Publikationsserver der Universitätsbibliothek Marburg

Titel:Chemoenzymatic Synthesis of Chromodepsipeptides and Natural Product Discovery via Genome Mining
Autor:Robbel, Lars
Weitere Beteiligte: Marahiel, Mohamed (Prof. Dr.)
Veröffentlicht:2010
URI:https://archiv.ub.uni-marburg.de/diss/z2010/0473
URN: urn:nbn:de:hebis:04-z2010-04738
DOI: https://doi.org/10.17192/z2010.0473
DDC: Chemie
Titel (trans.):Chemoenzymatische Synthese der Chromodepsipeptide und Isolierung neuer Naturstoffe durch Genomisches Mining
Publikationsdatum:2010-08-10
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Acetylierung, Thioesterase II, genome mining, Modifikation <Biochemie>, Zyklodimerisierung, Sekundärmetabolit, Genanalyse, hydroxylation, Hydroxylierung, Acetylierung, NRPS, cyclodimerization, Genomische Mining, NRPS, acetylation, Hydroxylierung

Zusammenfassung:
Recent advances in the development of sequencing technologies have enabled the identification of a multitude of bacterial gene clusters, putatively involved in the biosynthesis of nonribosomal peptides (NRPs). Peptides of nonribosomal origin constitute a class of structurally and functionally diverse natural products, which are assembled by multimodular nonribosomal peptide synthetases (NRPSs). These compounds exhibit a broad pharmacological spectrum, ranging from antibacterial- to immunosuppressive properties. Understanding the assembly mechanisms in combination with rational genome mining approaches will provide opportunities for the discovery of new bioactive natural products. Within this study one approach was utilized to generate thiocoraline analogs via chemoenzymatic synthesis and the second strategy focused on the de novo natural product discovery via genome mining. Thiocoraline represents a pseudosymmetrical chromophore-capped octathiodepsipeptide, in which the symmetrical halves are linked via thioester bonds. In this study, the cyclodimerization potential of the thioesterase domain of the thiocoraline biosynthetic machinery (TioS PCP-TE) was investigated to obtain further insights into the iterative assembly of chromodepsipeptides. To address this objective, the recombinant enzyme was incubated with synthetically derived tetrapeptidyl substrates, resembling thiocoraline precursors. It was shown that the enzyme catalyzes the cyclodimerization of linear precursor molecules and an unprecedented macrothiolactonization. Evaluation of the biocombinatorial potential established the thioesterase as a robust and versatile catalyst for the generation of chromodepsipeptide analogs, harbouring thioester- or ester-linkages. As thiocoraline attains its antitumor activity from DNA-bisintercalation, the chemoenzymatically generated macrocycles were isolated and investigated towards DNA-bisintercalation activity in vitro. In the second part of this study, bioinformatic analysis of the 8.2 Mb Saccharopolyspora erythraea genome revealed two cryptic NRPS gene clusters related to hydroxamate-type siderophore biosynthesis. Detailed analysis of adenylation domain substrate-specificity and module organization enabled the establishment of a highly selective and sensitive radio-LCMS-guided genome mining approach. Application of this approach resulted in the discovery of the siderophore erythrochelin. Structure elucidation of erythrochelin was accomplished via NMR- and MSn-analysis and revealed the sequence of the tetrapeptide siderophore to be: α-N-acetyl-δ-N-acetyl-δ-N-hydroxy-D-ornithine-D-serine-cyclo(δ-N-hydroxy-L-ornithine-δ-N-acetyl-δ-N-hydroxy-L-ornithine). Erythrochelin assembly requires the proliferation of δ-N-hydroxy-L-ornithine (L-hOrn) and δ-N-acetyl-δ-N-hydroxy-L-ornithine (L-haOrn). The corresponding modifying enzymes, the FAD-dependent monooxygenases EtcB and Sace_1309 together with the bifunctional malonyl-CoA decarboxylase/N-acetyltransferase were identified and biochemically characterized. In vitro studies revealed EtcB and Sace_1309 to exclusively catalyze the δ-N-hydroxylation of free L-ornithine. The second tailoring enzyme, Mcd, was shown to catalyze malonyl-CoA decarboxylation and subsequent acetyltransfer onto the δ-hydroxamino group of L-hOrn, affording L-haOrn. Based on the elucidation of precursor biosynthesis (L-haOrn), a model for the entire erythrochelin assembly is presented.

Bibliographie / References

  1. Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680‐5 (1970).
  2. Erba, E. et al. Mode of action of thiocoraline, a natural marine compound with anti‐tumour activity. Br J Cancer 80, 971‐80 (1999).
  3. de Crecy‐Lagard, V. et al. Streptogramin B biosynthesis in Streptomyces pristinaespiralis and Streptomyces virginiae: molecular characterization of the last structural peptide synthetase gene. Antimicrob Agents Chemother 41, 1904‐9 (1997).
  4. Newman, D.J. & Cragg, G.M. Natural products as sources of new drugs over the last 25 years. J Nat Prod 70, 461‐77 (2007).
  5. Balibar, C.J. & Walsh, C.T. GliP, a multimodular nonribosomal peptide synthetase in Aspergillus fumigatus, makes the diketopiperazine scaffold of gliotoxin. Biochemistry 45, 15029‐38 (2006).
  6. Brandon, E.F. et al. In vitro characterization of the biotransformation of thiocoraline, a novel marine anti‐cancer drug. Invest New Drugs 22, 241‐51 (2004).
  7. Maiya, S., Grundmann, A., Li, S.M. & Turner, G. The fumitremorgin gene cluster of Aspergillus fumigatus: identification of a gene encoding brevianamide F synthetase. Chembiochem 7, 1062‐9 (2006).
  8. Schwarzer, D., Finking, R. & Marahiel, M.A. Nonribosomal peptides: from genes to products. Nat Prod Rep 20, 275‐87 (2003).
  9. Kopp, F. & Marahiel, M.A. Macrocyclization strategies in polyketide and nonribosomal peptide biosynthesis. Nat Prod Rep 24, 735‐49 (2007).
  10. Watanabe, K., Oguri, H. & Oikawa, H. Diversification of echinomycin molecular structure by way of chemoenzymatic synthesis and heterologous expression of the engineered echinomycin biosynthetic pathway. Curr Opin Chem Biol 13, 189‐96 (2009).
  11. Bu, X. et al. Synthesis of gramicidin S and its analogues via an on‐resin macrolactamization assisted by a predisposed conformation of the linear precursors. J Org Chem 69, 2681‐5 (2004).
  12. Carver, T. et al. Artemis and ACT: viewing, annotating and comparing sequences stored in a relational database. Bioinformatics 24, 2672‐6 (2008).
  13. Rausch, C., Weber, T., Kohlbacher, O., Wohlleben, W. & Huson, D.H. Specificity prediction of adenylation domains in nonribosomal peptide synthetases (NRPS) using transductive support vector machines (TSVMs). Nucleic Acids Res 33, 5799‐808 (2005).
  14. McMorran, B.J., Kumara, H.M., Sullivan, K. & Lamont, I.L. Involvement of a transformylase enzyme in siderophore synthesis in Pseudomonas aeruginosa. Microbiology 147, 1517‐24 (2001).
  15. Dyda, F., Klein, D.C. & Hickman, A.B. GCN5‐related N‐acetyltransferases: a structural overview. Annu Rev Biophys Biomol Struct 29, 81‐103 (2000).
  16. Kohli, R.M., Walsh, C.T. & Burkart, M.D. Biomimetic synthesis and optimization of cyclic peptide antibiotics. Nature 418, 658‐61 (2002).
  17. Bruner, S.D. et al. Structural basis for the cyclization of the lipopeptide antibiotic surfactin by the thioesterase domain SrfTE. Structure 10, 301‐10 (2002).
  18. Kessler, H., Schmieder, P., Köck, M. & Kurz, M. Improved Resolution in Proton‐Detected Heteronuclear Long‐Range Correlation. J Magn Reson 88, 615‐618 (1990).
  19. van Berkel, W.J., Kamerbeek, N.M. & Fraaije, M.W. Flavoprotein monooxygenases, a diverse class of oxidative biocatalysts. J Biotechnol 124, 670‐89 (2006).
  20. Gondry, M. et al. Cyclodipeptide synthases are a family of tRNA‐dependent peptide bond‐forming enzymes. Nat Chem Biol 5, 414‐20 (2009).
  21. Gross, H. et al. The genomisotopic approach: a systematic method to isolate products of orphan biosynthetic gene clusters. Chem Biol 14, 53‐63 (2007).
  22. Biswas, T. et al. A new scaffold of an old protein fold ensures binding to the bisintercalator thiocoraline. J Mol Biol 397, 495‐507 (2010).
  23. Peano, C. et al. Complete gene expression profiling of Saccharopolyspora erythraea using GeneChip DNA microarrays. Microb Cell Fact 6, 37 (2007).
  24. Garcia‐Martin, F., Cruz, L.J., Rodriguez‐Mias, R.A., Giralt, E. & Albericio, F. Design and synthesis of FAJANU: a de novo C(2) symmetric cyclopeptide family. J Med Chem 51, 3194‐202 (2008).
  25. Debono, M. et al. Enzymatic and chemical modifications of lipopeptide antibiotic A21978C: the synthesis and evaluation of daptomycin (LY146032). J Antibiot (Tokyo) 41, 1093‐105 (1988).
  26. Sambrook, J. & Russel, D.W. Molecular Cloning: A Laboratory Manual, (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 2000).
  27. Corre, C., Song, L., O'Rourke, S., Chater, K.F. & Challis, G.L. 2‐Alkyl‐4‐hydroxymethylfuran‐3‐carboxylic acids, antibiotic production inducers discovered by Streptomyces coelicolor genome mining. Proc Natl Acad Sci U S A 105, 17510‐5 (2008).
  28. de Lorenzo, V., Bindereif, A., Paw, B.H. & Neilands, J.B. Aerobactin biosynthesis and transport genes of plasmid ColV‐K30 in Escherichia coli K‐12. J Bacteriol 165, 570‐8 (1986).
  29. Nardini, M. & Dijkstra, B.W. Alpha/beta hydrolase fold enzymes: the family keeps growing. Curr Opin Struct Biol 9, 732‐7 (1999).
  30. Belshaw, P.J., Walsh, C.T. & Stachelhaus, T. Aminoacyl‐CoAs as probes of condensation domain selectivity in nonribosomal peptide synthesis. Science 284, 486‐9 (1999).
  31. Ehmann, D.E., Trauger, J.W., Stachelhaus, T. & Walsh, C.T. Aminoacyl‐SNACs as small‐molecule substrates for the condensation domains of nonribosomal peptide synthetases. Chem Biol 7, 765‐72 (2000).
  32. Kadi, N., Oves‐Costales, D., Barona‐Gomez, F. & Challis, G.L. A new family of ATP‐dependent oligomerization‐macrocyclization biocatalysts. Nat Chem Biol 3, 652‐6 (2007).
  33. Hu, J. & Miller, M.J. A new method for the synthesis of of Nε‐acetyl‐Nε‐hydroxy‐L‐lysine, the iron‐binding constituent of several Important siderophores. J. Org. Chem 59(1994).
  34. Okada, H. et al. A new topoisomerase II inhibitor, BE‐22179, produced by a streptomycete. I. Producing strain, fermentation, isolation and biological activity. J Antibiot (Tokyo) 47, 129‐35 (1994).
  35. Wang, C., Wesener, S.R., Zhang, H. & Cheng, Y.Q. An FAD‐dependent pyridine nucleotide‐disulfide oxidoreductase is involved in disulfide bond formation in FK228 anticancer depsipeptide. Chem Biol 16, 585‐93 (2009).
  36. Juguet, M. et al. An iterative nonribosomal peptide synthetase assembles the pyrrole‐amide antibiotic congocidine in Streptomyces ambofaciens. Chem Biol 16, 421‐31 (2009).
  37. Imoto, M. et al. Antitumor activity of erbstatin, a tyrosine protein kinase inhibitor. Jpn J Cancer Res 78, 329‐32 (1987).
  38. Negri, A. et al. Antitumor activity, X‐ray crystal structure, and DNA binding properties of thiocoraline A, a natural bisintercalating thiodepsipeptide. J Med Chem 50, 3322‐33 (2007).
  39. Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein‐ dye binding. Anal Biochem 72, 248‐54 (1976).
  40. Rutherford, K. et al. Artemis: sequence visualization and annotation. Bioinformatics 16, 944‐5 (2000).
  41. Shaw‐Reid, C.A. et al. Assembly line enzymology by multimodular nonribosomal peptide synthetases: the thioesterase domain of E. coli EntF catalyzes both elongation and cyclolactonization. Chem Biol 6, 385‐400 (1999).
  42. Fortin, P.D., Walsh, C.T. & Magarvey, N.A. A transglutaminase homologue as a condensation catalyst in antibiotic assembly lines. Nature 448, 824‐7 (2007).
  43. Dertz, E.A., Xu, J., Stintzi, A. & Raymond, K.N. Bacillibactin‐mediated iron transport in Bacillus subtilis. J Am Chem Soc 128, 22‐3 (2006).
  44. Andrews, S.C., Robinson, A.K. & Rodriguez‐Quinones, F. Bacterial iron homeostasis. FEMS Microbiol Rev 27, 215‐37 (2003).
  45. Tseng, C.F. et al. Bacterial siderophores: the solution stoichiometry and coordination of the Fe(III) complexes of pyochelin and related compounds. J Biol Inorg Chem 11, 419‐32 (2006).
  46. Ohkuma, H. et al. BBM‐928, a new antitumor antibiotic complex. I. Production, isolation, characterization and antitumor activity. J Antibiot (Tokyo) 33, 1087‐97 (1980).
  47. Bode, H.B., Bethe, B., Hofs, R. & Zeeck, A. Big effects from small changes: possible ways to explore nature's chemical diversity. Chembiochem 3, 619‐27 (2002).
  48. Meneely, K.M. & Lamb, A.L. Biochemical characterization of a flavin adenine dinucleotide‐dependent monooxygenase, ornithine hydroxylase from Pseudomonas aeruginosa, suggests a novel reaction mechanism. Biochemistry 46, 11930‐7 (2007).
  49. Stachelhaus, T., Huser, A. & Marahiel, M.A. Biochemical characterization of peptidyl carrier protein (PCP), the thiolation domain of multifunctional peptide synthetases. Chem Biol 3, 913‐21 (1996).
  50. O'Hagan, D., Schaffrath, C., Cobb, S.L., Hamilton, J.T. & Murphy, C.D. Biochemistry: biosynthesis of an organofluorine molecule. Nature 416, 279 (2002).
  51. Cantoni, G.L. Biological methylation: selected aspects. Annu Rev Biochem 44, 435‐51 (1975).
  52. Chang, Z. et al. Biosynthetic pathway and gene cluster analysis of curacin A, an antitubulin natural product from the tropical marine cyanobacterium Lyngbya majuscula. J Nat Prod 67, 1356‐67 (2004).
  53. Magarvey, N.A., Haltli, B., He, M., Greenstein, M. & Hucul, J.A. Biosynthetic pathway for mannopeptimycins, lipoglycopeptide antibiotics active against drug‐resistant gram‐positive pathogens. Antimicrob Agents Chemother 50, 2167‐77 (2006).
  54. Chen, J. & Stubbe, J. Bleomycins: towards better therapeutics. Nat Rev Cancer 5, 102‐12 (2005).
  55. Harle, J. & Bechthold, A. Chapter 12. The power of glycosyltransferases to generate bioactive natural compounds. Methods Enzymol 458, 309‐33 (2009).
  56. Wilkinson, B. & Micklefield, J. Chapter 14. Biosynthesis of nonribosomal peptide precursors. Methods Enzymol 458, 353‐78 (2009). 81. van Wageningen, A.M. et al. Sequencing and analysis of genes involved in the biosynthesis of a vancomycin group antibiotic. Chem Biol 5, 155‐62 (1998).
  57. Pazirandeh, M., Chirala, S.S., Huang, W.Y. & Wakil, S.J. Characterization of recombinant thioesterase and acyl carrier protein domains of chicken fatty acid synthase expressed in Escherichia coli. J Biol Chem 264, 18195‐201 (1989).
  58. Tseng, C.C. et al. Characterization of the surfactin synthetase C‐terminal thioesterase domain as a cyclic depsipeptide synthase. Biochemistry 41, 13350‐9 (2002).
  59. Sheoran, A., King, A., Velasco, A., Pero, J.M. & Garneau‐Tsodikova, S. Characterization of TioF, a tryptophan 2,3‐dioxygenase involved in 3‐hydroxyquinaldic acid formation during thiocoraline biosynthesis. Mol Biosyst 4, 622‐8 (2008).
  60. Mahlert, C., Sieber, S.A., Grunewald, J. & Marahiel, M.A. Chemoenzymatic approach to enantiopure streptogramin B variants: characterization of stereoselective pristinamycin I cyclase from Streptomyces pristinaespiralis. J Am Chem Soc 127, 9571‐80 (2005).
  61. Kopp, F., Grunewald, J., Mahlert, C. & Marahiel, M.A. Chemoenzymatic design of acidic lipopeptide hybrids: new insights into the structure‐activity relationship of daptomycin and A54145. Biochemistry 45, 10474‐81 (2006).
  62. Singh, R., Sharma, M., Joshi, P. & Rawat, D.S. Clinical status of anti‐cancer agents derived from marine sources. Anticancer Agents Med Chem 8, 603‐17 (2008).
  63. Shen, B. et al. Cloning and characterization of the bleomycin biosynthetic gene cluster from Streptomyces verticillus ATCC15003. J Nat Prod 65, 422‐31 (2002).
  64. Oliynyk, M. et al. Complete genome sequence of the erythromycin‐producing bacterium Saccharopolyspora erythraea NRRL23338. Nat Biotechnol 25, 447‐53 (2007).
  65. Bentley, S.D. et al. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417, 141‐7 (2002).
  66. Chatterjee, J., Mierke, D.F. & Kessler, H. Conformational preference and potential templates of N‐methylated cyclic pentaalanine peptides. Chemistry 14, 1508‐17 (2008).
  67. Koglin, A. et al. Conformational switches modulate protein interactions in peptide antibiotic synthetases. Science 312, 273‐6 (2006).
  68. Schauwecker, F., Pfennig, F., Grammel, N. & Keller, U. Construction and in vitro analysis of a new bi‐modular polypeptide synthetase for synthesis of N‐methylated acyl peptides. Chem Biol 7, 287‐97 (2000).
  69. Linne, U. & Marahiel, M.A. Control of directionality in nonribosomal peptide synthesis: role of the condensation domain in preventing misinitiation and timing of epimerization. Biochemistry 39, 10439‐47 (2000).
  70. May, J.J., Kessler, N., Marahiel, M.A. & Stubbs, M.T. Crystal structure of DhbE, an archetype for aryl acid activating domains of modular nonribosomal peptide synthetases. Proc Natl Acad Sci U S A 99, 12120‐5 (2002).
  71. Trauger, J.W., Kohli, R.M. & Walsh, C.T. Cyclization of backbone‐substituted peptides catalyzed by the thioesterase domain from the tyrocidine nonribosomal peptide synthetase. Biochemistry 40, 7092‐8 (2001).
  72. Miao, V. et al. Daptomycin biosynthesis in Streptomyces roseosporus: cloning and analysis of the gene cluster and revision of peptide stereochemistry. Microbiology 151, 1507‐23 (2005).
  73. Lombo, F. et al. Deciphering the biosynthesis pathway of the antitumor thiocoraline from a marine actinomycete and its expression in two streptomyces species. Chembiochem 7, 366‐76 (2006).
  74. Pohlmann, V. & Marahiel, M.A. Delta‐amino group hydroxylation of L‐ornithine during coelichelin biosynthesis. Org Biomol Chem 6, 1843‐8 (2008).
  75. Cushman, D.W., Cheung, H.S., Sabo, E.F., Rubin, B. & Ondetti, M.A. Development of specific inhibitors of angiotensin I converting enzyme (kininase II). Fed Proc 38, 2778‐82 (1979).
  76. Reimmann, C., Serino, L., Beyeler, M. & Haas, D. Dihydroaeruginoic acid synthetase and pyochelin synthetase, products of the pchEF genes, are induced by extracellular pyochelin in Pseudomonas aeruginosa. Microbiology 144 ( Pt 11), 3135‐48 (1998).
  77. Costas, M., Mehn, M.P., Jensen, M.P. & Que, L., Jr. Dioxygen activation at mononuclear nonheme iron active sites: enzymes, models, and intermediates. Chem Rev 104, 939‐86 (2004).
  78. Patricelli, M.P., Giang, D.K., Stamp, L.M. & Burbaum, J.J. Direct visualization of serine hydrolase activities in complex proteomes using fluorescent active site‐directed probes. Proteomics 1, 1067‐71 (2001).
  79. McClerren, A.L. et al. Discovery and in vitro biosynthesis of haloduracin, a two‐component lantibiotic. Proc Natl Acad Sci U S A 103, 17243‐8 (2006).
  80. Weber, G. & Leitner, E. Disruption of the cyclosporin synthetase gene of Tolypocladium niveum. Curr Genet 26, 461‐7 (1994).
  81. Waring, M.J. & Wakelin, L.P. Echinomycin: a bifunctional intercalating antibiotic. Nature 252, 653‐7 (1974).
  82. Winterberg, B. et al. Elucidation of the complete ferrichrome A biosynthetic pathway in Ustilago maydis. Mol Microbiol (2010).
  83. Yeh, E., Lin, H., Clugston, S.L., Kohli, R.M. & Walsh, C.T. Enhanced macrocyclizing activity of the thioesterase from tyrocidine synthetase in presence of nonionic detergent. Chem Biol 11, 1573‐82 (2004).
  84. Gehring, A.M., Bradley, K.A. & Walsh, C.T. Enterobactin biosynthesis in Escherichia coli: isochorismate lyase (EntB) is a bifunctional enzyme that is phosphopantetheinylated by EntD and then acylated by EntE using ATP and 2,3‐dihydroxybenzoate. Biochemistry 36, 8495‐503 (1997).
  85. Koketsu, K., Oguri, H., Watanabe, K. & Oikawa, H. Enzymatic macrolactonization in the presence of DNA leading to triostin A analogs. Chem Biol 15, 818‐28 (2008).
  86. Kohli, R.M. & Walsh, C.T. Enzymology of acyl chain macrocyclization in natural product biosynthesis. Chem Commun (Camb), 297‐307 (2003).
  87. Reimmann, C. et al. Essential PchG‐dependent reduction in pyochelin biosynthesis of Pseudomonas aeruginosa. J Bacteriol 183, 813‐ 20 (2001).
  88. Miethke, M. et al. Ferri‐bacillibactin uptake and hydrolysis in Bacillus subtilis. Mol Microbiol 61, 1413‐27 (2006).
  89. Schoenafinger, G., Schracke, N., Linne, U. & Marahiel, M.A. Formylation domain: an essential modifying enzyme for the nonribosomal biosynthesis of linear gramicidin. J Am Chem Soc 128, 7406‐7 (2006).
  90. Umezawa, H. et al. Foroxymithine, a new inhibitor of angiotensin‐converting enzyme, produced by actinomycetes. J Antibiot (Tokyo) 38, 1813‐5 (1985).
  91. Hopwood, D.A. Forty years of genetics with Streptomyces: from in vivo through in vitro to in silico. Microbiology 145 ( Pt 9), 2183‐202 (1999).
  92. Schmoock, G. et al. Functional cross‐talk between fatty acid synthesis and nonribosomal peptide synthesis in quinoxaline antibiotic‐ producing streptomycetes. J Biol Chem 280, 4339‐49 (2005).
  93. Balibar, C.J., Vaillancourt, F.H. & Walsh, C.T. Generation of D amino acid residues in assembly of arthrofactin by dual condensation/epimerization domains. Chem Biol 12, 1189‐200 (2005).
  94. Rouhiainen, L. et al. Genes encoding synthetases of cyclic depsipeptides, anabaenopeptilides, in Anabaena strain 90. Mol Microbiol 37, 156‐67 (2000).
  95. Margulies, M. et al. Genome sequencing in microfabricated high‐density picolitre reactors. Nature 437, 376‐80 (2005).
  96. Bürgi, H., Dunitz, J. & Shefter, E. Geometrical reaction coordinates. II. Nucleophilic addition to a carbonyl group. J. Am. Chem. Soc. 95, 5065‐5067 (1973).
  97. Gu, L. et al. GNAT‐like strategy for polyketide chain initiation. Science 318, 970‐4 (2007).
  98. Kopp, F., Linne, U., Oberthur, M. & Marahiel, M.A. Harnessing the chemical activation inherent to carrier protein‐bound thioesters for the characterization of lipopeptide fatty acid tailoring enzymes. J Am Chem Soc 130, 2656‐66 (2008).
  99. Kouzarides, T. Histone acetylases and deacetylases in cell proliferation. Curr Opin Genet Dev 9, 40‐8 (1999).
  100. Kadi, N., Arbache, S., Song, L., Oves‐Costales, D. & Challis, G.L. Identification of a gene cluster that directs putrebactin biosynthesis in Shewanella species: PubC catalyzes cyclodimerization of N‐hydroxy‐N‐succinylputrescine. J Am Chem Soc 130, 10458‐9 (2008).
  101. Quadri, L.E., Sello, J., Keating, T.A., Weinreb, P.H. & Walsh, C.T. Identification of a Mycobacterium tuberculosis gene cluster encoding the biosynthetic enzymes for assembly of the virulence‐conferring siderophore mycobactin. Chem Biol 5, 631‐45 (1998).
  102. Weissman, K.J., Hong, H., Oliynyk, M., Siskos, A.P. & Leadlay, P.F. Identification of a phosphopantetheinyl transferase for erythromycin biosynthesis in Saccharopolyspora erythraea. Chembiochem 5, 116‐25 (2004).
  103. Stein, D.B., Linne, U., Hahn, M. & Marahiel, M.A. Impact of epimerization domains on the intermodular transfer of enzyme‐bound intermediates in nonribosomal peptide synthesis. Chembiochem 7, 1807‐14 (2006).
  104. Aoyagi, T. et al. Influence of angiotensin‐converting enzyme inhibitor, foroxymithine, on dynamic equilibrium around the renin‐ angiotensin system in vivo. J Appl Biochem 7, 388‐95 (1985).
  105. Hsieh, Y.J. & Kolattukudy, P.E. Inhibition of erythromycin synthesis by disruption of malonyl‐coenzyme A decarboxylase gene eryM in Saccharopolyspora erythraea. J Bacteriol 176, 714‐24 (1994).
  106. Steller, S. et al. Initiation of surfactin biosynthesis and the role of the SrfD‐thioesterase protein. Biochemistry 43, 11331‐43 (2004).
  107. Ansari, M.Z., Sharma, J., Gokhale, R.S. & Mohanty, D. In silico analysis of methyltransferase domains involved in biosynthesis of secondary metabolites. BMC Bioinformatics 9, 454 (2008).
  108. Huang, Y.T. et al. In vitro characterization of enzymes involved in the synthesis of nonproteinogenic residue (2S,3S)‐beta‐ methylphenylalanine in glycopeptide antibiotic mannopeptimycin. Chembiochem 10, 2480‐7 (2009).
  109. Meiwes, J. et al. Isolation and characterization of staphyloferrin A, a compound with siderophore activity from Staphylococcus hyicus DSM 20459. FEMS Microbiol Lett 55, 201‐5 (1990).
  110. Coy, M., Paw, B.H., Bindereif, A. & Neilands, J.B. Isolation and properties of N epsilon‐hydroxylysine:acetyl coenzyme A N epsilon‐ transacetylase from Escherichia coli pABN11. Biochemistry 25, 2485‐9 (1986).
  111. Broberg, A., Menkis, A. & Vasiliauskas, R. Kutznerides 1‐4, depsipeptides from the actinomycete Kutzneria sp. 744 inhabiting mycorrhizal roots of Picea abies seedlings. J Nat Prod 69, 97‐102 (2006).
  112. Sieber, S.A., Walsh, C.T. & Marahiel, M.A. Loading peptidyl‐coenzyme A onto peptidyl carrier proteins: a novel approach in characterizing macrocyclization by thioesterase domains. J Am Chem Soc 125, 10862‐6 (2003).
  113. Hunaiti, A.R. & Kolattukudy, P.E. Malonyl‐CoA decarboxylase from Streptomyces erythreus: purification, properties, and possible role in the production of erythromycin. Arch Biochem Biophys 229, 426‐39 (1984).
  114. Takeuchi, N. et al. Mammalian mitochondrial methionyl‐tRNA transformylase from bovine liver. Purification, characterization, and gene structure. J Biol Chem 273, 15085‐90 (1998).
  115. La Clair, J.J., Foley, T.L., Schegg, T.R., Regan, C.M. & Burkart, M.D. Manipulation of carrier proteins in antibiotic biosynthesis. Chem Biol 11, 195‐201 (2004).
  116. He, H. et al. Mannopeptimycins, novel antibacterial glycopeptides from Streptomyces hygroscopicus, LL‐AC98. J Am Chem Soc 124, 9729‐36 (2002).
  117. Schubert, H.L., Blumenthal, R.M. & Cheng, X. Many paths to methyltransfer: a chronicle of convergence. Trends Biochem Sci 28, 329‐ 35 (2003).
  118. Bhushan, R. & Bruckner, H. Marfey's reagent for chiral amino acid analysis: a review. Amino Acids 27, 231‐47 (2004).
  119. Blunt, J.W., Copp, B.R., Munro, M.H., Northcote, P.T. & Prinsep, M.R. Marine natural products. Nat Prod Rep 27, 165‐237 (2010).
  120. Strieker, M., Kopp, F., Mahlert, C., Essen, L.O. & Marahiel, M.A. Mechanistic and structural basis of stereospecific Cbeta‐hydroxylation in calcium‐dependent antibiotic, a daptomycin‐type lipopeptide. ACS Chem Biol 2, 187‐96 (2007).
  121. Salomon, C.E., Magarvey, N.A. & Sherman, D.H. Merging the potential of microbial genetics with biological and chemical diversity: an even brighter future for marine natural product drug discovery. Nat Prod Rep 21, 105‐21 (2004).
  122. Diekmann, H. [Metabolic products of microorganisms. 81. Occurrence and structures of coprogen B and dimerum acid]. Arch Mikrobiol 73, 65‐76 (1970).
  123. Rachid, S. et al. Molecular and biochemical studies of chondramide formation‐highly cytotoxic natural products from Chondromyces crocatus Cm c5. Chem Biol 13, 667‐81 (2006).
  124. Sieber, S.A. & Marahiel, M.A. Molecular mechanisms underlying nonribosomal peptide synthesis: approaches to new antibiotics. Chem Rev 105, 715‐38 (2005).
  125. Bruijnincx, P.C., van Koten, G. & Klein Gebbink, R.J. Mononuclear non‐heme iron enzymes with the 2‐His‐1‐carboxylate facial triad: recent developments in enzymology and modeling studies. Chem Soc Rev 37, 2716‐44 (2008).
  126. Newman, D. & Cragg, G. Natural products in medicinal chemistry. Bioorg Med Chem 17, 2120 (2009).
  127. Vaillancourt, F.H., Yeh, E., Vosburg, D.A., Garneau‐Tsodikova, S. & Walsh, C.T. Nature's inventory of halogenation catalysts: oxidative strategies predominate. Chem Rev 106, 3364‐78 (2006).
  128. Tomoda, H. et al. New cyclodepsipeptides, enniatins D, E and F produced by Fusarium sp. FO‐1305. J Antibiot (Tokyo) 45, 1207‐15 (1992).
  129. Chatterjee, J., Mierke, D. & Kessler, H. N‐methylated cyclic pentaalanine peptides as template structures. J Am Chem Soc 128, 15164‐ 72 (2006).
  130. Ansari, M.Z., Yadav, G., Gokhale, R.S. & Mohanty, D. NRPS‐PKS: a knowledge‐based resource for analysis of NRPS/PKS megasynthases. Nucleic Acids Res 32, W405‐13 (2004).
  131. Schmidt, E.W. et al. Patellamide A and C biosynthesis by a microcin‐like pathway in Prochloron didemni, the cyanobacterial symbiont of Lissoclinum patella. Proc Natl Acad Sci U S A 102, 7315‐20 (2005).
  132. Gust, B., Challis, G.L., Fowler, K., Kieser, T. & Chater, K.F. PCR‐targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Proc Natl Acad Sci U S A 100, 1541‐6 (2003).
  133. Trauger, J.W., Kohli, R.M., Mootz, H.D., Marahiel, M.A. & Walsh, C.T. Peptide cyclization catalysed by the thioesterase domain of tyrocidine synthetase. Nature 407, 215‐8 (2000).
  134. Kopp, F., Mahlert, C., Grunewald, J. & Marahiel, M.A. Peptide macrocyclization: the reductase of the nostocyclopeptide synthetase triggers the self‐assembly of a macrocyclic imine. J Am Chem Soc 128, 16478‐9 (2006).
  135. Sieber, S.A., Tao, J., Walsh, C.T. & Marahiel, M.A. Peptidyl thiophenols as substrates for nonribosomal peptide cyclases. Angew Chem Int Ed Engl 43, 493‐8 (2004).
  136. Barbeau, K., Zhang, G., Live, D.H. & Butler, A. Petrobactin, a photoreactive siderophore produced by the oil‐degrading marine bacterium Marinobacter hydrocarbonoclasticus. J Am Chem Soc 124, 378‐9 (2002).
  137. Paul, M., Poyan Mehr, A. & Kreutz, R. Physiology of local renin‐angiotensin systems. Physiol Rev 86, 747‐803 (2006).
  138. Du, L. & Lou, L. PKS and NRPS release mechanisms. Nat Prod Rep 27, 255‐78 (2010).
  139. Degrassi, G. et al. Plant growth‐promoting Pseudomonas putida WCS358 produces and secretes four cyclic dipeptides: cross‐talk with quorum sensing bacterial sensors. Curr Microbiol 45, 250‐4 (2002).
  140. Donadio, S., Monciardini, P. & Sosio, M. Polyketide synthases and nonribosomal peptide synthetases: the emerging view from bacterial genomics. Nat Prod Rep 24, 1073‐109 (2007).
  141. Lin, Y. & Miller, M.J. Practical synthesis of hydroxamate‐derived siderophore components by an indirect oxidation method and syntheses of a DIG‐siderophore conjugate and a biotin‐siderophore conjugate. J Org Chem 64, 7451‐7458 (1999).
  142. Challis, G.L., Ravel, J. & Townsend, C.A. Predictive, structure‐based model of amino acid recognition by nonribosomal peptide synthetase adenylation domains. Chem Biol 7, 211‐24 (2000).
  143. Haag, H. et al. Purification of yersiniabactin: a siderophore and possible virulence factor of Yersinia enterocolitica. J Gen Microbiol 139, 2159‐65 (1993).
  144. Wagner, B., Schumann, D., Linne, U., Koert, U. & Marahiel, M.A. Rational design of bacitracin A derivatives by incorporating natural product derived heterocycles. J Am Chem Soc 128, 10513‐20 (2006).
  145. Gehring, A.M., Mori, I. & Walsh, C.T. Reconstitution and characterization of the Escherichia coli enterobactin synthetase from EntB, EntE, and EntF. Biochemistry 37, 2648‐59 (1998).
  146. Nakaya, M. et al. Relative and absolute configuration of antitumor agent SW‐163D. Biosci Biotechnol Biochem 71, 2969‐76 (2007).
  147. Atkin, C.L. & Neilands, J.B. Rhodotorulic acid, a diketopiperazine dihydroxamic acid with growth‐factor activity. I. Isolation and characterization. Biochemistry 7, 3734‐9 (1968).
  148. Blow, D.M., Birktoft, J.J. & Hartley, B.S. Role of a buried acid group in the mechanism of action of chymotrypsin. Nature 221, 337‐40 (1969).
  149. Wittmann, M., Linne, U., Pohlmann, V. & Marahiel, M.A. Role of DptE and DptF in the lipidation reaction of daptomycin. Febs J 275, 5343‐54 (2008).
  150. Matson, J.A., Colson, K.L., Belofsky, G.N. & Bleiberg, B.B. Sandramycin, a novel antitumor antibiotic produced by a Nocardioides sp. II. Structure determination. J Antibiot (Tokyo) 46, 162‐6 (1993).
  151. Martinez, J.S. et al. Self‐assembling amphiphilic siderophores from marine bacteria. Science 287, 1245‐7 (2000).
  152. Cicero, D.O., Barbato, G. & Bazzo, R. Sensitivity enhancement of a two‐dimensional experiment for the measurement of heteronuclear long‐range coupling constants, by a new scheme of coherence selection by gradients. J Magn Reson 148, 209‐13 (2001).
  153. Cuesta‐Seijo, J.A., Weiss, M.S. & Sheldrick, G.M. Serendipitous SAD phasing of an echinomycin‐(ACGTACGT)2 bisintercalation complex. Acta Crystallogr D Biol Crystallogr 62, 417‐24 (2006).
  154. Miethke, M. & Marahiel, M.A. Siderophore‐based iron acquisition and pathogen control. Microbiol Mol Biol Rev 71, 413‐51 (2007).
  155. Wagner, B., Sieber, S.A., Baumann, M. & Marahiel, M.A. Solvent engineering substantially enhances the chemoenzymatic production of surfactin. Chembiochem 7, 595‐7 (2006).
  156. Mahlert, C., Kopp, F., Thirlway, J., Micklefield, J. & Marahiel, M.A. Stereospecific enzymatic transformation of alpha‐ketoglutarate to (2S,3R)‐3‐methyl glutamate during acidic lipopeptide biosynthesis. J Am Chem Soc 129, 12011‐8 (2007).
  157. Strieker, M., Nolan, E.M., Walsh, C.T. & Marahiel, M.A. Stereospecific synthesis of threo‐ and erythro‐beta‐hydroxyglutamic acid during kutzneride biosynthesis. J Am Chem Soc 131, 13523‐30 (2009).
  158. Samel, S.A., Schoenafinger, G., Knappe, T.A., Marahiel, M.A. & Essen, L.O. Structural and functional insights into a peptide bond‐ forming bidomain from a nonribosomal peptide synthetase. Structure 15, 781‐92 (2007).
  159. Peuckert, F., Miethke, M., Albrecht, A.G., Essen, L.‐O. & Marahiel, M.A. Structural Basis and Stereochemistry of Triscatecholate Siderophore Binding by FeuA. Angew. Chem. Int. Ed. 48(2009).
  160. Helmetag, V., Samel, S.A., Thomas, M.G., Marahiel, M.A. & Essen, L.O. Structural basis for the erythro‐stereospecificity of the L‐ arginine oxygenase VioC in viomycin biosynthesis. Febs J 276, 3669‐82 (2009).
  161. Tillett, D. et al. Structural organization of microcystin biosynthesis in Microcystis aeruginosa PCC7806: an integrated peptide‐ polyketide synthetase system. Chem Biol 7, 753‐64 (2000).
  162. Khosla, C., Tang, Y., Chen, A.Y., Schnarr, N.A. & Cane, D.E. Structure and mechanism of the 6‐deoxyerythronolide B synthase. Annu Rev Biochem 76, 195‐221 (2007).
  163. Hojati, Z. et al. Structure, biosynthetic origin, and engineered biosynthesis of calcium‐dependent antibiotics from Streptomyces coelicolor. Chem Biol 9, 1175‐87 (2002).
  164. Ledyard, K.M., Butler A. Structure of putrebactin, a new dihydroamate siderophore produced by Shewanella putrefaciens. J Am Chem Soc 2, 93‐97 (1997).
  165. Dell, A. et al. Structure revision of the antibiotic echinomycin. J Am Chem Soc 97, 2497‐502 (1975).
  166. Grunewald, J., Sieber, S.A., Mahlert, C., Linne, U. & Marahiel, M.A. Synthesis and derivatization of daptomycin: a chemoenzymatic route to acidic lipopeptide antibiotics. J Am Chem Soc 126, 17025‐31 (2004).
  167. Dolence, E.K. & Miller, M.J. Synthesis of foroxymithine, a microbial fermentation product and angiotensin 1 converting enzyme inhibitor. J. Org. Chem. 56, 492‐499 (1991).
  168. Vaillancourt, F.H., Yin, J. & Walsh, C.T. SyrB2 in syringomycin E biosynthesis is a nonheme FeII alpha‐ketoglutarate‐ and O2‐ dependent halogenase. Proc Natl Acad Sci U S A 102, 10111‐6 (2005).
  169. Konz, D., Klens, A., Schorgendorfer, K. & Marahiel, M.A. The bacitracin biosynthesis operon of Bacillus licheniformis ATCC 10716: molecular characterization of three multi‐modular peptide synthetases. Chem Biol 4, 927‐37 (1997).
  170. Wakelin, S.P. & Waring, M.J. The binding of echinomycin to deoxyribonucleic acid. Biochem J 157, 721‐40 (1976).
  171. Du, L., Sanchez, C., Chen, M., Edwards, D.J. & Shen, B. The biosynthetic gene cluster for the antitumor drug bleomycin from Streptomyces verticillus ATCC15003 supporting functional interactions between nonribosomal peptide synthetases and a polyketide synthase. Chem Biol 7, 623‐42 (2000).
  172. May, J.J., Wendrich, T.M. & Marahiel, M.A. The dhb operon of Bacillus subtilis encodes the biosynthetic template for the catecholic siderophore 2,3‐dihydroxybenzoate‐glycine‐threonine trimeric ester bacillibactin. J Biol Chem 276, 7209‐17 (2001).
  173. Crotti, A.E.M. et al. The fragmentation mechanism of five‐membered lactones by electrospray ionisation tandem mass spectrometry. Int J Mass Spectrom 232, 271‐276 (2004).
  174. Newman, D.J., Cragg, G.M. & Snader, K.M. The influence of natural products upon drug discovery. Nat Prod Rep 17, 215‐34 (2000).
  175. Gibson, F. & Magrath, D.I. The isolation and characterization of a hydroxamic acid (aerobactin) formed by Aerobacter aerogenes 62‐I. Biochim Biophys Acta 192, 175‐84 (1969).
  176. Hoyer, K.M., Mahlert, C. & Marahiel, M.A. The iterative gramicidin s thioesterase catalyzes peptide ligation and cyclization. Chem Biol 14, 13‐22 (2007).
  177. Kessler, N., Schuhmann, H., Morneweg, S., Linne, U. & Marahiel, M.A. The linear pentadecapeptide gramicidin is assembled by four multimodular nonribosomal peptide synthetases that comprise 16 modules with 56 catalytic domains. J Biol Chem 279, 7413‐9 (2004).
  178. Leibundgut, M., Maier, T., Jenni, S. & Ban, N. The multienzyme architecture of eukaryotic fatty acid synthases. Curr Opin Struct Biol 18, 714‐25 (2008).
  179. Gehring, A.M., Mori, I., Perry, R.D. & Walsh, C.T. The nonribosomal peptide synthetase HMWP2 forms a thiazoline ring during biogenesis of yersiniabactin, an iron‐chelating virulence factor of Yersinia pestis. Biochemistry 37, 11637‐50 (1998).
  180. Martinez, J.L., Herrero, M. & de Lorenzo, V. The organization of intercistronic regions of the aerobactin operon of pColV‐K30 may account for the differential expression of the iucABCD iutA genes. J Mol Biol 238, 288‐93 (1994).
  181. Weber, G., Schorgendorfer, K., Schneider‐Scherzer, E. & Leitner, E. The peptide synthetase catalyzing cyclosporine production in Tolypocladium niveum is encoded by a giant 45.8‐kilobase open reading frame. Curr Genet 26, 120‐5 (1994).
  182. Stachelhaus, T., Mootz, H.D. & Marahiel, M.A. The specificity‐conferring code of adenylation domains in nonribosomal peptide synthetases. Chem Biol 6, 493‐505 (1999).
  183. Bister, B. et al. The structure of salmochelins: C‐glucosylated enterobactins of Salmonella enterica. Biometals 17, 471‐81 (2004).
  184. Otsuka, H. & Shoji, J. The structure of Triostin C. Tetrahedron 21, 2931‐8 (1965).
  185. Samel, S.A., Wagner, B., Marahiel, M.A. & Essen, L.O. The thioesterase domain of the fengycin biosynthesis cluster: a structural base for the macrocyclization of a non‐ribosomal lipopeptide. J Mol Biol 359, 876‐89 (2006).
  186. Bycroft, B.W. et al. The total structure of viomycin, a tuberculostatic peptide antibiotic. Experientia 27, 501‐3 (1971).
  187. Romero, F. et al. Thiocoraline, a new depsipeptide with antitumor activity produced by a marine Micromonospora. I. Taxonomy, fermentation, isolation, and biological activities. J Antibiot (Tokyo) 50, 734‐7 (1997).
  188. Perez Baz, J., Canedo, L.M., Fernandez Puentes, J.L. & Silva Elipe, M.V. Thiocoraline, a novel depsipeptide with antitumor activity produced by a marine Micromonospora. II. Physico‐chemical properties and structure determination. J Antibiot (Tokyo) 50, 738‐41 (1997).
  189. Luo, L. et al. Timing of epimerization and condensation reactions in nonribosomal peptide assembly lines: kinetic analysis of phenylalanine activating elongation modules of tyrocidine synthetase B. Biochemistry 41, 9184‐96 (2002).
  190. Watanabe, K. et al. Total biosynthesis of antitumor nonribosomal peptides in Escherichia coli. Nat Chem Biol 2, 423‐8 (2006).
  191. Bayo‐Puxan, N. et al. Total solid‐phase synthesis of the azathiocoraline class of symmetric bicyclic peptides. Chemistry 12, 9001‐9 (2006).
  192. Kearns, K.D. & Hunter, M.D. Toxin‐Producing Anabaena flos‐aquae Induces Settling of Chlamydomonas reinhardtii, a Competing Motile Alga. Microb Ecol 42, 80‐86 (2001).
  193. Pospiech, A., Bietenhader, J. & Schupp, T. Two multifunctional peptide synthetases and an O‐methyltransferase are involved in the biosynthesis of the DNA‐binding antibiotic and antitumour agent saframycin Mx1 from Myxococcus xanthus. Microbiology 142 ( Pt 4), 741‐6 (1996).
  194. Song, L. et al. Type III polyketide synthase beta‐ketoacyl‐ACP starter unit and ethylmalonyl‐CoA extender unit selectivity discovered by Streptomyces coelicolor genome mining. J Am Chem Soc 128, 14754‐5 (2006).
  195. Schwyn, B. & Neilands, J.B. Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160, 47‐56 (1987).
  196. Hubbard, B.K. & Walsh, C.T. Vancomycin assembly: nature's way. Angew Chem Int Ed Engl 42, 730‐65 (2003).
  197. Abbott, J.C., Aanensen, D.M. & Bentley, S.D. WebACT: an online genome comparison suite. Methods Mol Biol 395, 57‐74 (2007).
  198. Stehr, M. et al. A hydrophobic sequence motif common to N‐hydroxylating enzymes. Trends Biochem Sci 23, 56‐7 (1998).
  199. Healy, F.G., Wach, M., Krasnoff, S.B., Gibson, D.M. & Loria, R. The txtAB genes of the plant pathogen Streptomyces acidiscabies encode a peptide synthetase required for phytotoxin thaxtomin A production and pathogenicity. Mol Microbiol 38, 794‐804 (2000).
  200. Cosmina, P. et al. Sequence and analysis of the genetic locus responsible for surfactin synthesis in Bacillus subtilis. Mol Microbiol 8, 821‐31 (1993).
  201. Wadhwani, P., Afonin, S., Ieronimo, M., Buerck, J. & Ulrich, A.S. Optimized protocol for synthesis of cyclic gramicidin S: starting amino acid is key to high yield. J Org Chem 71, 55‐61 (2006).
  202. Zocher, R. et al. Biosynthesis of cyclosporin A: partial purification and properties of a multifunctional enzyme from Tolypocladium inflatum. Biochemistry 25, 550‐3 (1986).
  203. Schneider, T.L., Shen, B. & Walsh, C.T. Oxidase domains in epothilone and bleomycin biosynthesis: thiazoline to thiazole oxidation during chain elongation. Biochemistry 42, 9722‐30 (2003).
  204. Schultz, A.W. et al. Biosynthesis and structures of cyclomarins and cyclomarazines, prenylated cyclic peptides of marine actinobacterial origin. J Am Chem Soc 130, 4507‐16 (2008).
  205. Watanabe, K. et al. Escherichia coli allows efficient modular incorporation of newly isolated quinomycin biosynthetic enzyme into echinomycin biosynthetic pathway for rational design and synthesis of potent antibiotic unnatural natural product. J Am Chem Soc 131, 9347‐53 (2009).
  206. Heemstra, J.R., Jr., Walsh, C.T. & Sattely, E.S. Enzymatic tailoring of ornithine in the biosynthesis of the Rhizobium cyclic trihydroxamate siderophore vicibactin. J Am Chem Soc 131, 15317‐29 (2009).
  207. Carter, R.A. et al. The vbs genes that direct synthesis of the siderophore vicibactin in Rhizobium leguminosarum: their expression in other genera requires ECF sigma factor RpoI. Mol Microbiol 44, 1153‐66 (2002).
  208. Oves‐Costales, D., Kadi, N. & Challis, G.L. The long‐overlooked enzymology of a nonribosomal peptide synthetase‐independent pathway for virulence‐conferring siderophore biosynthesis. Chem Commun (Camb), 6530‐41 (2009).
  209. Zerikly, M. & Challis, G.L. Strategies for the discovery of new natural products by genome mining. Chembiochem 10, 625‐33 (2009).
  210. Challis, G.L. Mining microbial genomes for new natural products and biosynthetic pathways. Microbiology 154, 1555‐69 (2008).
  211. Lautru, S., Oves‐Costales, D., Pernodet, J.L. & Challis, G.L. MbtH‐like protein‐mediated cross‐talk between non‐ribosomal peptide antibiotic and siderophore biosynthetic pathways in Streptomyces coelicolor M145. Microbiology 153, 1405‐12 (2007).
  212. Lautru, S., Deeth, R.J., Bailey, L.M. & Challis, G.L. Discovery of a new peptide natural product by Streptomyces coelicolor genome mining. Nat Chem Biol 1, 265‐9 (2005).
  213. Lazos, O. et al. Biosynthesis of the putative siderophore erythrochelin requires unprecedented crosstalk between separate nonribosomal peptide gene clusters. Chem Biol 17, 160‐73 (2010).
  214. Challis, G.L. A widely distributed bacterial pathway for siderophore biosynthesis independent of nonribosomal peptide synthetases. Chembiochem 6, 601‐11 (2005).
  215. Barona‐Gomez, F., Wong, U., Giannakopulos, A.E., Derrick, P.J. & Challis, G.L. Identification of a cluster of genes that directs desferrioxamine biosynthesis in Streptomyces coelicolor M145. J Am Chem Soc 126, 16282‐3 (2004).
  216. Rausch, C., Hoof, I., Weber, T., Wohlleben, W. & Huson, D.H. Phylogenetic analysis of condensation domains in NRPS sheds light on their functional evolution. BMC Evol Biol 7, 78 (2007).
  217. Mootz, H.D., Finking, R. & Marahiel, M.A. 4'‐phosphopantetheine transfer in primary and secondary metabolism of Bacillus subtilis. J Biol Chem 276, 37289‐98 (2001).
  218. Schaible, U.E. & Kaufmann, S.H. Iron and microbial infection. Nat Rev Microbiol 2, 946‐53 (2004).
  219. Keating, T.A., Marshall, C.G., Walsh, C.T. & Keating, A.E. The structure of VibH represents nonribosomal peptide synthetase condensation, cyclization and epimerization domains. Nat Struct Biol 9, 522‐6 (2002).
  220. Yu, S., Fiss, E. & Jacobs, W.R., Jr. Analysis of the exochelin locus in Mycobacterium smegmatis: biosynthesis genes have homology with genes of the peptide synthetase family. J Bacteriol 180, 4676‐85 (1998).
  221. Lee, J.S. & Waring, M.J. Bifunctional intercalation and sequence specificity in the binding of quinomycin and triostin antibiotics to deoxyribonucleic acid. Biochem J 173, 115‐28 (1978).
  222. Raymond, K.N., Dertz, E.A. & Kim, S.S. Enterobactin: an archetype for microbial iron transport. Proc Natl Acad Sci U S A 100, 3584‐8 (2003).
  223. Martinez, J.S. et al. Structure and membrane affinity of a suite of amphiphilic siderophores produced by a marine bacterium. Proc Natl Acad Sci U S A 100, 3754‐9 (2003).
  224. Revill, W.P., Bibb, M.J. & Hopwood, D.A. Purification of a malonyltransferase from Streptomyces coelicolor A3(2) and analysis of its genetic determinant. J Bacteriol 177, 3946‐52 (1995).
  225. Thomas, M.G., Chan, Y.A. & Ozanick, S.G. Deciphering tuberactinomycin biosynthesis: isolation, sequencing, and annotation of the viomycin biosynthetic gene cluster. Antimicrob Agents Chemother 47, 2823‐30 (2003).
  226. Thariath, A., Socha, D., Valvano, M.A. & Viswanatha, T. Construction and biochemical characterization of recombinant cytoplasmic forms of the IucD protein (lysine:N6‐hydroxylase) encoded by the pColV‐K30 aerobactin gene cluster. J Bacteriol 175, 589‐96 (1993).
  227. Udwary, D.W. et al. Genome sequencing reveals complex secondary metabolome in the marine actinomycete Salinispora tropica. Proc Natl Acad Sci U S A 104, 10376‐81 (2007).
  228. Mittenhuber, G., Weckermann, R. & Marahiel, M.A. Gene cluster containing the genes for tyrocidine synthetases 1 and 2 from Bacillus brevis: evidence for an operon. J Bacteriol 171, 4881‐7 (1989).
  229. Kratzschmar, J., Krause, M. & Marahiel, M.A. Gramicidin S biosynthesis operon containing the structural genes grsA and grsB has an open reading frame encoding a protein homologous to fatty acid thioesterases. J Bacteriol 171, 5422‐9 (1989).
  230. Nakano, M.M., Marahiel, M.A. & Zuber, P. Identification of a genetic locus required for biosynthesis of the lipopeptide antibiotic surfactin in Bacillus subtilis. J Bacteriol 170, 5662‐8 (1988).
  231. de Lorenzo, V., Wee, S., Herrero, M. & Neilands, J.B. Operator sequences of the aerobactin operon of plasmid ColV‐K30 binding the ferric uptake regulation (fur) repressor. J Bacteriol 169, 2624‐30 (1987).
  232. de Lorenzo, V. & Neilands, J.B. Characterization of iucA and iucC genes of the aerobactin system of plasmid ColV‐K30 in Escherichia coli. J Bacteriol 167, 350‐5 (1986).
  233. Carrano, C.J. & Raymond, K.N. Coordination chemistry of microbial iron transport compounds: rhodotorulic acid and iron uptake in Rhodotorula pilimanae. J Bacteriol 136, 69‐74 (1978).
  234. Bindereif, A. & Neilands, J.B. Cloning of the aerobactin‐mediated iron assimilation system of plasmid ColV. J Bacteriol 153, 1111‐3 (1983).
  235. Carbonetti, N.H. & Williams, P.H. A cluster of five genes specifying the aerobactin iron uptake system of plasmid ColV‐K30. Infect Immun 46, 7‐12 (1984).
  236. Neumann, C.S. & Walsh, C.T. Biosynthesis of (‐)‐(1S,2R)‐allocoronamic acyl thioester by an Fe(II)‐dependent halogenase and a cyclopropane‐forming flavoprotein. J Am Chem Soc 130, 14022‐3 (2008).
  237. Ughetto, G. et al. A comparison of the structure of echinomycin and triostin A complexed to a DNA fragment. Nucleic Acids Res 13, 2305‐23 (1985).
  238. Warner, P.J., Williams, P.H., Bindereif, A. & Neilands, J.B. ColV plasmid‐specific aerobactin synthesis by invasive strains of Escherichia coli. Infect Immun 33, 540‐5 (1981).
  239. Chiu, H.T. et al. Molecular cloning and sequence analysis of the complestatin biosynthetic gene cluster. Proc Natl Acad Sci U S A 98, 8548‐53 (2001).
  240. Lomri, N., Gu, Q. & Cashman, J.R. Molecular cloning of the flavin‐containing monooxygenase (form II) cDNA from adult human liver. Proc Natl Acad Sci U S A 89, 1685‐9 (1992).
  241. Besemer, J., Lomsadze, A. & Borodovsky, M. GeneMarkS: a self‐training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res 29, 2607‐18 (2001).
  242. Kopp, F. & Marahiel, M.A. Where chemistry meets biology: the chemoenzymatic synthesis of nonribosomal peptides and polyketides. Curr Opin Biotechnol 18, 513‐20 (2007).
  243. Knappe, T.A. et al. Isolation and structural characterization of capistruin, a lasso peptide predicted from the genome sequence of Burkholderia thailandensis E264. J Am Chem Soc 130, 11446‐54 (2008).
  244. Dawson, S., Malkinson, J.P., Paumier, D. & Searcey, M. Bisintercalator natural products with potential therapeutic applications: isolation, structure determination, synthetic and biological studies. Nat Prod Rep 24, 109‐26 (2007).


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten