev Cell. 1, 705-715.
  69. Myers, E. W., Sutton, G. G., Delcher, A. L., Dew, I. M., Fasulo, D. P., Flanigan, M. J., Kravitz, S. A., Mobarry, C. M. et al. (2000). A whole-genome assembly of Drosophila. Science. 287, 2196-2204.
  70. Schröter, R. H., Buttgereit, D., Beck, L., Holz, A. and Renkawitz-Pohl, R. (2006). Blown fuse regulates stretching and outgrowth but not myoblast fusion of the circular visceral muscles in Drosophila. Differentiation. 74, 608-621.
  71. Colón-González, F. and Kazanietz, M. G. (2006). C1 domains exposed: from diacylglycerol binding to protein-protein interactions. Biochim Biophys Acta. 1761, 827-837.
  72. Gajewski, K. M., Wang, J. and Schulz, R. A. (2006). Calcineurin function is required for myofilament formation and troponin I isoform transition in Drosophila indirect flight muscle. Dev Biol. 289, 17-29.
  73. Schulz, R. A. and Yutzey, K. E. (2004). Calcineurin signaling and NFAT activation in cardiovascular and skeletal muscle development. Dev Biol. 266, 1-16.
  74. Duguez, S., Bartoli, M. and Richard, I. (2006). Calpain 3: a key regulator of the sarcomere? FEBS J. 273, 3427-3436.
  75. Burster, T., Macmillan, H., Hou, T., Boehm, B. O. and Mellins, E. D. (2010). Cathepsin G: roles in antigen presentation and beyond. Mol Immunol. 47, 658-665.
  76. Huxley, H. and Hanson, J. (1954). Changes in the cross-striations of muscle during contraction and stretch and their structural interpretation. Nature. 173, 973-976.
  77. Patel, N. H., Snow, P. M. and Goodman, C. S. (1987). Characterization and cloning of fasciclin III: a glycoprotein expressed on a subset of neurons and axon pathways in Drosophila. Cell. 48, 975-988.
  78. Lupas, A. (1996). Coiled coils: new structures and new functions. Trends Biochem Sci. 21, 375-382.
  79. Zhang, S., Ma, C. and Chalfie, M. (2004). Combinatorial marking of cells and organelles with reconstituted fluorescent proteins. Cell. 119, 137-144.
  80. Hummel, T., Schimmelpfeng, K. and Klämbt, C. (1999). Commissure formation in the embryonic CNS of Drosophila. Dev Biol. 209, 381-398.
  81. Polyák, E., Standiford, D. M., Yakopson, V., Emerson, C. P. J. and Franzini-Armstrong, C. (2003). Contribution of myosin rod protein to the structural organization of adult and embryonic muscles in Drosophila. J Mol Biol. 331, 1077-1091.
  82. Riechmann, V., Irion, U., Wilson, R., Grosskortenhaus, R. and Leptin, M. (1997). Control of cell fates and segmentation in the Drosophila mesoderm. Development. 124, 2915-2922.
  83. Chen, E. H., Pryce, B. A., Tzeng, J. A., Gonzalez, G. A. and Olson, E. N. (2003). Control of myoblast fusion by a guanine nucleotide exchange factor, loner, and its effector ARF6. Cell. 114, 751-762.
  84. Frasch, M. (1999). Controls in patterning and diversification of somatic muscles during Drosophila embryogenesis. Curr Opin Gen Dev. 9, 522-529.
  85. Kakihara, K., Shinmyozu, K., Kato, K., Wada, H. and Hayashi, S. (2008). Conversion of plasma membrane topology during epithelial tube connection requires Arf-like 3 small GTPase in Drosophila. Mech Dev. 125, 325-336.
  86. Igaki, T. (2009). Correcting developmental errors by apoptosis: lessons from Drosophila JNK signaling. Apoptosis. 14, 1021-1028.
  87. Brix, K., Dunkhorst, A., Mayer, K. and Jordans, S. (2008). Cysteine cathepsins: cellular roadmap to different functions. Biochimie. 90, 194-207.
  88. Perissi, V., Jepsen, K., Glass, C. K. and Rosenfeld, M. G. (2010). Deconstructing repression: evolving models of co-repressor action. Nat Rev Genet. 11, 109-123.
  89. Ajima, R., Akazawa, H., Kodama, M., Takeshita, F., Otsuka, A., Kohno, T., Komuro, I., Ochiya, T. and Yokota, J. (2008). Deficiency of Myo18B in mice results in embryonic lethality with cardiac myofibrillar aberrations. Genes Cells. 13, 987-999.
  90. Stute, C. (2004). Die Determination der Founder-und fusionskompetenten Zellen des viszeralen Mesoderm von Drosophila melanogaster ist abhängig von Notch sowie Jeb/Alk vermitteltem RTK-Signalweg. Dissertation Philipps-Universität Marburg Stute, C., Schimmelpfeng, K., Renkawitz-Pohl, R., Palmer, R. H. and Holz, A. (2004).
  91. Paaby, A. B. and Schmidt, P. S. (2009). Dissecting the genetics of longevity in Drosophila melanogaster. Fly. 3, 29-38.
  92. O'Neill, J. W. and Bier, E. (1994). Double-label in situ hybridization using biotin and digoxigenin-tagged RNA probes. BioTechniques. 17, 870, 874-5.
  93. Langevin, J., Morgan, M. J., Rossé, C., Racine, V., Sibarita, J., Aresta, S., Murthy, M., Schwarz, T., Camonis, J. and Bellaïche, Y. (2005). Drosophila exocyst components Sec5, Sec6, and Sec15 regulate DE-Cadherin trafficking from recycling endosomes to the plasma membrane. Dev Cell. 9, 365-376.
  94. Duan, H., Skeath, J. B. and Nguyen, H. T. (2001). Drosophila Lame duck, a novel member of the Gli superfamily, acts as a key regulator of myogenesis by controlling fusion- competent myoblast development. Development. 128, 4489-4500.
  95. Bour, B. A., Chakravarti, M., West, J. M. and Abmayr, S. M. (2000). Drosophila SNS, a member of the immunoglobulin superfamily that is essential for myoblast fusion. Genes Dev. 14, 1498-1511.
  96. Le Quesne, J. P. C., Spriggs, K. A., Bushell, M. and Willis, A. E. (2010). Dysregulation of protein synthesis and disease. J Pathol. 220, 140-151.
  97. Chen, K., Featherstone, D. E. and Broadie, K. (2009). Electrophysiological recording in the Drosophila embryo. J Vis Exp.
  98. Epithelial polarity proteins regulate Drosophila tracheal tube size in parallel to the luminal matrix pathway. Curr Biol. 20, 55-61.
  99. Paululat, A., Holz, A. and Renkawitz-Pohl, R. (1999). Essential genes for myoblast fusion in Drosophila embryogenesis. Mech Dev. 83, 17-26.
  100. Sickmann, A. (2010). Expression von verschiedenen Proteinversionen von Blown fuse sowie Skap2 im Embryo und die mögliche Rolle von Blown fuse in der Myoblastenfusion in Drosophila melanogaster. Dissertation Philipps-Universität Marburg Sierralta, J. and Mendoza, C. (2004). PDZ-containing proteins: alternative splicing as a source of functional diversity. Brain Res Brain Res Rev. 47, 105-115.
  101. Tepass, U. (2009). FERM proteins in animal morphogenesis. Curr Opin Genet Dev. 19, 357- 367.
  102. Lécuyer, E., Parthasarathy, N. and Krause, H. M. (2008). Fluorescent in situ hybridization protocols in Drosophila embryos and tissues. Meth Mol Biol. 420, 289-302.
  103. Wu, X., Jung, G. and Hammer, J. A. (2000). Functions of unconventional myosins. Curr Opin Cell Biol. 12, 42-51.
  104. Kramer, J. M. and Staveley, B. E. (2003). GAL4 causes developmental defects and apoptosis when expressed in the developing eye of Drosophila melanogaster. Genet Mol Res. 2, 43-47.
  105. Dettman, R. W., Turner, F. R. and Raff, E. C. (1996). Genetic analysis of the Drosophila β3-Tubulin gene demonstrates that the microtubule cytoskeleton in the cells of the visceral Mesoderm is required for Morphogenesis of the midgut endoderm. Dev Biol. 177, 117-135
  106. Maqbool, T. and Jagla, K. (2007). Genetic control of muscle development: learning from Drosophila. J Mus Res Cell Motil. 28, 397-407.
  107. Anholt, R. R. H. (2004). Genetic modules and networks for behavior: lessons from Drosophila. Bioessays. 26, 1299-1306.
  108. Badouel, C., Garg, A. and McNeill, H. (2009). Herding Hippos: regulating growth in flies and man. Curr Opin Cell Biol. 21, 837-843.
  109. Zhang, L., Yue, T. and Jiang, J. (2009). Hippo signaling pathway and organ size control. Fly. 3, 68-73.
  110. Martens, S., Kozlov, M. M. and McMahon, H. T. (2007). How synaptotagmin promotes membrane fusion. Science. 316, 1205-1208.
  111. Galletta, B. J., Niu, X. P., Erickson, M. R. and Abmayr, S. M. (1999). Identification of a Drosophila homologue to vertebrate Crk by interaction with MBC. Gene. 228, 243-252.
  112. Kastl, L. (2010). Identifikation von Sur-8, sowie Mikrotubuli-und Aktin-assoziierten Proteinen als Interaktionspartner von Rolling pebbles in der Myogenese von Drosophila melanogaster. Bachelorarbeit Philipps-Universität-Marburg Kee, A. J., Gunning, P. W. and Hardeman, E. C. (2009). Diverse roles of the actin cytoskeleton in striated muscle. J Muscle Res Cell Motil. 30, 187-197.
  113. Frank, S. A. (2002). Immunology and Evolution of Infectious Disease. Princeton and Oxford: Princeton University Press. 7. Literatur 126
  114. Kreisköther, N. (2005). In der Myogenese von Drosophila melanogaster interagiert Rolling pebbles 7 in den Z-Scheiben der Sarkomere mit a-Aktinin und D-Titin/Kettin/Zormin, in der terminalen Z-Scheibe kolokalisiert es zudem mit Dumbfounded/Kirre. Dissertation Philipps- Universität Marburg Kreisköther, N., Reichert, N., Buttgereit, D., Hertenstein, A., Fischbach, K. and Renkawitz-Pohl, R. (2006). Drosophila rolling pebbles colocalises and putatively interacts with alpha-Actinin and the Sls isoform Zormin in the Z-discs of the sarcomere and with Dumbfounded/Kirre, alpha-Actinin and Zormin in the terminal Z-discs. J Muscle Res Cell Motil. 27, 93-106.
  115. Rock, R. S., Rief, M., Mehta, A. D. and Spudich, J. A. (2000). In vitro assays of processive myosin motors. Methods. 22, 373-381.
  116. Furusawa, T., Ikawa, S., Yanai, N. and Obinata, M. (2000). Isolation of a novel PDZ- containing myosin from hematopoietic supportive bone marrow stromal cell lines. Biochem Biophys Res Commun. 270, 67-75.
  117. Englund, C., Loren, C. E., Grabbe, C., Varshney, G. K., Deleuil, F., Hallberg, B. and Palmer, R. H. (2003). Jeb signals through the Alk receptor tyrosine kinase to drive visceral muscle fusion. Nature. 425, 512-516.
  118. Lee, H., Norris, A., Weiss, J. B. and Frasch, M. (2003). Jelly belly protein activates the receptor tyrosine kinase Alk to specify visceral muscle pioneers. Nature. 425, 507-512.
  119. Laprise, P., Lau, K. M., Harris, K. P., Silva-Gagliardi, N. F., Paul, S. M., Beronja, S., Beitel, G. J., McGlade, C. J. and Tepass, U. (2009). Yurt, Coracle, Neurexin IV and the Na(+),K(+)-ATPase form a novel group of epithelial polarity proteins. Nature. 459, 1141- 1145.
  120. Schröter, R. H., Lier, S., Holz, A., Bogdan, S., Klämbt, C., Beck, L. and Renkawitz-Pohl, R. (2004). kette and blown fuse interact genetically during the second fusion step of myogenesis in Drosophila. Development. 131, 4501-4509.
  121. Hornbruch, C. (2010). Kosh zeigt ein duales Expressionsmuster während der Myoblastenfusion und in der synzytialen Testismuskulatur. Masterarbeit Philipps- Universität Marburg Horsley, V. and Pavlath, G. K. (2004). Forming a multinucleated cell: molecules that regulate myoblast fusion. Cells Tissues Organs. 176, 67-78.
  122. Gard, D. L., Becker, B. E. and Josh Romney, S. (2004). MAPping the eukaryotic tree of life: structure, function, and evolution of the MAP215/Dis1 family of microtubule- associated proteins. Int Rev Cytol. 239, 179-272.
  123. Chernomordik, L. V. and Kozlov, M. M. (2008). Mechanics of membrane fusion. Nat Struct Mol Biol. 15, 675-683.
  124. Martens, S. and McMahon, H. T. (2008). Mechanisms of membrane fusion: disparate players and common principles. Nature Rev. 9, 543-556.
  125. McMahon, H. T., Kozlov, M. M. and Martens, S. (2010). Membrane curvature in synaptic vesicle fusion and beyond. Cell. 140, 601-605.
  126. Wickner, W. and Schekman, R. (2008). Membrane fusion. Nat Struct Mol Biol. 15, 658- 664.
  127. Lemmon, M. A. (2008). Membrane recognition by phospholipid-binding domains. Nat Rev Mol Cell Biol. 9, 99-111.
  128. Sambrook, J., Fritsch, E. F. and Maniatis, T. (1989). Molecular cloning. A Laboratory Manual. Plainview, NY: Cold Spring Harbor Laboratory Press.
  129. Molecular organization and alternative splicing in zipper, the gene that encodes the Drosophila non-muscle myosin II heavy chain. J Mol Biol. 255, 98-109.
  130. Young, P. E., Richman, A. M., Ketchum, A. S. and Kiehart, D. P. (1993). Morphogenesis in Drosophila requires nonmuscle myosin heavy chain function. Genes Dev. 7, 29-41.
  131. Zhang, L., Hernan, R. and Brizzard, B. (2001). Multiple tandem epitope tagging for enhanced detection of protein expressed in mammalian cells. Mol Biotechnol. 19, 313-321.
  132. Taylor, M. V. (1998). Muscle development: a transcriptional pathway in myogenesis. Curr Biol. 8, R356-358.
  133. Murthy, M., Garza, D., Scheller, R. H. and Schwarz, T. L. (2003). Mutations in the exocyst component Sec5 disrupt neuronal membrane traffic, but neurotransmitter release persists. Neuron. 37, 433-447.
  134. Mogami, K., O´Donnell, P. T., Bernstein, S. I., Wright, T. R. and Emerson, C. P. Jr. (1986). Mutations oft he Drosophila myosin heavy-chain gene: effects on transcription, myosin accumulation, and muscle function. Proc Natl Acad Sci U S A. 83, 1393-1397.
  135. Abmayr, S. M., Zhuang, S. and Geisbrecht, E. R. (2008). Myoblast fusion in Drosophila. Methods Mol Biol. 475, 75-97.
  136. Kesper, D. A., Stute, C., Buttgereit, D., Kreisköther, N., Vishnu, S., Fischbach, K. and Renkawitz-Pohl, R. (2007). Myoblast fusion in Drosophila melanogaster is mediated through a fusion-restricted myogenic-adhesive structure (FuRMAS). Dev Dyn. 236, 404- 415.
  137. Ruiz-Gómez, M., Coutts, N., Suster, M. L., Landgraf, M. and Bate, M. (2002). myoblasts incompetent encodes a zinc finger transcription factor required to specify fusion-competent myoblasts in Drosophila. Development. 129, 133-141.
  138. Baylies, M. K., Bate, M. and Ruiz-Gómez, M. (1998). Myogenesis: a view from Drosophila. Cell. 93, 921-927.
  139. Daum, G. (2008). Myosin Heavy Chain Like, ein potentielles Homodimer, scheint kein für die Myogenese in Drosophila essentieller Faktor zu sein. Bachelorarbeit Philipps- Universität Marburg
  140. Sellers, J. R. (2000). Myosins: a diverse superfamily. Biochim Biophys Acta. 1496, 3-22.
  141. Lowey, S., Waller, G. S. and Bandman, E. (1991). Neonatal and adult myosin heavy chains form homodimers during avian skeletal muscle development. J Cell Biol. 113, 303-310.
  142. Vicente-Manzanares, M., Ma, X., Adelstein, R. S. and Horwitz, A. R. (2009). Non-muscle myosin II takes centre stage in cell adhesion and migration. Nat Rev Mol Cell Biol. 10, 778- 790.
  143. Nonredundant function of secretory carrier membrane protein isoforms in dense core vesicle exocytosis. Am J Physiol Cell Physiol. 294, C797-809.
  144. Lawrence, P. A. and Johnston, P. (1989). Pattern formation in the Drosophila embryo: allocation of cells to parasegments by even-skipped and fushi tarazu. Development. 105, 761-767.
  145. Furlong, E. E., Andersen, E. C., Null, B., White, K. P. and Scott, M. P. (2001). Patterns of gene expression during Drosophila mesoderm development. Science. 293, 1629-1633.
  146. Sheng, M. and Sala, C. (2001). PDZ domains and the organization of supramolecular complexes. Annu Rev Neurosci. 24, 1-29.
  147. Jelén, F., Oleksy, A., Smietana, K. and Otlewski, J. (2003). PDZ domains -common players in the cell signaling. Acta biochim Pol. 50, 985-1017.
  148. Bilder, D. (2001). PDZ proteins and polarity: functions from the fly. Trends Genet. 17, 511- 519.
  149. J. (2010). PKC and the control of localized signal dynamics. Nat Rev Mol Cell Biol. 11, 103-112.
  150. Saiki, R. K., Gelfand, D. H., Stoffel, S., Scharf, S. J., Higuchi, R., Horn, G. T., Mullis, K. B. and Erlich, H. A. (1988). Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science. 239, 487-491.
  151. Raghavan, S., Williams, I., Aslam, H., Thomas, D., Szoor, B., Morgan, G., Gross, S., Turner, J. et al. (2000). Protein phosphatase 1beta is required for the maintenance of muscle attachments. Curr Biol. 10, 269-272.
  152. Bhuin, T. and Roy, J. K. (2009). Rab11 is required for myoblast fusion in Drosophila. Cell Tissue Res. 336, 489-499.
  153. Hakeda-Suzuki, S., Ng, J., Tzu, J., Dietzl, G., Sun, Y., Harms, M., Nardine, T., Luo, L. and Dickson, B. J. (2002). Rac function and regulation during Drosophila development. Nature. 416, 438-442.
  154. Nose, A., Isshiki, T. and Takeichi, M. (1998). Regional specification of muscle progenitors in Drosophila: the role of the msh homeobox gene. Development. 125, 215-223.
  155. Wilkie, G. S., Dickson, K. S. and Gray, N. K. (2003). Regulation of mRNA translation by 5'-and 3'-UTR-binding factors. Trends Biochem Sci. 28, 182-188.
  156. Kango-Singh, M. and Singh, A. (2009). Regulation of organ size: insights from the Drosophila Hippo signaling pathway. Dev Dyn. 238, 1627-1637.
  157. Hietakangas, V. and Cohen, S. M. (2009). Regulation of tissue growth through nutrient sensing. Annu Rev Genet. 43, 389-410.
  158. Role of the actin cytoskeleton within FuRMAS during Drosophila myoblast fusion and first functionally conserved factors in vertebrates. In: Cell fusions: regulation and control (ed. L. I. Larsson), Berlin: Springer-Verlag.
  159. Kidokoro, Y. (2003). Roles of SNARE proteins and synaptotagmin I in synaptic transmission: studies at the Drosophila neuromuscular synapse. Neurosignals. 12, 13-30.
  160. Rau, A., Buttgereit, D., Holz, A., Fetter, R., Doberstein, S. K., Paululat, A., Staudt, N., Skeath, J., Michelson, A. M. and Renkawitz-Pohl, R. (2001). rolling pebbles (rols) is required in Drosophila muscle precursors for recruitment of myoblasts for fusion. Development. 128, 5061-5073.
  161. Strünkelnberg, M., Bonengel, B., Moda, L. M., Hertenstein, A., de Couet, H. G., Ramos, R. G. and Fischbach, K. F. (2001). rst and its paralogue kirre act redundantly during embryonic muscle development in Drosophila. Development. 128, 4229-4239.
  162. Millard, T. H., Sharp, S. J. and Machesky, L. M. (2004). Signalling to actin assembly via the WASP (Wiskott-Aldrich syndrome protein)-family proteins and the Arp2/3 complex. Biochem J. 380, 1-17.
  163. Grobler, J. A. and Hurley, J. H. (1997). Similarity between C2 domain jaws and immunoglobulin CDRs. Nat Struct Biol. 4, 261-262.
  164. Galletta, B. J., Chakravarti, M., Banerjee, R. and Abmayr, S. M. (2004). SNS: Adhesive properties, localization requirements and ectodomain dependence in S2 cells and embryonic myoblasts. Mech Dev. 121, 1455-1468.
  165. Zhang, S. and Bernstein, S. I. (2001). Spatially and temporally regulated expression of myosin heavy chain alternative exons during Drosophila embryogenesis. Mech Dev. 101, 35-45.
  166. Mullis, K., Faloona, F., Scharf, S., Saiki, R., Horn, G. and Erlich, H. (1986). Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harb Symp Quant Biol. 51, 263-273.
  167. Huxley, A. F. and Niedergerke, R. (1954). Structural changes in muscle during contraction; interference microscopy of living muscle fibres. Nature. 173, 971-973.
  168. Subcellular localization and dynamics of MysPDZ (Myo18A) in live mammalian cells. Biochem Biophys Res Commun. 326, 491-498.
  169. Rizo, J. and Rosenmund, C. (2008). Synaptic vesicle fusion. Nat Struct Mol Biol. 15, 665- 674.
  170. Oliver, T. N., Berg, J. S. and Cheney, R. E. (1999). Tails of unconventional myosins. Cell Mol Life Sci. 56, 243-257.
  171. Sweeney, S. T., Broadie, K., Keane, J., Niemann, H. and O'Kane, C. J. (1995). Targeted expression of tetanus toxin light chain in Drosophila specifically eliminates synaptic transmission and causes behavioral defects. Neuron. 14, 341-351.
  172. Gonzalez, E. and McGraw, T. E. (2009). The Akt kinases: isoform specificity in metabolism and cancer. Cell Cycle. 8, 2502-2508.
  173. Corbalán-García, S. and Gómez-Fernández, J. C. (2010). The C2 domains of classical and novel PKCs as versatile decoders of membrane signals. Biofactors. 36, 1-7.
  174. Sullivan, K. M. C. and Rubin, G. M. (2002). The Ca(2+)-calmodulin-activated protein phosphatase calcineurin negatively regulates EGF receptor signaling in Drosophila development. Genetics. 161, 183-193.
  175. Tupling, A. R. (2009). The decay phase of Ca2+ transients in skeletal muscle: regulation and physiology. Appl Physiol Nutr Metab. 34, 373-376.
  176. Vereshchagina, N., Bennett, D., Szoor, B., Kirchner, J., Gross, S., Vissi, E., White- Cooper, H. and Alphey, L. (2004). The essential role of PP1beta in Drosophila is to regulate nonmuscle myosin. Mol Biol Cell. 15, 4395-4405.
  177. Klapper, R., Stute, C., Schomaker, O., Strasser, T., Janning, W., Renkawitz-Pohl, R. and Holz, A. (2002). The formation of syncytia within the visceral musculature of the Drosophila midgut is dependent on duf, sns and mbc. Mech Dev. 110, 85-96.
  178. Bullard, B., Burkart, C., Labeit, S. and Leonard, K. (2005). The function of elastic proteins in the oscillatory contraction of insect flight muscle. J Muscle Res Cell Motil. 26, 479-485.
  179. Jackson, M. B. and Chapman, E. R. (2008). The fusion pores of Ca(2+)-triggered exocytosis. Nat Struct Mol Biol. 15, 684-689.
  180. Bulchand, S., Menon, S. D., George, S. E. and Chia, W. (2010). The intracellular domain of Dumbfounded affects myoblast fusion efficiency and interacts with Rolling pebbles and Loner. PloS One. 5, e9374.
  181. Estrada, B., Maeland, A. D., Gisselbrecht, S. S., Bloor, J. W., Brown, N. H. and Michelson, A. M. (2007). The MARVEL domain protein, Singles Bar, is required for progression past the pre-fusion complex stage of myoblast fusion. Dev Biol. 307, 328-339. Fernández-Chacón, R. and Südhof, T. C. (2000). Novel SCAMPs lacking NPF repeats: ubiquitous and synaptic vesicle-specific forms implicate SCAMPs in multiple membrane- trafficking functions. J Neurosci. 20, 7941-7950.
  182. Isogawa, Y., Kon, T., Inoue, T., Ohkura, R., Yamakawa, H., Ohara, O. and Sutoh, K. (2005). The N-terminal domain of MYO18A has an ATP-insensitive actin-binding site. Biochemistry. 44, 6190-6196.
  183. Blake, K. J., Myette, G. and Jack, J. (1998). The products of ribbon and raw are necessary for proper cell shape and cellular localization of nonmuscle myosin in Drosophila. Dev Biol. 203, 177-188.
  184. The regulatory light chain of nonmuscle myosin is encoded by spaghetti-squash, a gene required for cytokinesis in Drosophila. Cell. 65, 1177-1189.
  185. van der Velden, A. W. and Thomas, A. A. (1999). The role of the 5' untranslated region of an mRNA in translation regulation during development. Int J Biochem Cell Biol. 31, 87-106. van Straaten, M., Goulding, D., Kolmerer, B., Labeit, S., Clayton, J., Leonard, K. and Bullard, B. (1999). Association of kettin with actin in the Z-disc of insect flight muscle. J Mol Biol. 285, 1549-1562.
  186. Takenawa, T. and Suetsugu, S. (2007). The WASP-WAVE protein network: connecting the membrane to the cytoskeleton. Nature Rev. 8, 37-48.
  187. Spradling, A. C. and Rubin, G. M. (1982). Transposition of cloned P elements into Drosophila germ line chromosomes. Science. 218, 341-347.
  188. Redowicz, M. J. (2007). Unconventional myosins in muscle. Eur J Cell Biol. 86, 549-558.
  189. Ena/VASP proteins cooperate in dorsal ruffling of fibroblasts and axonal morphogenesis.
  190. Berger, S., Schäfer, G., Kesper, D. A., Holz, A., Eriksson, T., Palmer, R. H., Beck, L., Klämbt, C., Renkawitz-Pohl, R. and Önel, S. (2008). WASP and SCAR have distinct roles in activating the Arp2/3 complex during myoblast fusion. J Cell Sci. 121, 1303-1313.
  191. Massarwa, R., Carmon, S., Shilo, B. and Schejter, E. D. (2007). WIP/WASp-based actin- polymerization machinery is essential for myoblast fusion in Drosophila. Dev Cell. 12, 557- 569.
  192. Watt, K. I., Judson, R., Medlow, P., Reid, K., Kurth, T. B., Burniston, J. G., Ratkevicius, A., De Bari, C. and Wackerhage, H. (2010). Yap is a novel regulator of C2C12 myogenesis. Biochem Biophys Res Commun. 393, 619-624.
  193. Wolfstetter, G., Shirinian, M., Stute, C., Grabbe, C., Hummel, T., Baumgartner, S., Palmer, R. H. and Holz, A. (2009). Fusion of circular and longitudinal muscles in Drosophila is independent of the endoderm but further visceral muscle differentiation requires a close contact between mesoderm and endoderm. Mech Dev. 126, 721-736.
  194. Birnboim, H. C. and Doly, J. (1979). A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 7, 1513-1523.
  195. Philippakis, A. A., Busser, B. W., Gisselbrecht, S. S., He, F. S., Estrada, B., Michelson, A. M. and Bulyk, M. L. (2006). Expression-guided in silico evaluation of candidate cis regulatory codes for Drosophila muscle founder cells. PLoS Comput Biol. 2, e53.
  196. Hsu, R., Tsai, M., Hsieh, Y., Lyu, P. and Yu, J. (2010). Identification of MYO18A as a novel interacting partner of the PAK2/betaPIX/GIT1 complex and its potential function in modulating epithelial cell migration. Mol Biol Cell. 21, 287-301.
  197. Bozulic, L. and Hemmings, B. A. (2009). PIKKing on PKB: regulation of PKB activity by phosphorylation. Curr Opin Cell Biol. 21, 256-261.
  198. Ruiz-Gómez, M., Coutts, N., Price, A., Taylor, M. V. and Bate, M. (2000). Drosophila dumbfounded: a myoblast attractant essential for fusion. Cell. 102, 189-198.
  199. Findlay, G. M., Yan, L., Procter, J., Mieulet, V. and Lamb, R. F. (2007). A MAP4 kinase related to Ste20 is a nutrient-sensitive regulator of mTOR signalling. Biochem J. 403, 13-20.
  200. Zhao, H., Zheng, X., Yuan, X., Wang, L., Wang, X., Zhong, Y., Xie, Z. and Tully, T. (2009). ben Functions with scamp during synaptic transmission and long-term memory formation in Drosophila. J Neurosci. 29, 414-424.
  201. Kirchner, J., Gross, S., Bennett, D. and Alphey, L. (2007). The nonmuscle myosin phosphatase PP1beta (flapwing) negatively regulates Jun N-terminal kinase in wing imaginal discs of Drosophila. Genetics. 175, 1741-1749.
  202. Odronitz, F. and Kollmar, M. (2008). Comparative genomic analysis of the arthropod muscle myosin heavy chain genes allows ancestral gene reconstruction and reveals a new type of 'partially' processed pseudogene. BMC Mol Biol. 9, 21.
  203. Côté, J. and Vuori, K. (2002). Identification of an evolutionarily conserved superfamily of DOCK180-related proteins with guanine nucleotide exchange activity. J Cell Sci. 115, 4901- 4913.
  204. Woolner, S. and Bement, W. M. (2009). Unconventional myosins acting unconventionally. Trends Cell Biol. 19, 245-252.
  205. Cripps, R. M., Suggs, J. A., Bernstein, S. I. (1999). Assembly of thick filaments and myofibrils occurs in the absence of the myosin head. EMBO J. 18, 1793-1804
  206. Chen, K., Merino, C., Sigrist, S. J. and Featherstone, D. E. (2005). The 4.1 protein coracle mediates subunit-selective anchoring of Drosophila glutamate receptors to the postsynaptic actin cytoskeleton. J Neurosci. 25, 6667-6675.
  207. Cross, M., Csar, X. F., Wilson, N. J., Manes, G., Addona, T. A., Marks, D. C., Whitty, G. A., Ashman, K. and Hamilton, J. A. (2004). A novel 110 kDa form of myosin XVIIIA (MysPDZ) is tyrosine-phosphorylated after colony-stimulating factor-1 receptor signalling. Biochem J. 380, 243-253.
  208. SCAMP2 interacts with Arf6 and phospholipase D1 and links their function to exocytotic fusion pore formation in PC12 cells. Mol Biol Cell. 16, 4463-4472.
  209. Fujii, S. and Amrein, H. (2002). Genes expressed in the Drosophila head reveal a role for fat cells in sex-specific physiology. EMBO J. 21, 5353-5363.
  210. Bhattacharya, S., Stewart, B. A., Niemeyer, B. A., Burgess, R. W., McCabe, B. D., Lin, P., Boulianne, G., O'Kane, C. J. and Schwarz, T. L. (2002). Members of the synaptobrevin/vesicle-associated membrane protein (VAMP) family in Drosophila are functionally interchangeable in vivo for neurotransmitter release and cell viability. Proc Natl Acad Sci U S A. 99, 13867-13872.
  211. Junion, G., Jagla, T., Duplant, S., Tapin, R., Da Ponte, J. and Jagla, K. (2005). Mapping Dmef2-binding regulatory modules by using a ChIP-enriched in silico targets approach.
  212. Chen, H., Marinissen, M. J., Oh, S., Chen, X., Melnick, M., Perrimon, N., Gutkind, J. S. and Hou, S. X. (2002). CKA, a novel multidomain protein, regulates the JUN N-terminal kinase signal transduction pathway in Drosophila. Mol Cell Biol. 22, 1792-1803.
  213. The molecular elasticity of the insect flight muscle proteins projectin and kettin.
  214. The secretory carrier membrane protein family: structure and membrane topology. Mol Biol Cell. 11, 2933-2947.
  215. Brodu, V. and Casanova, J. (2006). The RhoGAP crossveinless-c links trachealess and EGFR signaling to cell shape remodeling in Drosophila tracheal invagination. Genes Dev. 20, 1817-1828.
  216. Balagopalan, L., Chen, M., Geisbrecht, E. R. and Abmayr, S. M. (2006). The CDM superfamily protein MBC directs myoblast fusion through a mechanism that requires phosphatidylinositol 3,4,5-triphosphate binding but is independent of direct interaction with DCrk. Mol Cell Biol. 26, 9442-9455.
  217. Suggs, J. A., Cammarato, A., Kronert, W. A., Nikkhoy, M., Dambacher, C. M., Megighian, A. and Bernstein, S. I. (2007). Alternative S2 hinge regions of the myosin rod differentially affect muscle function, myofibril dimensions and myosin tail length. J Mol Biol. 367, 1312-1329.
  218. Nguyen, H. T., Voza, F., Ezzeddine, N. and Frasch, M. (2007). Drosophila mind bomb2 is required for maintaining muscle integrity and survival. J Cell Biol. 179, 219-227.
  219. Goldman, T. D. and Arbeitman, M. N. (2007). Genomic and functional studies of Drosophila sex hierarchy regulated gene expression in adult head and nervous system tissues. PLoS Genet. 3, e216.
  220. Erickson, M. R., Galletta, B. J. and Abmayr, S. M. (1997). Drosophila myoblast city encodes a conserved protein that is essential for myoblast fusion, dorsal closure, and cytoskeletal organization. J Cell Biol. 138, 589-603.
  221. Machado, C., Sunkel, C. E. and Andrew, D. J. (1998). Human autoantibodies reveal titin as a chromosomal protein. J Cell Biol. 141, 321-333.
  222. Cullen, C. F., Deak, P., Glover, D. M. and Ohkura, H. (1999). mini spindles: A gene encoding a conserved microtubule-associated protein required for the integrity of the mitotic spindle in Drosophila. J Cell Biol. 146, 1005-1018.
  223. Adolfsen, B., Saraswati, S., Yoshihara, M. and Littleton, J. T. (2004). Synaptotagmins are trafficked to distinct subcellular domains including the postsynaptic compartment. J Cell Biol. 166, 249-260.
  224. Littleton, J. T. (2000). A genomic analysis of membrane trafficking and neurotransmitter release in Drosophila. J Cell Biol. 150, F77-82.
  225. Machado, C. and Andrew, D. J. (2000). D-Titin: a giant protein with dual roles in chromosomes and muscles. J Cell Biol. 151, 639-652.
  226. Trichet, L., Sykes, C. and Plastino, J. (2008). Relaxing the actin cytoskeleton for adhesion and movement with Ena/VASP. J Cell Biol. 181, 19-25.
  227. Hudson, A. M., Petrella, L. N., Tanaka, A. J. and Cooley, L. (2008). Mononuclear muscle cells in Drosophila ovaries revealed by GFP protein traps. Dev Biol. 314, 329-340.
  228. Gunst, S. J. and Zhang, W. (2008). Actin cytoskeletal dynamics in smooth muscle: a new paradigm for the regulation of smooth muscle contraction. Am J Physiol Cell Physiol. 295, C576-587.
  229. Myosin II activity facilitates microtubule bundling in the neuronal growth cone neck. Dev Cell. 15, 163-169.
  230. Iwai, S. and Uyeda, T. Q. P. (2008). Visualizing myosin-actin interaction with a genetically- encoded fluorescent strain sensor. Proc Natl Acad Sci U S A. 105, 16882-16887.
  231. Kos, J., Jevnikar, Z. and Obermajer, N. (2009). The role of cathepsin X in cell signaling. Cell Adh Migr. 3, 164-166.
  232. Geisbrecht, E. R., Haralalka, S., Swanson, S. K., Florens, L., Washburn, M. P. and Abmayr, S. M. (2008). Drosophila ELMO/CED-12 interacts with Myoblast city to direct myoblast fusion and ommatidial organization. Dev Biol. 314, 137-149.
  233. Brawley, C. M. and Rock, R. S. (2009). Unconventional myosin traffic in cells reveals a selective actin cytoskeleton. Proc Natl Acad Sci U S A. 106, 9685-9690.
  234. Beckett, K. and Baylies, M. K. (2007). 3D analysis of founder cell and fusion competent myoblast arrangements outlines a new model of myoblast fusion. Dev Biol. 309, 113-125.
  235. Microtubules, the ER and Exu: new associations revealed by analysis of mini spindles mutations. Mech Dev. 126, 289-300.
  236. Gildor, B., Massarwa, R., Shilo, B. and Schejter, E. D. (2009). The SCAR and WASp nucleation-promoting factors act sequentially to mediate Drosophila myoblast fusion. EMBO Reports. 10, 1043-1050.
  237. Guerin, C. M. and Kramer, S. G. (2009a). Cytoskeletal remodeling during myotube assembly and guidance: coordinating the actin and microtubule networks. Commun Integr Biol. 2, 452-457.
  238. Huang, J. and Manning, B. D. (2009). A complex interplay between Akt, TSC2 and the two mTOR complexes. Biochem Soc Trans. 37, 217-222.
  239. Martin, A. C., Kaschube, M. and Wieschaus, E. F. (2009). Pulsed contractions of an actin- myosin network drive apical constriction. Nature. 457, 495-499.
  240. Supatto, W., McMahon, A., Fraser, S. E. and Stathopoulos, A. (2009). Quantitative imaging of collective cell migration during Drosophila gastrulation: multiphoton microscopy and computational analysis. Nat Protoc. 4, 1397-1412.
  241. Rochlin, K., Yu, S., Roy, S. and Baylies, M. K. (2010). Myoblast fusion: when it takes more to make one. Dev Biology. 341, 66-83.
  242. Brunger, A. T., Weninger, K., Bowen, M. and Chu, S. (2009). Single-molecule studies of the neuronal SNARE fusion machinery. Annu Rev Biochem. 78, 903-928.
  243. Lowery, L. A., Lee, H., Lu, C., Murphy, R., Obar, R. A., Zhai, B., Schedl, M., Van, V. D. and Zhan, Y. (2010). Parallel Genetic and Proteomic Screens Identify Msps as a CLASP- Abl Pathway Interactor in Drosophila. Genetics.
  244. Nambiar, R., McConnell, R. E. and Tyska, M. J. (2010). Myosin motor function: the ins and outs of actin-based membrane protrusions. Cell Mol Life Sci. 67, 1239-1254.
  245. Berg, J. S., Powell, B. C. and Cheney, R. E. (2001). A millennial myosin census. Mol Biol Cell. 12, 780-794.
  246. Klemenz, R., Weber, U. and Gehring, W. J. (1987). The white gene as a marker in a new P- element vector for gene transfer in Drosophila. Nuc Acids Res. 15, 3947-3959.
  247. Sapir, A., Avinoam, O., Podbilewicz, B. and Chernomordik, L. V. (2008). Viral and developmental cell fusion mechanisms: conservation and divergence. Dev Cell. 14, 11-21.
  248. Zhao, D. B., Cote, S., Jahnig, F., Haller, J. and Jackle, H. (1988). Zipper encodes a putative integral membrane protein required for normal axon patterning during Drosophila neurogenesis. EMBO J. 7, 1115-1119.
  249. Ivanov, A. I., Rovescalli, A. C., Pozzi, P., Yoo, S., Mozer, B., Li, H., Yu, S., Higashida, H. et al. (2004). Genes required for Drosophila nervous system development identified by RNA interference. Proc Natl Acad Sci U S A. 101, 16216-21.
  250. Hampsey, M. (1998). Molecular genetics of the RNA polymerase II general transcriptional machinery. Microbiol Mol Biol Rev. 62, 465-503.
  251. Bischof, J., Maeda, R. K., Hediger, M., Karch, F. and Basler, K. (2007). An optimized transgenesis system for Drosophila using germ-line-specific phiC31 integrases. Proc Natl Acad Sci U S A. 104, 3312-3317.
  252. Karess, R. E. and Rubin, G. M. (1984). Analysis of P transposable element functions in Drosophila. Cell. 38, 135-146.
  253. Sandelin, A., Carninci, P., Lenhard, B., Ponjavic, J., Hayashizaki, Y. and Hume, D. A. (2007). Mammalian RNA polymerase II core promoters: insights from genome-wide studies. Nat Rev Genet. 8, 424-436.
  254. Pilot, F. and Lecuit, T. (2005). Compartmentalized morphogenesis in epithelia: from cell to tissue shape. Dev Dyn. 232, 685-694.
  255. Bertet, C., Sulak, L. and Lecuit, T. (2004). Myosin-dependent junction remodelling controls planar cell intercalation and axis elongation. Nature. 429, 667-671.
  256. Menon, S. D. and Chia, W. (2001). Drosophila rolling pebbles: a multidomain protein required for myoblast fusion that recruits D-Titin in response to the myoblast attractant Dumbfounded. Dev Cell. 1, 691-703.
  257. Ceulemans, H. and Bollen, M. (2004). Functional diversity of protein phosphatase-1, a cellular economizer and reset button. Physiol Rev. 84, 1-39.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten