Publikationsserver der Universitätsbibliothek Marburg

Titel:Analyse von phenolischen Naturstoffen
Autor:Abdullah, Yana Ghassan
Weitere Beteiligte: Petersen, Maike (Prof.)
Veröffentlicht:2010
URI:https://archiv.ub.uni-marburg.de/diss/z2010/0481
DOI: https://doi.org/10.17192/z2010.0481
URN: urn:nbn:de:hebis:04-z2010-04811
DDC:570 Biowissenschaften, Biologie
Titel (trans.):Analysis of natural phenolic compounds
Publikationsdatum:2010-09-22
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Marantaceae, Rutin, Rosmarinsäure, Chlorogenic Acid, Rosmarinic Acid, Angiosperm, Rutin, Angiosperm, Chlorogensäure, Marantaceae

Zusammenfassung:
Vorkommen von Rosmarinsäure und Chlorogensäure im Pflanzenreich: Rosmarinsäure (RA) und Chlorogensäure (CA) sind Kaffeesäureester. Sie sind im Pflanzenreich weit verbreitet, vermutlich als Abwehrstoffe. In der vorliegenden Studie wurden mehr als 240 Pflanzenarten zum Nachweis von Rosmarinsäure und Chlorogensäure untersucht. Mehrere Rosmarinsäure-enthaltende Arten wurden (neu) entdeckt. Das Auftreten von Rosmarinsäure in der Familie Marantaceae war bislang unbekannt. Rosmarinsäure wurde bereits in Hornmoosen nachgewiesen, in Farnen (Familie Blechnaceae) und in einzelnen Arten aus verschiedenen Ordnungen der Monokotyledonen (Alismatales, Liliales, Poales, Zingiberales) sowie in Rosiden und Asteriden der Eudikotyledonen (Myrtales, Celastrales, Rosales, Cucurbitales, Malvales, Gentianales, Lamiales, Apiales, Asterales, Dipsacales). Von den Basalen Ordnungen ist bisher erst ein Vorkommen von Rosmarinsäure in der Gattung Chloranthus (Chloranthaceae, Chloranthales) beschrieben worden. Ebenso wurde auch die Chlorogensäure in Arten ganz verschiedener Familien und Ordnungen nachgewiesen, in Monokotyledonen seltener. Die in der vorliegenden Arbeit untersuchten RA- und CA-enthaltenden Pflanzenarten zeigen zum Teil nur geringe Verwandtschaft als nahe verwandte Familien oder Ordnungen. In der vorliegenden Studie war RA nur in zwei Arten der Familie Blechnaceae nachweisbar (Blechnum brasiliense und B. gibbum), wogegen sie in anderen Arten von Blechnum nicht vorhanden war. Hingegen wurde CA in vielen Arten der Blechnaceae gefunden. In beiden untersuchten Arten von Canna wurden RA und CA entdeckt. Innerhalb der Familie der Marantaceae konnte RA nur aus Maranta leuconeura, Maranta depressa und Thalia geniculata isoliert werden und war weder in den anderen zwei Maranta-Arten noch in den anderen sieben Gattungen der Familie Marantaceae nachweisbar. Das Vorkommen von CA und RA in den Marantaceae war unabhängig voneinander. Rutin wurde auch in Zingiberales nachgewiesen, und zwar in Arten der Cannaceae, Lowiaceae, Marantaceae und Strelitziaceae. Von den Boraginceae ist bekannt, dass RA überall vorkommt. Dies wurde in der vorliegenden Studie bestätigt. Dabei war auffällig, dass der Gehalt von CA in den Pflanzen, die RA in großen Konzentrationen enthalten, meistens sehr gering war. Dasselbe galt auch für die Lamiaceae. In Collinsonia canadensis wurde die größte Rosmarinsäure-Konzentration aller untersuchter RA-enthaltenden Pflanzenarten (15,50% des TG) nachgewiesen. RA wurde lange Zeit für charakteristisch für die Unterfamilie Nepetoideae gehalten; dies wurde mit den hier dargestellten Untersuchungen unterstützt. In Apiaceae wurde RA nur aus Astrantia major isoliert, wogegen CA sehr oft in dieser Familie zu finden war. In den Malvaceae wurde schon vor einiger Zeit RA nachgewiesen, dies wurde durch die vorliegende Studie bestätigt. CA kommt davon unabhängig in der Familie vor. Auffällig ist, dass Chlorogensäure im Pflanzenreich weiter verbreitet ist als Rosmarinsäure, da Chlorogensäure in vielen Familien und Ordnungen nachgewiesen wurde, in denen keine Rosmarinsäure gefunden werden konnte. Publizierte phylogenetische Stammbäume basieren sowohl auf morphologischen als auch auf molekularbiologischen Daten. In diesem Zusammenhang wurde die Frage untersucht, ob Rosmarin- und Chlorogensäure als chemotaxonomische Marker gelten können. Dies kann eindeutig verneint werden, da beide Verbindungen weit über das Pflanzenreich verbreitet vorkommen und das Auftreten selbst bei verschiedenen Arten einer Gattung oder verschiedenen Gattungen einer Familie bzw. verschiedenen Familien einer Ordnung nicht einheitlich ist. Das Vorkommen von Naturstoffen in In-vitro-Kulturen von Arten der Zingiberaceae: Kalluskulturen wurden von Curcuma xanthorrhiza, Curcuma longa und Zingiber officinale auf verschiedenen Nährmedien angelegt. Die Kalluskulturen wurden analysiert und auf das Vorkommen von Curcuminoiden und Gingerolen gesucht. Zusätzlich wurde versucht, durch Infektion mit Agrobacterium rhizogenes Wurzelkulturen zu erlangen. Von den Kalluskulturen wurden Suspensionkulturen angelegt und diese mit Methyljasmonat elicitiert. In allen Versuchen konnten jedoch keine Gingerole oder Curcuminoide nachgewiesen werden.

Bibliographie / References

  1. Velioglu, Y.S., Ekici, L., Poyrazoglu, E.S., (2006): Phenolic Composition of European Cranberry bush (Viburnum opulus L.) Berries and Astringency Removal of Its Commercial Juice. Int. J. Food Sci. Technol. 41, 1011-1015.
  2. Parnham, M.J., Kesselring, K., (1985): Rosmarinic acid. Drugs of the Future 10, 756- 757.
  3. Petersen, M., (1991): Characterization of rosmarinic acid synthase from cell cultures of Coleus blumei. Phytochemistry 30, 2877-2881.
  4. Olthof, M.R., Hollman, P.C., Buijsman, M.N., van Amelsvoort, J.M., Katan, M.B., (2003): Chlorogenic acid, quercetin-3-rutinoside and black tea phenols are extensively metabolized in humans, J. Nutr. 133, 1806-1814.
  5. Muir, S.R., Collins, G.J., Robinson, S., Hughes, S., Bovy, A., De Vos, R.C.H., van Tunen, A.J., Verhoeyen, M.E., (2001): Overexpression of petunia chalcone isomerase in tomato results in fruit containing increased levels of flavonols. Nature Biotechnol. 19, 470-474.
  6. Olmstead, R.G., Bohs, L., Abdel-Migid, H., Santiago-Valentin, E., Garcia, V.F., Collier, S.M., (2008): A molecular phylogeny of the Solanaceae. Taxon 57(4), 1159- 1181.
  7. Abb. 1: Extrakte aus: CA – CA – Theobroma cacao – Lantana camara – Eryngium bourgatii – Abutilon theophrastis -Asclepias syriaca -Nemophila menziesii – Gentiana asclepiadea -RA -Gentiana lutea - Acanthus longifolius – Phlomis tuberosa -Verbena officinalis -Hydrophyllum virginicum – Plectranthus ciliatus -Maranta leuconeura.
  8. Smith, A.R., Pryer, K.M., Schuettpelz, E., Korall, P., Schneider, H., Wolf, P.G., (2006): A classification for extant ferns. Taxon 55(3), 705-731.
  9. Nandakumar, R., Chen, L., Rogers, S.M.D., (2005): Agrobacterium-mediated transformation of the wetland monocot Typha latifolia L. (Broadleaf cattail). Plant Cell Rep. 23, 744-750.
  10. Zur Analyse von RA und CA diente als Laufmittel Ethylacetat/Chloro- form/Ameisensäure 50:40:10. Danach wurde die Platte mit Naturstoffreagenz A und PEG 400 besprüht. Zur Detektion von Rutin wurde das Laufmittel Ethylacetat/Was- ser/Ameisensäure 32,5:10:7,5 benutzt, und die Platten mit Naturstoffreagenz A besprüht.
  11. Sakui, N., Kuroyanagi, M., Ishitobi, Y., Sato, M., Ueno, A., (1992): Biotransformation of sesquiterpenes by cultured cells of Curcuma zedoaria. Phytochemistry 31(1), 143- 147.
  12. Dünnschichtchromatografische Analysen In den folgenden Abbildungen sind die dünnschichtchromatografischen Analysen der Blattextrakte dargestellt, in denen über HPLC RA, CA oder Rutin identifiziert worden waren. Diese DC-Analysen dienten der Verifizierung des Vorkommens der jeweiligen Naturstoffe. Nur wenn beide Analysen (HPLC und DC) positiv ausfielen, wurde die Substanz als RA, CA oder Rutin angegeben.
  13. Zarate, R., Yeoman, M.M., (1996): Changes in the amounts of (6)-gingerol and derivatives during a culture cycle of ginger, Zingiber officinale. Plant Sci. 121, 115- 122.
  14. Xu, M., Wang, D., Zhang, Y.Z., Yang, C.R., (2006): Chemical Composition of Gentiana rigescens: Isolation, Identification and HPLC Analysis. Acta Bot. Yunnanica 28, 669-672.
  15. Pasi, S., Aligiannis, N., Chinou, I.B., Skaltsounis, A.L., (2002): Chemical constituents and their antimicrobial activity from the roots of Cephalaria ambrosioides. Natural Products in the new Millenium: Prospects and Industrial Application, 229-234.
  16. Petersen, M., (1994): Coleus spp. In vitro culture and the production of forskolin and rosmarinic acid. In: Bajaj, Y.P.S.: Biotechnology in Agriculture and Forestry, Medicinal and Aromatic Plants VI. Springer-Verlag, 69-92.
  17. Sterbova, D., Matejicek, D., Vlcek, J., Kuba, V., (2004): Combined microwave- assisted isolation and solid-phase purification procedures prior to the Van Kessel, K.P.M., Kalter, E.S., Verhoef, J., (1986): Rosmarinic acid inhibits external oxidative effects of human polymorphonuclear granulocytes. Agents and Actions 17, 3-4.
  18. Paris, M., (1967): Contribution à l'étude biochimique de la Salicaire (Lythrum salicaria L., Lythracées) et en particulier de ses polyphenols. Trav. Lab. Matiere Med. Pharm.
  19. Petersen, M., (1997): Cytochrome P450-dependent hydroxylation in the biosynthesis of rosmarinic acid in Coleus. Phytochemistry 45, 1165-1172.
  20. Parejo, I., Viladomat, F., Bastida, J., Codina, C., (2004): Development and validation of a high-performance liquid chromatographic method for the analysis of antioxidative phenolic compounds in fennel using a narrow bore reversed phase C 18 column. Anal.
  21. Olmstead, R.G., de Pamphilis, C.W., Wolf, A.D., Young, N.D., Elisons, W.J., Reeves, P.A., (2001): Disintegration of the Scrophulariaceae. Am. J. Bot. 88, 348-361.
  22. Pedersen, J.A., (2000): Distribution and taxonomic implications of some phenolics in the family Lamiaceae determined by ESR spectroscopy. Biochem. Syst. Ecol. 28(3), 229-253.
  23. Niggeweg, R., Michael, A.J., Martin, C., (2004): Engineering plants with increased levels of the antioxidant chlorogenic acid. Nature Biotechnol. 22, 746-754.
  24. Abb. 19: Extrakte aus: Anthriscus cerefolium -Peucedanum officinale -Levisticum officinale -RA -CA -Seseli libanotis -Seseli hippomarathrum -Dorema ammoniacum -Apium graveolens.
  25. Abb. 10: Extrakte aus: Aralia california -Viburnum hupehense -Viburnum dilatatum – RA – CA - Viburnum lantanta -Geranium sanguineum -Geranium swatense – Phuopsis stylosa.
  26. Abb. 15: Extrakte aus: Arnica chamissonis -Abroma augustum -Tagetes tenuifolia -Achillea millefolia -RA -CA -Gaura biennis -Oenothera missouriensis – Lopezia racemosa.
  27. Abb. 24: Extrakte aus: Ataenidia conferta -Calathea warscewiczii -Ctenanthe setosa -Maranta arundinacea -Rutin -Maranta depressa.
  28. Abb. 4: Extrakte aus: CA -Blechnum arcuatum -Blechnum occidentale – Helicteres jamaicensis – Salvia officinalis – CA – RA -Helicteres jamaicensis – Dombeya rotundifolia -Blechnum gibbum - Blechnum brasiliense -Hydrophyllum canadense -Blechnum occidentale.
  29. Abb. 2: Extrakte aus: CA -Knautia dipsacifolia – Catharanthus roseus -Rubia tinctorum -Geranium sylvaticum -RA.
  30. Abb. 8: Extrakte aus: CA -Satureja montana – Ligusticum scoticum – RA – CA -Foeniculum vulgare - Carum carvi -Seseli libanotis -Cephalaria gigantia.
  31. Abb. 7: Extrakte aus: CA -Verbena spec. – Scrophularia nodosa -Leonurus cardiaca -Seseli hippomarathrum -Satureja montana – RA -CA -Ilex aquifolium -Stromanthe amabilis -Glechoma hederacea -Dracocephalum spec. -Galium boreale.
  32. Abb. 3: Extrakte aus: Centaurea macrocephala -Tilia platyphyllos -Verbena officinalis -Verbena urticifolia -Eleutherococcus senticosus – CA -Anthriscus sylvestris.
  33. Abb. 21: Extrakte aus: Cerinthe major -Calamintha nepeta -Mentha aquatica -Origanum majorana - Lavandula multifida -Lavandula angustifolia -RA – CA -Maranta leuconeura -Maranta depressa - Thalia geniculata -Canna indica -Canna edulis -Salvia officinalis.
  34. Abb. 25: Extrakte aus: Ctenananthe kummeriana -Rutin -Thalia dealbata -Calathea undulata – Orchidantha maxillarioides.
  35. Abb. 23: Extrakte aus: Ctenanthe burle marxii -Calathea media -Rutin -Calthea variegata – Pleiostachya pruinosa – Strelitzia reginae -Calathea rotundifolia -Rutin.
  36. Abb. 13: Extrakte aus: Helianthus annuus – Philadephus spec. -Cerinthe major – Buglossoides arvensis – CA – RA -Lindeloflia longiflora – Cichorium intybus – Heliotropium amplexicaule.
  37. Abb. 6: Extrakte aus: Jacobinia zelandia -Lythrum alatum -Juncus effusus – Saracha edulis -Salvia splendes – Linaria triornithophora – Collinsonia canadensis – Melissa officinalis – CA – RA - Hydrophyllum virginicum – Dracocephalum spec. – Cenolophium denudatum -Galium rubioides – Micromeria thymifolia – Origanum majorana -Digitalis lanata – Digitalis lutea -Plantago schwarzenbergiana.
  38. Abb. 20: Extrakte aus: Lavandula angustifolia -Viburnum lantanta -Atropa belladonna -CA -RA - Astrantia major -Carum carvi -Foeniculum vulgare -Ligusticum scoticum -Lavandula multifida.
  39. Abb. 11: Extrakte aus: Lonicera ferdinandii -Lonicera demissa -Diervilla trifolia -Diervilla lonicera – CA – RA -Chionodoxa luciliae – Cucurbita spec. – Cephalaria gigantia.
  40. Abb. 9: Extrakte aus: Lonicera kamtschatica -Lonicera emphyllocalyx -Lonicera demissa -Lonicera ferdinandii – CA – RA -Lonicera syringantha – Asclepias syriaca – Erodium manescavii.
  41. Abb. 18: Extrakte aus: Physalis alkekengi -Salvia splendens – Lycopersicon esculentum – RA – CA - Cucurbita spec. – Cephalaria gigantia – Convolvulus tricolor – Aralia california.
  42. Abb. 16: Extrakte aus: RA – CA -Plantago nivalis – Plantago media -Plantago schwarzenbergiana – Plantago sempervirens -Plantago media-Penstemon hirsuta -Penstemon serrulatus -Penstemon digitalis.
  43. Abb. 26: Extrakte aus: Rutin -Canna indica -Canna edulis.
  44. Abb.12: Extrakte aus: Scabiosa atropurpurea -Scabiosa caucasia -Dombeya rotundifolia -CA.
  45. Abb. 22: Extrakte aus: Stromanthe sanguinea -Rutin -Calathea lancifolia -Maranta noctiflora - Ctenananthe lubbersiana -Maranta leuconeura -Calathea insignis.
  46. Abb. 14: Extrakte aus: Succisella inflexa -Hedera colchica -Hedera helix – Juncus effusus – RA – CA -Dipsacus laciniatus – Symphytum officinale – Echium italicum.
  47. Abb. 5: Extrakte aus: Tilia japonica -Tilia amurensis -Tilia americana – CA -Tilia tomentosa -Tilia cordata.
  48. Shirgurkar, M.V., John, C.K., Nadgauda, R.S., (2001): Factors effecting in vitro microrhizome production in tumeric. Plant Cell Tiss. Org. Cult. 64, 5-11.
  49. Zemtsova, G.N., Bandyukova, V.A., Dzhumyrko, S.F., (1972): Flavones and phenolic acids of Scabiosa olgae. Chem. Nat. Comp. 8(5), 662.
  50. Zaghloul, M.G., (2007): Flavonoids from the flowers of Canna indica L. Mansoura J.
  51. Ryan, L., Heckler, C., Dakhil, S.R., Kirshner, J., Flynn, P.J., Hickok, J.T., Morrow, G.R., (2009): Ginger for chemotherapy-related nausea in cancer patients. J. Clin.
  52. Nayak, S., (2000): In vitro multiplication and microrhizome induction in Curcuma aromatica Salisb. Plant Growth Regulation 32, 41-47.
  53. Scarpati, M.L., Oriente, G., (1958): Isolamente e costituzione dell´acido rosmarinico (del Rosmarinus off.). Ric. Sci. 28, 2329-2333.
  54. Juncaceae and their systematic significance. Biochem. Syst. Ecol. 3(3), 181-190.
  55. Williams, C.A., Harborne, J.B., (1975): Luteolin and daphnetin derivatives in the
  56. Schenk, R.U., Hildebrandt, A.C., (1972): Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures. Can. J. Bot. 50, 199-204.
  57. Yasuda, K., Tsuda, T., Shimizu, H., Sugaya, A., (1988): Multiplication of Curcuma Species by Tissue Culture. Planta Med. 54(1), 75-79.
  58. Galenique Fac. Pharm. Paris 52 I(1), 111.
  59. Shimomura, H., Sashida, Y., Mimaki, Y., (1987): Phenolic glycerides from Lilium auratum. Phytochemistry 26, 844-845.
  60. Yun, Y.S., Satake, M., Katsuki, S., Kunugi, A., (2004): Phenylpropanoid derivatives from edible canna, Canna edulis. Phytochemistry 65, 2167-2171.
  61. Wagstaff, S.J., Hickerson, L., Spangler, R., Reeves, P.A., Olmstead, R.G., (1998): Phylogeny in Labiatae s.l., inferred from cpDNA sequences. Pl. Syst. Evol. 209, 265- 274.
  62. Salvi, N.D., George, L., Eapen, S., (2001): Plant regeneration from leaf base callus of tumeric and random amplified polymorphic DNA analysis of regenerated plants. Plant Cell Tiss. Org. Cult. 66, 113-119.
  63. Satyanarayana, D., Mythirayee, C., Krishnamurthy, V., (1978): Polyphenols of Andrographis paniculata Nees. Leather Sci. 25, 250-251.
  64. Xing, J.B., Li, P., Wen, D.L., (2001): Quality evaluation of Flos Lonicerae through a simultaneous determination of seven saponins by HPLC with ELSD. J. Chromatogr.
  65. Zhu, L., Li, Y., Yang, J., Zuo, L., Zhang, D., (2008): Studies on chemical constituents of Sarcandra glabra. Zhongguo Zhongyao Zazhi 33,155-157.
  66. Segawa, A., Miyaichi, Y., Tomimori, T., Kiuch, F., Ohta, T., (1999): Studies on Nepalese crude drugs. XXV. Phenolic consistuents of the leaves of Didymocarpus leucocalyx C. B. Clarke (Gesneriaceae). Chem. Pharm. Bull. 47, 1404-1411.
  67. Wang, M.S., Gaugaz, M., (1980): Studies on the chemical constituents of Daphne giraldii Nitsche Part II. Trad. Herb. Drugs 11, 49-54.
  68. Satake, T., Kamiya, K., Saiki, Y., Hama, T., Fujimoto, Y., Kitanaka, S., Kimura, Y., Uzawa, J., Endang, H., Umar, M., (1999): Studies on the constituents of fruits of Helicteres isora L. Chem. Pharm. Bull. 47, 1444-1447.
  69. Zhou, G.X., Yang, Y.C., Shi, J.G., Hu, W.Y., (2002): Study on biflavonoids from stem bark of Daphne giraldii. Chin. Trad. Herb. Drugs 33, 1061-1063.
  70. Der Universität Damaskus (Syrien) sowie Herrn Prof. Dr. A. Mardini und Herrn Prof.
  71. Sakushima, A., Nishibe, S., (1988): Taxifolin 3-arabinoside from Trachelospermum jasminoides var. pubescens. Phytochemistry 27(3), 948-950.
  72. Rhode, J., Fogoros, S., Wahl, H., Griffith, K.A., Huang, J., Liu, J.R., (2007): Ginger inhibits cell growth and modulates angiogenic factors in ovarian cancer cells. BMC Complementary and Alternative Medicine 7(44).
  73. Schoch, G., Goepfert, S., Morant, M., Hehn, A., Meyer, D., Ullmann, P., Werck- Reichhart, D., (2001): CYP98A3 from Arabidopsis thaliana is a 3'-hydroxylase of phenolic esters, a missing link in the phenylpropanoid pathway. J. Biol. Chem. 276, 36566-36574.
  74. Zhu, K., Cordeiro, M.L., Atienza, J., Robinson, W.E. Jr., Chow, S.A., (1999): Irreversible inhibition of human immunodeficiency virus type 1 integrase by dicaffeoylquinic acids. J. Virol. 73(4), 3309-3316.
  75. Ravn, H., Pedersen, M.F., Andarym, J., Borumm, C., Anthoni, U., Christophersen, C., Nielsen, P.H., (1994): Seasonal variation and distribution of two phenolic compounds, rosmarinic acid and caffeic acid, in leaves and roots-rhizomes of eelgrass (Zostera marina L.). Ophelia 40, 51-61.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten