Publikationsserver der Universitätsbibliothek Marburg

Titel:Regulationsmechanismen der biotrophen Entwicklung von Ustilago maydis
Autor:Heimel, Kai
Weitere Beteiligte: Kämper, Jörg (Prof. Dr.)
Veröffentlicht:2010
URI:https://archiv.ub.uni-marburg.de/diss/z2010/0474
URN: urn:nbn:de:hebis:04-z2010-04744
DOI: https://doi.org/10.17192/z2010.0474
DDC:570 Biowissenschaften, Biologie
Titel (trans.):Regulatory mechanisms of the biotrophic development of Ustilago maydis
Publikationsdatum:2010-08-10
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Ustilago zeae, Ustilago maydis, Gene regulation, Genregulation, Ustilago, Pathogenität, pathogenic development, biotrophy, Zellzyklus, cell cycle

Zusammenfassung:
Die Koordination komplexer Entwicklungsvorgänge in multizellulären Organismen erfordert eine stringente Regulation und die Verknüpfung verschiedener Signalwege. Bei Hefen und filamentösen Pilzen ist die sexuelle Entwicklung oftmals an spezifische Stadien des Zellzyklus gekoppelt, wodurch die synchrone Entwicklung verschiedener Zellen gesichert und ein geordneter Ablauf der zellulären Differenzierung gewährleistet wird. Bei dem dimorphen Basidiomyzeten U. maydis sind sexuelle und pathogene Entwicklung eng miteinander verknüpft und finden in Abhängigkeit der Wirtspflanze Mais statt. Voraussetzung für die Bildung des filamentösen Dikaryons, der infektiösen Wuchsform von U. maydis, ist die gegenseitige Erkennung und Verschmelzung kompatibler Sporidien, welche durch das Pheromon/Rezeptorsystem des a-Kreuzungstyp-Locus gesteuert wird. Die Aktivierung dieses Systems führt zu einem Zellzyklusarrest in der G2-Phase und der Ausbildung von Konjugationshyphen. Nach der Fusion der Konjugationshyphen unterliegt die weitere Entwicklung der Kontrolle des b-Locus. Die Expression des durch den b-Locus kodierten heterodimeren Transkriptionsfaktors bE/bW ist notwendig für die Aufrechterhaltung des Zellzyklusarrestes und des filamentösen Wachstums. In vorangegangenen Studien konnten 345 b-regulierte Gene identifiziert werden, von denen mehr als 90% in Abhängigkeit des C2H2-Zinkfinger Transkriptionsfaktors Rbf1 reguliert werden. Neben diesem „Master-Regulator“ der pathogenen Entwicklung ist clp1 das einzige direkt b-regulierte Gen, das ebenfalls für die pathogene Entwicklung von U. maydis notwendig ist und unabhängig von Rbf1 exprimiert wird. Delta-clp1 Stämme sind nicht in der Lage Schnallenzellen zu bilden und innerhalb der Pflanze zu wachsen, was eine mögliche Funktion in der Regulation dieser Entwicklungsprozesse vermuten ließ. Die induzierte Co-Expression von clp1 führt zur Inhibition der Funktion des b-Heterodimers, wodurch filamentöses Wachstum und der G2-Zellzyklusarrest verhindert werden (Scherer et al., 2006; Scherer, unveröffentlicht). In vorangegangenen Untersuchungen konnte ich zeigen, dass Clp1 unter anderem mit dem bW-Protein und Rbf1, den zentralen Regulatoren der pathogenen Entwicklung interagiert. In der vorliegenden Studie wurden die funktionellen Auswirkungen der Clp1-Protein-Interaktion auf die pathogene Entwicklung von U. maydis untersucht. Die Interaktion von Clp1 mit bW führt zu einem generellen Funktionsverlust des b-Heterodimeres und, daraus resultierend, zur globalen Repression der b-abhängigen Genregulation. Die Interaktion von Clp1 mit Rbf1 hingegen führt zu einer spezifischen Repression des Pheromongens mfa, wodurch die Pheromonantwort sowohl auf morphologischer als auch auf regulatorischer Ebene unterdrückt wird. Die weitere Charakterisierung von Clp1-interagierenden Proteinen führte zur Identifizierung des Transkriptionsfaktors Cib1. Die Deletion von cib1 führt zu einer Phänokopie der clp1 Deletion. Ähnlich wie bei Clp1 ist die Proteinexpression von Cib1 posttranskriptionell reguliert und auf postpenetrative Entwicklungsstadien begrenzt. Im Gegensatz zu Clp1 konnte der Mechanismus der posttranskriptionellen Regulation von Cib1 aufgeklärt und auf entwicklungsspezifisch reguliertes alternatives Spleißen zurückgeführt werden. Clp1 fungiert als Modulator von zwei Transkriptionsfaktoren, die beide eine zentrale Rolle bei der Steuerung des pathogenen Wachstums, aber auch bei der Zellzyklus-Kontrolle haben. Sowohl Rbf1 als auch das b-Heterodimer induzieren einen G2-Zellzyklusarrest, der erst nach der Penetration der Pflanzenoberfläche aufgehoben wird. Die Funktion des b-Heterodimeres, und vermutlich auch die von Rbf1, ist während der gesamten pathogenen Entwicklung notwendig. Die Funktion von Clp1 ist es, durch die Interaktion mit bW und Rbf1 die Re-Initiation des Zellzyklus zu ermöglichen. Durch die Verwendung eines artifiziellen Promotorsystems, das die Expression von rbf1 während und nach der Penetration der Pflanzenoberfläche gewährleistet, wurde erstmalig die Bildung von Appressorien und die darauffolgende Penetration der Pflanzenoberfläche unabhängig von einem aktiven b-Heterodimer nachgewiesen. Die durch Rbf1 regulierten Gene sind damit für die initialen Infektionsprozesse ausreichend. Die Re-Initiation des Zellzyklus und eine begrenzte Proliferation in planta werden allerdings erst durch die zusätzliche Expression von Clp1 ermöglicht. Im weiteren Verlauf der Infektion kommt es dann zu asynchronen Kernteilungen und Pflanzenabwehrreaktionen. Für die Unterdrückung von Pflanzenabwehrreaktionen und eine koordinierte synchrone Entwicklung in planta ist offensichtlich die Funktion des b-Heterodimeres entscheidend. Durch diesen Ansatz wurden neue Einblicke und ein grundlegendes Verständnis der regulatorischen Wechselwirkungen innerhalb der verschiedenen Signalwege und deren Auswirkung auf die biotrophe Entwicklung von U. maydis erlangt.

Bibliographie / References

  1. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685.
  2. Brown, A. J. and Casselton, L. A. (2001). Mating in mushrooms: increasing the chances but prolonging the affair. Trends Genet 17, 393-400.
  3. Kües, U. (2000). Life history and developmental processes in the basidiomycete Coprinus cinereus. Microbiol Mol Biol Rev 64, 316-353.
  4. Garcia-Muse, T., Steinberg, G. and Perez-Martin, J. (2003). Pheromone-induced G2 arrest in the phytopathogenic fungus Ustilago maydis. Eukaryot Cell 2, 494-500.
  5. Hiller, M. and Platzer, M. (2008). Widespread and subtle: alternative splicing at short- distance tandem sites. Trends Genet 24, 246-255.
  6. Lenz, J. H., Schuchardt, I., Straube, A. and Steinberg, G. (2006). A dynein loading zone for retrograde endosome motility at microtubule plus-ends. EMBO J 25, 2275- 2286.
  7. Liang, Z. and Biggin, M. D. (1998). Eve and ftz regulate a wide array of genes in blastoderm embryos: the selector homeoproteins directly or indirectly regulate most genes in Drosophila. Development 125, 4471-4482.
  8. Vazquez, M., Moore, L. and Kennison, J. A. (1999). The trithorax group gene osa encodes an ARID-domain protein that genetically interacts with the brahma chromatin- remodeling factor to regulate transcription. Development 126, 733-742.
  9. Martinez-Espinoza, A. D., Garcia-Pedrajas, M. D. and Gold, S. E. (2002). The Ustilaginales as plant pests and model systems. Fungal Genet Biol 35, 1-20.
  10. Kämper, J. (2004). A PCR-based system for highly efficient generation of gene replacement mutants in Ustilago maydis. Mol Genet Genomics 271, 103-110.
  11. Brachmann, A., Konig, J., Julius, C. and Feldbrügge, M. (2004). A reverse genetic approach for generating gene replacement mutants in Ustilago maydis. Mol Genet Genomics 272, 216-226.
  12. Gillissen, B., Bergemann, J., Sandmann, C., Schröer, B., Bölker, M. and Kahmann, R. (1992). A two-component regulatory system for self/non-self recognition in Ustilago maydis. Cell 68, 647-657.
  13. Multiallelic recognition: nonself-dependent dimerization of the bE and bW homeodomain proteins in Ustilago maydis. Cell 81, 73-83.
  14. Doehlemann, G., Wahl, R., Vranes, M., de Vries, R. P., Kämper, J. and Kahmann, R. (2008b). Establishment of compatibility in the Ustilago maydis/maize pathosystem. J Plant Physiol 165, 29-40.
  15. Steinberg, G. and Perez-Martin, J. (2008). Ustilago maydis, a new fungal model system for cell biology. Trends Cell Biol 18, 61-67.
  16. Green, R. E., Lewis, B. P., Hillman, R. T., Blanchette, M., Lareau, L. F., Garnett, A. T., Rio, D. C. and Brenner, S. E. (2003). Widespread predicted nonsense-mediated mRNA decay of alternatively-spliced transcripts of human normal and disease genes. Bioinformatics 19 Suppl 1, i118-121.
  17. Kronstad, J. W. and Leong, S. A. (1990). The b mating-type locus of Ustilago maydis contains variable and constant regions. Genes Dev 4, 1384-1395.
  18. Siebel, C. W., Admon, A. and Rio, D. C. (1995). Soma-specific expression and cloning of PSI, a negative regulator of P element pre-mRNA splicing. Genes Dev 9, 269-283.
  19. Weber, I., Gruber, C. and Steinberg, G. (2003). A class-V myosin required for mating, hyphal growth, and pathogenicity in the dimorphic plant pathogen Ustilago maydis. Plant Cell 15, 2826-2842.
  20. Böhmer, C., Ripp, C. and Bölker, M. (2009). The germinal centre kinase Don3 triggers the dynamic rearrangement of higher-order septin structures during cytokinesis in Ustilago maydis. Mol Microbiol 74, 1484-1496.
  21. Reprogramming a maize plant: transcriptional and metabolic changes induced by the fungal biotroph Ustilago maydis. Plant J 56, 181-195.
  22. Mahlert, M., Vogler, C., Stelter, K., Hause, G. and Basse, C. W. (2009). The a2 mating-type-locus gene lga2 of Ustilago maydis interferes with mitochondrial dynamics and fusion, partially in dependence on a Dnm1-like fission component. J Cell Sci 122, 2402-2412.
  23. Mielnichuk, N., Sgarlata, C. and Perez-Martin, J. (2009). A role for the DNA-damage checkpoint kinase Chk1 in the virulence program of the fungus Ustilago maydis. J Cell Sci 122, 4130-4140.
  24. Brachmann, A. (2001) Die frühe Infektionsphase von Ustilago maydis, Ludwig- Maximilians-Universität, München.
  25. Homeodomain-DNA recognition. Cell 78, 211-223.
  26. Schier, A. F. and Gehring, W. J. (1993). Analysis of a fushi tarazu autoregulatory element: multiple sequence elements contribute to enhancer activity. EMBO J 12, 1111-1119.
  27. Morrow, C. A. and Fraser, J. A. (2009). Sexual reproduction and dimorphism in the pathogenic basidiomycetes. FEMS Yeast Res 9, 161-177.
  28. O'Connell, R. J. and Panstruga, R. (2006). Tete a tete inside a plant cell: establishing compatibility between plants and biotrophic fungi and oomycetes. New Phytol 171, 699-718.
  29. Schulze-Lefert, P. and Panstruga, R. (2003). Establishment of biotrophy by parasitic fungi and reprogramming of host cells for disease resistance. Annu Rev Phytopathol 41, 641-667.
  30. Husberg, C., Murphy, P., Martin, E. and Kolsto, A. B. (2001). Two domains of the human bZIP transcription factor TCF11 are necessary for transactivation. J Biol Chem 276, 17641-17652.
  31. Nakai, K. and Kanehisha, M. (1992). A knowledge base for predicting protein localization sites in eukaryotic cells. Genomics 14, 897-911.
  32. Serebriiskii, I., Estojak, J., Berman, M. and Golemis, E. A. (2000). Approaches to detecting false positives in yeast two-hybrid systems. Biotechniques 28, 328-330, 332- 326.
  33. Herskowitz, I. (1989). A regulatory hierarchy for cell specialization in yeast. Nature 342, 749-757.
  34. Hoffman, C. S. and Winston, F. (1987). A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of E. coli. Gene 57, 267- 272.
  35. Seyfert, R. (1927). Über Schnalllenbildung im Paarkernmycel der Brandpilze. Zeitschrift für Botanik 19, 577 -601.
  36. Kerppola, T. K. (2008a). Bimolecular fluorescence complementation (BiFC) analysis as a probe of protein interactions in living cells. Annu Rev Biophys 37, 465-487.
  37. Hückelhoven, R. (2007). Cell wall-associated mechanisms of disease resistance and susceptibility. Annu Rev Phytopathol 45, 101-127.
  38. Kahmann, R., Romeis, T., Hartmann, H. A., Bohnert, H. U., Bolker, M. and Kamper, J. (1996). Control of mating, filamentous growth and pathogenicity in Ustilago maydis. Biology Of Plant Microbe Interactions, 239-241.
  39. Christensen, J. J. (1963). Corn smut induced by Ustilago maydis. Amer Phytopathol Soc Monogr 2.
  40. Bracha-Drori, K., Shichrur, K., Katz, A., Oliva, M., Angelovici, R., Yalovsky, S. and Ohad, N. (2004). Detection of protein-protein interactions in plants using bimolecular fluorescence complementation. Plant J 40, 419-427.
  41. Southern, E. M. (1975). Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98, 503-517.
  42. Hartmann, H. A. (1997) Die Pheromonantwort in Ustilago maydis: Kontrolle von Zellfusion und Pathogenität, phd-thesis, Ludwig-Maximilians-Universität, München.
  43. Holtz, W. J. and Keasling, J. D. Engineering static and dynamic control of synthetic pathways. Cell 140, 19-23.
  44. Carlsson, P. and Mahlapuu, M. (2002). Forkhead transcription factors: key players in development and metabolism. Dev Biol 250, 1-23.
  45. Marrocco, K., Zhou, Y., Bury, E., Dieterle, M., Funk, M., Genschik, P., Krenz, M., Stolpe, T. and Kretsch, T. (2006). Functional analysis of EID1, an F-box protein involved in phytochrome A-dependent light signal transduction. Plant J 45, 423-438.
  46. Pothiratana, C. (2008) Functional characterization of the homeodomain transcription factor Hdp1 in Ustilago maydis, Philipps-University Marburg, Marburg.
  47. Heimel, K. (2005) Funktionelle Charakterisierung des Clp1-Proteins aus Ustilago maydis, Philipps-Universität, Marburg.
  48. Ho, E. C., Cahill, M. J. and Saville, B. J. (2007). Gene discovery and transcript analyses in the corn smut pathogen Ustilago maydis: expressed sequence tag and genome sequence comparison. BMC Genomics 8, 334.
  49. Bölker, M., Genin, S., Lehmler, C. and Kahmann, R. (1995). Genetic regulation of mating, and dimorphism in Ustilago maydis. Can J Bot 73, 320-325.
  50. Hap2 regulates the pheromone response transcription factor prf1 in Ustilago maydis. Mol Microbiol.
  51. Stakman, E. C. and Christensen, I. I. (1927). Heterotallism in Ustilago Zeae. Phytopathology 17, 827 -834.
  52. Gehring, W. J., Affolter, M. and Bürglin, T. (1994a). Homeodomain proteins. Annu Rev Biochem 63, 487-526.
  53. Dunlap, J. C. and Loros, J. J. (2006). How fungi keep time: circadian system in Neurospora and other fungi. Curr Opin Microbiol 9, 579-587.
  54. Romeis, T., Brachmann, A., Kahmann, R. and Kämper, J. (2000). Identification of a target gene for the bE/bW homeodomain protein complex in Ustilago maydis. Mol Microbiol 37, 54-66.
  55. Brachmann, A., Weinzierl, G., Kämper, J. and Kahmann, R. (2001). Identification of genes in the bW/bE regulatory cascade in Ustilago maydis. Mol Microbiol 42, 1047- 1063.
  56. Gish, W. and States, D. J. (1993). Identification of protein coding regions by database similarity search. Nat Genet 3, 266-272.
  57. Urban, M., Kahmann, R. and Bölker, M. (1996a). Identification of the pheromone response element in Ustilago maydis. Mol Gen Genet 251, 31-37.
  58. Tzfira, T., Vaidya, M. and Citovsky, V. (2004). Involvement of targeted proteolysis in plant genetic transformation by Agrobacterium. Nature 431, 87-92.
  59. Makino, R. and Kamada, T. (2004). Isolation and characterization of mutations that affect nuclear migration for dikaryosis in Coprinus cinereus. Curr Genet 45, 149-156.
  60. Doebley, J. (1992). Mapping the genes that made maize. Trends Genet 8, 302-307.
  61. Casselton, L. A. and Kües, U. (1994). Mating type genes in homobasidiomycetes. In The Mycota I: Growth,Differentiation and Sexuality, J. G. H. Wessels and F. Meinhardt, eds. (Heidelberg, Springer-Verlag), pp. 307-321.
  62. Sambrook, J., Frisch, E. F. and Maniatis, T. (1989). Molecular Cloning: A Laboratory Manual (Cold Spring Harbour, New York, Cold Spring Harbour Laboratory Press).
  63. Kamada, T. (2002). Molecular genetics of sexual development in the mushroom Coprinus cinereus. Bioessays 24, 449-459.
  64. Eddy, R. (1997). Multiple alignment using hidden Markov models. Proc Int Conf Intell Syst Mol Biol 3, 114-120.
  65. Kageyama, R., Masamizu, Y. and Niwa, Y. (2007a). Oscillator mechanism of Notch pathway in the segmentation clock. Dev Dyn 236, 1403-1409.
  66. Innis, M. A., Gelfand, D. H., Sninsky, J. J. and White, T. J., eds. (1990). PCR Protocols: a guide to methods and applications. (San Diego, USA, Academic Press).
  67. Sonnhammer, E. L., Eddy, S. R. and Durbin, R. (1997). Pfam: a comprehensive database of protein domain families based on seed alignments. Proteins 28, 405-420.
  68. Grandel, A., Romeis, T. and Kämper, J. (2000). Regulation of pathogenic development in the corn smut fungus Ustilago maydis. Mol Plant Path 1, 61-66.
  69. Nielsen, K. and Heitman, J. (2007). Sex and virulence of human pathogenic fungi.
  70. Ekena, J. L., Stanton, B. C., Schiebe-Owens, J. A. and Hull, C. M. (2008). Sexual development in Cryptococcus neoformans requires CLP1, a target of the homeodomain transcription factors Sxi1alpha and Sxi2a. Eukaryot Cell 7, 49-57.
  71. Hanna, W. F. (1929). Studies in the physiology and cytology of Ustilago Zeae and Sporisorium Reilianum. Phytopathology 19, 415 -442.
  72. Kothe, E. (1996). Tetrapolar fungal mating types: sexes by the thousands. FEMS Microbiol Rev 18, 65-87.
  73. Blumenstein, A., Vienken, K., Tasler, R., Purschwitz, J., Veith, D., Frankenberg- Dinkel, N. and Fischer, R. (2005). The Aspergillus nidulans phytochrome FphA represses sexual development in red light. Curr Biol 15, 1833-1838.
  74. Urban, M., Kahmann, R. and Bölker, M. (1996b). The biallelic a mating type locus of Ustilago maydis: remnants of an additional pheromone gene indicate evolution from a multiallelic ancestor. Mol Gen Genet 250, 414-420.
  75. Don, J. and Stelzer, G. (2002). The expanding family of CREB/CREM transcription factors that are involved with spermatogenesis. Mol Cell Endocrinol 187, 115-124.
  76. Schlesinger, R., Kahmann, R. and Kämper, J. (1997). The homeodomains of the heterodimeric bE and bW proteins of Ustilago maydis are both critical for function. Mol Gen Genet 254, 514-519.
  77. Kohler, U., Liaud, M. F., Mendel, R. R., Cerff, R. and Hehl, R. (1995). The maize GapC4 promoter confers anaerobic reporter gene expression and shows homology to the maize anthocyanin regulatory locus C1. Plant Mol Biol 29, 1293-1298.
  78. Heimel, K., Scherer, M., Vranes, M., Wahl, R., Pothiratana, C., Schuler, D., Vincon, V., Finkernagel, F., Flor-Parra, I. and Kämper, J. (2010). The transcription factor Rbf1 is the master regulator for b-mating type controlled pathogenic development in Ustilago maydis. in revision.
  79. Wahl, R., Zahiri, A. and Kamper, J. (2010). The Ustilago maydis b mating type locus controls hyphal proliferation and expression of secreted virulence factors in planta. Mol Microbiol 75, 208-220.
  80. Lohr, D., Venkov, P. and Zlatanova, J. (1995). Transcriptional regulation in the yeast GAL gene family: a complex genetic network. Faseb J 9, 777-787.
  81. Vranes, M. (2006) Transkriptom-Analyse der frühen Infektionsphase von Ustilago maydis: Identifikation neuer pathogenitätsrelevanter Gene, Philipps-Universität, Marburg.
  82. Maerz, S., Dettmann, A., Ziv, C., Liu, Y., Valerius, O., Yarden, O. and Seiler, S. (2009). Two NDR kinase-MOB complexes function as distinct modules during septum formation and tip extension in Neurospora crassa. Mol Microbiol 74, 707-723.
  83. Heringa, J. (1999). Two strategies for sequence comparison: profile-preprocessed and secondary structure-induced multiple alignment. Comput Chem 23, 341-364.
  84. Kageyama, R., Yoshiura, S., Masamizu, Y. and Niwa, Y. (2007b). Ultradian oscillators in somite segmentation and other biological events. Cold Spring Harb Symp Quant Biol 72, 451-457.
  85. Brefeld, O. (1895) Untersuchungen aus dem Gesammtgebiete der Mykologie: Die Brandpilze II. 98., Leipzig.
  86. Huitlacoche (Ustilago maydis) as a food source--biology, composition, and production. Crit-Rev-Food-Sci-Nutr 35, 191-229.
  87. Brefort, T., Doehlemann, G., Mendoza-Mendoza, A., Reissmann, S., Djamei, A. and Kahmann, R. (2009). Ustilago maydis as a Pathogen. Annu Rev Phytopathol 47, 423-445.
  88. Bölker, M. (2001). Ustilago maydis--a valuable model system for the study of fungal dimorphism and virulence. Microbiology 147, 1395-1401.
  89. Kahmann, R. and Kämper, J. (2004). Ustilago maydis: how its biology relates to pathogenic development. New Phytologist 164, 31-42.
  90. Snetselaar, K. M., Bölker, M. and Kahmann, R. (1996). Ustilago maydis mating hyphae orient their growth toward pheromone sources. Fungal Genetics and Biology 20, 299-312.
  91. Hu, C. D., Grinberg, A. V. and Kerppola, T. K. (2006). Visualization of protein interactions in living cells using bimolecular fluorescence complementation (BiFC) analysis. Curr Protoc Cell Biol Chapter 21, Unit 21 23.
  92. Hu, C. D., Chinenov, Y. and Kerppola, T. K. (2002). Visualization of interactions among bZIP and Rel family proteins in living cells using bimolecular fluorescence complementation. Mol Cell 9, 789-798.
  93. Kuo, P. C., Tsao, Y. P., Chang, H. W., Chen, P. H., Huang, C. W., Lin, S. T., Weng, Y. T., Tsai, T. C., Shieh, S. Y. and Chen, S. L. (2009). Breast cancer amplified sequence 2, a novel negative regulator of the p53 tumor suppressor. Cancer Res 69, 8877-8885.
  94. Leong, D. T., Gupta, A., Bai, H. F., Wan, G., Yoong, L. F., Too, H. P., Chew, F. T. and Hutmacher, D. W. (2007). Absolute quantification of gene expression in biomaterials research using real-time PCR. Biomaterials 28, 203-210.
  95. Snetselaar, K. M. and Mims, C. W. (1993). Infection of maize stigmas by Ustilago maydis: Light and electron microscopy. Phytopathology 83, 843.
  96. Snetselaar, K. M. and Mims, C. W. (1992). Sporidial fusion and infection of maize seedlings by the smut fungus Ustilago maydis. Mycologia 84, 193-203.
  97. Holliday, R. (1974). Ustilago maydis. In Handbook of Genetics, R. C. King, ed. (New York, USA, Plenum Press), pp. 575-595.
  98. Brefeld, O. (1883) Botanische Untersuchungen über Hefenpilze. Untersuchungen aus dem Gesamtgebiete der Mykologie. , Leipzig.
  99. Black, D. L. (2003). Mechanisms of alternative pre-messenger RNA splicing. Annu Rev Biochem 72, 291-336.
  100. Kerppola, T. K. (2006c). Visualization of molecular interactions by fluorescence complementation. Nat Rev Mol Cell Biol 7, 449-456.
  101. Goldbeter, A. and Pourquie, O. (2008). Modeling the segmentation clock as a network of coupled oscillations in the Notch, Wnt and FGF signaling pathways. J Theor Biol 252, 574-585.
  102. Valentine, S. A., Chen, G., Shandala, T., Fernandez, J., Mische, S., Saint, R. and Courey, A. J. (1998). Dorsal-mediated repression requires the formation of a multiprotein repression complex at the ventral silencer. Mol Cell Biol 18, 6584-6594.
  103. Fuchs, U., Manns, I. and Steinberg, G. (2005). Microtubules are dispensable for the initial pathogenic development but required for long-distance hyphal growth in the corn smut fungus Ustilago maydis. Mol Biol Cell 16, 2746-2758.
  104. Blondel, M., Bach, S., Bamps, S., Dobbelaere, J., Wiget, P., Longaretti, C., Barral, Y., Meijer, L. and Peter, M. (2005). Degradation of Hof1 by SCF(Grr1) is important for actomyosin contraction during cytokinesis in yeast. EMBO J 24, 1440-1452.
  105. Lehmler, C., Steinberg, G., Snetselaar, K., Schliwa, M., Kahmann, R. and Bolker, M. (1997). Identification of a motor protein required for filamentous growth in Ustilago maydis. Embo Journal Jun 16, 3464-3473.
  106. James, P., Halladay, J. and Craig, E. A. (1996). Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics 144, 1425-1436.
  107. Demerec, M., Adelberg, E. A., Clark, A. J. and Hartman, P. E. (1966). A proposal for a uniform nomenclature in bacterial genetics. Genetics 54, 61-76.
  108. Soulard, A., Lechler, T., Spiridonov, V., Shevchenko, A., Li, R. and Winsor, B. (2002). Saccharomyces cerevisiae Bzz1p is implicated with type I myosins in actin patch polarization and is able to recruit actin-polymerizing machinery in vitro. Mol Cell Biol 22, 7889-7906.
  109. J. and Blencowe, B. J. (2006). Quantitative microarray profiling provides evidence against widespread coupling of alternative splicing with nonsense-mediated mRNA decay to control gene expression. Genes Dev 20, 153-158.
  110. Lewis, B. P., Green, R. E. and Brenner, S. E. (2003). Evidence for the widespread coupling of alternative splicing and nonsense-mediated mRNA decay in humans. Proc Natl Acad Sci U S A 100, 189-192.
  111. Murata, Y., Fujii, M., Zolan, M. E. and Kamada, T. (1998). Molecular analysis of pcc1, a gene that leads to A-regulated sexual morphogenesis in Coprinus cinereus. Genetics 149, 1753-1761.
  112. Inada, K., Morimoto, Y., Arima, T., Murata, Y. and Kamada, T. (2001). The clp1 gene of the mushroom Coprinus cinereus is essential for A-regulated sexual development. Genetics 157, 133-140.
  113. The KH-type RNA-binding protein PSI is required for Drosophila viability, male fertility, and cellular mRNA processing. Genes Dev 16, 72-84.
  114. Brachmann, A., Schirawski, J., Müller, P. and Kahmann, R. (2003). An unusual MAP kinase is required for efficient penetration of the plant surface by Ustilago maydis. EMBO J 22, 2199-2210.
  115. Scherer, M., Heimel, K., Starke, V. and Kämper, J. (2006). The Clp1 protein is required for clamp formation and pathogenic development of Ustilago maydis. Plant Cell 18, 2388-2401.
  116. Stapleton, A. E. and Walbot, V. (1994). Flavonoids can protect maize DNA from the induction of ultraviolet radiation damage. Plant Physiol 105, 881-889.
  117. Golovkin, M. and Reddy, A. S. (1996). Structure and expression of a plant U1 snRNP 70K gene: alternative splicing of U1 snRNP 70K pre-mRNAs produces two different transcripts. Plant Cell 8, 1421-1435.
  118. Hu, C. D. and Kerppola, T. K. (2003). Simultaneous visualization of multiple protein interactions in living cells using multicolor fluorescence complementation analysis. Nat Biotechnol 21, 539-545.
  119. Romeis, T., Kämper, J. and Kahmann, R. (1997). Single-chain fusions of two unrelated homeodomain proteins trigger pathogenicity in Ustilago maydis. Proc Natl Acad Sci USA 94, 1230-1234.
  120. Ito, H., Fukuda, Y., Murata, K. and Kimura, A. (1983). Transformation of intact yeast cells treated with alkali cations. J Bacteriol 153, 163-168.
  121. Kerppola, T. K. (2006a). Complementary methods for studies of protein interactions in living cells. Nat Methods 3, 969-971.
  122. Kerppola, T. K. (2006b). Design and implementation of bimolecular fluorescence complementation (BiFC) assays for the visualization of protein interactions in living cells. Nat Protoc 1, 1278-1286.
  123. Luca, F. C. and Winey, M. (1998). MOB1, an essential yeast gene required for completion of mitosis and maintenance of ploidy. Mol Biol Cell 9, 29-46.
  124. Holloman, W. K., Schirawski, J. and Holliday, R. (2008). The homologous recombination system of Ustilago maydis. Fungal Genet Biol 45 Suppl 1, S31-39.
  125. Song, Y., Cheon, S. A., Lee, K. E., Lee, S. Y., Lee, B. K., Oh, D. B., Kang, H. A. and Kim, J. Y. (2008). Role of the RAM network in cell polarity and hyphal morphogenesis in Candida albicans. Mol Biol Cell 19, 5456-5477.
  126. Hsueh, Y. P. and Heitman, J. (2008). Orchestration of sexual reproduction and virulence by the fungal mating-type locus. Curr Opin Microbiol 11, 517-524.
  127. Doehlemann, G., van der Linde, K., Assmann, D., Schwammbach, D., Hof, A., Mohanty, A., Jackson, D. and Kahmann, R. (2009). Pep1, a secreted effector protein of Ustilago maydis, is required for successful invasion of plant cells. PLoS Pathog 5, e1000290.
  128. PKA and MAPK phosphorylation of Prf1 allows promoter discrimination in Ustilago maydis. Embo J 22, 5817-5826.
  129. Raudaskoski, M. and Kothe, E. Basidiomycete mating type genes and pheromone signaling. Eukaryot Cell.
  130. Schultz, J., Milpetz, F., Bork, P. and Ponting, C. P. (1998). SMART, a simple modular architecture research tool: identification of signaling domains. Proc Natl Acad Sci U S A 95, 5857-5864.
  131. Tsuchisaka, A. and Theologis, A. (2004). Heterodimeric interactions among the 1- amino-cyclopropane-1-carboxylate synthase polypeptides encoded by the Arabidopsis gene family. Proc Natl Acad Sci U S A 101, 2275-2280.
  132. Loros, J. J., Dunlap, J. C., Larrondo, L. F., Shi, M., Belden, W. J., Gooch, V. D., Chen, C. H., Baker, C. L., Mehra, A., Colot, H. V., Schwerdtfeger, C., Lambreghts, R., Collopy, P. D., Gamsby, J. J. and Hong, C. I. (2007). Circadian output, input, and intracellular oscillators: insights into the circadian systems of single cells. Cold Spring Harb Symp Quant Biol 72, 201-214.
  133. Kozubowski, L. and Heitman, J. (2009). Septins enforce morphogenetic events during sexual reproduction and contribute to virulence of Cryptococcus neoformans.
  134. Pheromones trigger filamentous growth in Ustilago maydis. EMBO J 13, 1620-1627.
  135. Towbin, H., Staehelin, T. and Gordon, J. (1979). Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications.
  136. Cohen, S. N., Chang, A. C. and Hsu, L. (1972). Nonchromosomal antibiotic resistance in bacteria: genetic transformation of Escherichia coli by R-factor DNA. Proc Natl Acad Sci U S A 69, 2110-2114.
  137. Qian, Y. Q., Resendez-Perez, D., Gehring, W. J. and Wüthrich, K. (1994). The des(1-6)antennapedia homeodomain: comparison of the NMR solution structure and the DNA-binding affinity with the intact Antennapedia homeodomain. Proc Natl Acad Sci USA 91, 4091-4095.
  138. Hartmann, H. A., Kahmann, R. and Bölker, M. (1996). The pheromone response factor coordinates filamentous growth and pathogenicity in Ustilago maydis. EMBO J 15, 1632-1641.
  139. Duke, S. O., Fox, S. B. and Naylor, A. W. (1976). Photosynthetic Independence of Light-induced Anthocyanin Formation in Zea Seedlings. Plant Physiol 57, 192-196.
  140. Brefort, T., Muller, P. and Kahmann, R. (2005). The high-mobility-group domain transcription factor Rop1 is a direct regulator of prf1 in Ustilago maydis. Eukaryot Cell 4, 379-391.
  141. Saccharomyces cerevisiae Mob1p is required for cytokinesis and mitotic exit. Mol Cell Biol 21, 6972-6983.
  142. Schulz, B., Banuett, F., Dahl, M., Schlesinger, R., Schäfer, W., Martin, T., Herskowitz, I. and Kahmann, R. (1990). The b alleles of U. maydis, whose combinations program pathogenic development, code for polypeptides containing a homeodomain-related motif. Cell 60, 295-306.
  143. Bölker, M., Urban, M. and Kahmann, R. (1992). The a mating type locus of U. maydis specifies cell signaling components. Cell 68, 441-450.
  144. Hoff, B. and Kück, U. (2005). Use of bimolecular fluorescence complementation to demonstrate transcription factor interaction in nuclei of living cells from the filamentous fungus Acremonium chrysogenum. Curr Genet 47, 132-138.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten