Publikationsserver der Universitätsbibliothek Marburg

Titel:Regulation of the type IV pili localization in Myxococcus xanthus
Autor:Bulyha, Iryna
Weitere Beteiligte: Sogaard-Andersen, L.
Veröffentlicht:2010
URI:https://archiv.ub.uni-marburg.de/diss/z2010/0453
DOI: https://doi.org/10.17192/z2010.0453
URN: urn:nbn:de:hebis:04-z2010-04533
DDC:500 Naturwissenschaften
Titel (trans.):Regulation der Typ IV Pili Lokalisation in Myxococcus xanthus
Publikationsdatum:2010-07-08
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Protein localization, Type IV pili, Typ IV Pili, Proteinlokalisierung, Lokalisation, Richtungswechsel, Reversal, Myxobakterien
Referenziert von:

Summary:
Myxococcus xanthus cells are rod-shaped and move in the direction of their long axis, using two distinct motility systems. The S-motility system is type IV pili (T4P)-dependent. T4P are dynamic structures, localized at the leading cell pole and undergo extension/retraction oscillations. Upon retraction T4P generate a mechanical force, large enough to pull a cell forward. Regulation of T4P extension/retraction dynamics relies on two motor proteins, PilB and PilT, which are members of the superfamily of secretion ATPases. PilT is the only protein required for retraction. Genetic and biochemical analyses suggest that PilB and PilT function antagonistically and that ATP hydrolysis by PilB provides the energy for T4P extension, while the energy for T4P retraction is provided by ATP hydrolysis by PilT. How the activities of PilB and PilT are regulated to provide temporal separation of T4P extension and retraction is not known. Although several models have been proposed, it is still not clear how mechanical force is generated in the second motility system, the A-motility system. As M. xanthus cells move over a surface, they occasionally stop and then resume gliding in opposite direction, with the old lagging pole becoming the new leading pole and vice versa. The Frz chemosensory system regulates the reversal frequency. Importantly, during reversals the two motility systems change their polarity synchronously. To investigate the molecular mechanisms underlying T4P extension/retraction and T4P pole-to-pole oscillations during a reversal, the cellular localization of six conserved T4P proteins (PilB, PilT, PilQ, PilC, PilN and PilM) was determined. These six proteins in combination localize to three different subcellular compartments – the outer membrane, inner memrane and cytoplasm. We found that PilB, PilT, PilQ, PilC, PilN and PilM localized in three distinct polar patterns. The outer membrane secretin PilQ, the inner membrane proteins PilC and PilN and the MreB/FtsA-like cytoplasmic protein PilM localized to both poles in a symmetric pattern. Notably, this pattern did not change during reversals. Moreover, no differences in the localization of PilQ, PilC, PilN and PilM were observed in the absence of an active Frz system. Thus, we propose that PilQ, PilC, PilN and PilM are stationary T4P components, which do not oscillate from pole to pole during cellular reversal. Furthermore, we found that the cytoplasmic proteins PilB and PilT localized to the opposite poles. PilB, the extension motor, localized predominantly at the piliated cell pole, whereas PilT, the retraction motor, predominantly at the non-piliated cell pole. Using time-lapse microscopy, we directly observed pole-to-pole relocation of YFP-PilT during cellular reversals, which did not occur in the absence of the Frz system. We also observed clear differences in the PilB localization in the WT and in a frz mutant. In WT, three distinct PilB localization patterns were observed in immunofluorescence microscopy with anti-PilB antibodies: unipolar (40% of cells), bipolar asymmetric (35%) and bipolar symmetric (25%). In a frz mutant, however, the ratio shifted towards bipolar symmetric localization. We conclude that the molecular motors PilB and PilT are dynamic T4P components and oscillate between poles during reversals. Hence, T4P pole-to-pole oscillations in M. xanthus involve the disassembly of T4P machinery at one pole and reassembly of this machinery at the opposite pole. In addition, YFP-PilT displayed noisy accumulation at the piliated pole between reversals, and FRAP experiments revealed rapid turnover of YFP-PilT in the polar clusters between reversals. Taken together, these observations suggest that the spatial separation of PilB and PilT in combination with the noisy PilT accumulation at the piliated pole allow the temporal separation of extension and retraction. The Frz system regulates the dynamic localization of PilB and PilT during reversals. In addition, we found that the Ras-like GTPase MglA and its paralog SofG regulate the correct polarity of PilB and PilT. Specifically, we found that MglA is a nucleotide-dependent molecular switch that establishes correct PilT polarity and regulates its dynamic localization during reversals. SofG is required for establishing the correct localization/polarity of PilB and PilT and also inhibits T4P assembly at the lagging cell pole.

Bibliographie / References

  1. Laemmli, U.K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685.
  2. Krogh, A., Larsson, B., von Heijne, G., and Sonnhammer, E.L. (2001). Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305, 567-580.
  3. Herdendorf, T.J., McCaslin, D.R., and Forest, K.T. (2002). Aquifex aeolicus PilT, homologue of a surface motility protein, is a thermostable oligomeric NTPase. J Bacteriol 184, 6465-6471.
  4. Lybarger, S.R., Johnson, T.L., Gray, M.D., Sikora, A.E., and Sandkvist, M. (2009). Docking and assembly of the type II secretion complex of Vibrio cholerae. J Bacteriol 191, 3149-3161.
  5. Wolgemuth, C., Hoiczyk, E., Kaiser, D., and Oster, G. (2002). How myxobacteria glide. Curr Biol 12, 369-377.
  6. Mignot, T. (2007). The elusive engine in Myxococcus xanthus gliding motility. Cell Mol Life Sci 64, 2733-2745.
  7. Sampaleanu, L.M., Bonanno, J.B., Ayers, M., Koo, J., Tammam, S., Burley, S.K., Almo, S.C., Burrows, L.L., and Howell, P.L. (2009). Periplasmic domains of Pseudomonas aeruginosa PilN and PilO form a stable heterodimeric complex. J Mol Biol 394, 143-159.
  8. Merz, A.J., and Forest, K.T. (2002). Bacterial surface motility: slime trails, grappling hooks and nozzles. Curr Biol 12, R297-303.
  9. Iden, S., and Collard, J.G. (2008). Crosstalk between small GTPases and polarity proteins in cell polarization. Nat Rev Mol Cell Biol 9, 846-859.
  10. Zusman, D.R., Scott, A.E., Yang, Z., and Kirby, J.R. (2007). Chemosensory pathways, motility and development in Myxococcus xanthus. Nat Rev Microbiol 5, 862-872.
  11. Leonardy, S., Bulyha, I., and Sogaard-Andersen, L. (2008). Reversing cells and oscillating motility proteins. Mol Biosyst 4, 1009-1014.
  12. Wu, S.S., Wu, J., and Kaiser, D. (1997). The Myxococcus xanthus pilT locus is required for social gliding motility although pili are still produced. Mol Microbiol 23, 109-121.
  13. Ward, M.J., Lew, H., and Zusman, D.R. (2000). Social motility in Myxococcus xanthus requires FrzS, a protein with an extensive coiled-coil domain. Mol Microbiol 37, 1357-1371.
  14. Youderian, P., Burke, N., White, D.J., and Hartzell, P.L. (2003). Identification of genes required for adventurous gliding motility in Myxococcus xanthus with the transposable element mariner. Mol Microbiol 49, 555-570.
  15. Sakai, D., Horiuchi, T., and Komano, T. (2001). ATPase activity and multimer formation of PilQ protein are required for thin pilus biogenesis in plasmid R64. J Biol Chem 276, 17968- 17975.
  16. Sogaard-Andersen, L., Slack, F.J., Kimsey, H., and Kaiser, D. (1996). Intercellular C- signaling in Myxococcus xanthus involves a branched signal transduction pathway. Genes Dev 10, 740-754.
  17. Vlamakis, H., Aguilar, C., Losick, R., and Kolter, R. (2008). Control of cell fate by the formation of an architecturally complex bacterial community. Genes Dev 22, 945-953.
  18. Sager, B., and Kaiser, D. (1994). Intercellular C-signaling and the traveling waves of Myxococcus. Genes Dev 8, 2793-2804.
  19. Wu, S.S., and Kaiser, D. (1995). Genetic and functional evidence that Type IV pili are required for social gliding motility in Myxococcus xanthus. Mol Microbiol 18, 547-558.
  20. Bustamante, V.H., Martinez-Flores, I., Vlamakis, H.C., and Zusman, D.R. (2004). Analysis of the Frz signal transduction system of Myxococcus xanthus shows the importance of the conserved C-terminal region of the cytoplasmic chemoreceptor FrzCD in sensing signals. Mol Microbiol 53, 1501-1513.
  21. Shi, W. (2005). Exopolysaccharide biosynthesis genes required for social motility in Myxococcus xanthus. Mol Microbiol 55, 206-220.
  22. Carbonnelle, E., Helaine, S., Nassif, X., and Pelicic, V. (2006). A systematic genetic analysis in Neisseria meningitidis defines the Pil proteins required for assembly, functionality, stabilization and export of type IV pili. Mol Microbiol 61, 1510-1522.
  23. Yu, R., and Kaiser, D. (2007). Gliding motility and polarized slime secretion. Mol Microbiol 63, 454-467.
  24. Rumszauer, J., Schwarzenlander, C., and Averhoff, B. (2006). Identification, subcellular localization and functional interactions of PilMNOWQ and PilA4 involved in transformation competency and pilus biogenesis in the thermophilic bacterium Thermus thermophilus HB27.
  25. McBride, M.J. (2001). Bacterial gliding motility: multiple mechanisms for cell movement over surfaces. Annu Rev Microbiol 55, 49-75.
  26. Insall, R., and Andrew, N. (2007). Chemotaxis in Dictyostelium: how to walk straight using parallel pathways. Curr Opin Microbiol 10, 578-581.
  27. Mattick, J.S. (2002). Type IV pili and twitching motility. Ann Rev Microbiol 56, 289-314.
  28. Konovalova, A., Petters, T., and Sogaard-Andersen, L. (2010). Extracellular biology of Myxococcus xanthus. FEMS Microbiol Rev 34, 89-106.
  29. Søgaard-Andersen, L. (2004). Cell polarity, intercellular signalling and morphogenetic cell movements in Myxococcus xanthus. Curr Opin Microbiol 7, 587-593.
  30. Scheffzek, K., Ahmadian, M.R., Kabsch, W., Wiesmuller, L., Lautwein, A., Schmitz, F., and Wittinghofer, A. (1997). The Ras-RasGAP complex: structural basis for GTPase activation and its loss in oncogenic Ras mutants. Science 277, 333-338.
  31. Savvides, S.N. (2007). Secretion superfamily ATPases swing big. Structure 15, 255-257.
  32. Wolfgang, M., Lauer, P., Park, H.S., Brossay, L., Hebert, J., and Koomey, M. (1998). PilT mutations lead to simultaneous defects in competence for natural transformation and twitching motility in piliated Neisseria gonorrhoeae. Mol Microbiol 29, 321-330.
  33. Shi, X., Wegener-Feldbrugge, S., Huntley, S., Hamann, N., Hedderich, R., and Sogaard- Andersen, L. (2008). Bioinformatics and experimental analysis of proteins of two-component systems in Myxococcus xanthus. J Bacteriol 190, 613-624.
  34. Kroos, L., Hartzell, P., Stephens, K., and Kaiser, D. (1988). A link between cell movement and gene expression argues that motility is required for cell-cell signaling during fruiting body development. Genes Dev 2, 1677-1685.
  35. Kaiser, D. (2006). A microbial genetic journey. Annu Rev Microbiol 60, 1-25.
  36. Yang, Z., Geng, Y., Xu, D., Kaplan, H.B., and Shi, W. (1998). A new set of chemotaxis homologues is essential for Myxococcus xanthus social motility. Mol Microbiol 30, 1123-1130.
  37. Kearns, D.B., Bonner, P.J., Smith, D.R., and Shimkets, L.J. (2002). An extracellular matrix- associated zinc metalloprotease is required for dilauroyl phosphatidylethanolamine chemotactic excitation in Myxococcus xanthus. J Bacteriol 184, 1678-1684.
  38. Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72, 248-254.
  39. Kaiser, D. (2000). Bacterial motility: how do pili pull? Curr Biol 10, R777-780.
  40. Youderian, P. (1998). Bacterial motility: secretory secrets of gliding bacteria. Curr Biol 8, R408- 411.
  41. Harshey, R.M. (1994). Bees aren't the only ones: swarming in gram-negative bacteria. Mol Microbiol 13, 389-394.
  42. Kim, S.K., and Kaiser, D. (1990b). Cell motility is required for the transmission of C-factor, an intercellular signal that coordinates fruiting body morphogenesis of Myxococcus xanthus. Genes Dev 4, 896-904.
  43. Kaiser, D., and Crosby, C. (1983). Cell movements and its coordination in swarms of Myxococcus xanthus. Cell Motil 3, 275-284.
  44. Kim, S.K., and Kaiser, D. (1990a). C-factor: a cell-cell signaling protein required for fruiting body morphogenesis of Myxococcus xanthus. Cell 61, 19-26.
  45. Martin, P.R., Watson, A.A., McCaul, T.F., and Mattick, J.S. (1995). Characterization of a five- gene cluster required for the biogenesis of type 4 fimbriae in Pseudomonas aeruginosa. Mol Microbiol 16, 497-508.
  46. Characterization of type IV pilus genes in Pseudomonas syringae pv. tomato DC3000. Mol Plant Microbe Interact 11, 1048-1056.
  47. Yang, Z., Duan, X., Esmaeiliyan, M., and Kaplan, H.B. (2008). Composition, structure, and function of the Myxococcus xanthus cell envelope. In Myxobacteria: Multicellularity and Differentiation, W. DE, ed. (ASM Press, Washington, DC).
  48. Kaiser, D. (2003). Coupling cell movement to multicellular development in myxobacteria. Nature Rev Microbiol 1, 45-54.
  49. Hazes, B., Sastry, P.A., Hayakawa, K., Read, R.J., and Irvin, R.T. (2000). Crystal structure of Pseudomonas aeruginosa PAK pilin suggests a main-chain-dominated mode of receptor binding. J Mol Biol 299, 1005-1017.
  50. Robien, M.A., Krumm, B.E., Sandkvist, M., and Hol, W.G. (2003). Crystal structure of the extracellular protein secretion NTPase EpsE of Vibrio cholerae. J Mol Biol 333, 657-674.
  51. Yeo, H.J., Savvides, S.N., Herr, A.B., Lanka, E., and Waksman, G. (2000). Crystal structure of the hexameric traffic ATPase of the Helicobacter pylori type IV secretion system. Mol Cell 6, 1461-1472.
  52. Curriculum Vitae Personal data Name Iryna M. Bulyha Date of birth June 23 rd 1983
  53. Koonin, E.V., and Aravind, L. (2000). Dynein light chains of the Roadblock/LC7 group belong to an ancient protein superfamily implicated in NTPase regulation. Curr Biol 10, R774-776.
  54. Bradley, D.E. (1972a). Evidence for the retraction of Pseudomonas aeruginosa RNA phage pili.
  55. Kroos, L., and Kaiser, D. (1987). Expression of many developmentally regulated genes in Myxococcus depends on a sequence of cell interactions. Genes & Dev 1, 840-854.
  56. McBride, M.J., Weinberg, R.A., and Zusman, D.R. (1989). "Frizzy" aggregation genes of the gliding bacterium Myxococcus xanthus show sequence similarities to the chemotaxis genes of enteric bacteria. Proc Natl Acad Sci U S A 86, 424-428.
  57. Functional role of conserved residues in the characteristic secretion NTPase motifs of the Pseudomonas aeruginosa type IV pilus motor proteins PilB, PilT and PilU. Microbiology 154, 114-126.
  58. Mignot, T., and Kirby, J.R. (2008). Genetic circuitry controlling motility behaviors of Myxococcus xanthus. Bioessays 30, 733-743.
  59. Hartzell, P.L., and Youderian, P. (1995). Genetics of gliding motility and development in Myxococcus xanthus. Arch Microbiol 164, 309-323.
  60. Hodgkin, J., and Kaiser, D. (1979a). Genetics of gliding motility in Myxococcus xanthus (Myxobacterales) : genes controlling movement of single cells. Mol Gen Genet 171, 167-176.
  61. Henrichsen, J. (1972). Gliding and twitching motility of bacteria unaffected by cytochalasin B.
  62. Spormann, A.M. (1999). Gliding motility in bacteria: insights from studies of Myxococcus xanthus. Microbial Mol Biol Rev 63, 621-641.
  63. Hoiczyk, E. (2000). Gliding motility in cyanobacterial: observations and possible explanations. Arch Microbiol 174, 11-17.
  64. Rodriguez-Soto, J.P., and Kaiser, D. (1997). Identification and localization of the Tgl protein, which is required for Myxococcus xanthus social motility. J Bacteriol 179, 4372-4381.
  65. Lobedanz, S., and Sogaard-Andersen, L. (2003). Identification of the C-signal, a contact- dependent morphogen coordinating multiple developmental responses in Myxococcus xanthus.
  66. MglA, a small GTPase, interacts with a tyrosine kinase to control type IV pili-mediated motility and development of Myxococcus xanthus. Mol Microbiol 46, 1399-1413.
  67. Kuspa, A., Kroos, L., and Kaiser, D. (1986). Intercellular signaling is required for developmental gene expression in Myxococcus xanthus. Dev Biol 117, 267-276.
  68. John, J., Rensland, H., Schlichting, I., Vetter, I., Borasio, G.D., Goody, R.S., and Wittinghofer, A. (1993). Kinetic and structural analysis of the Mg(2+)-binding site of the guanine nucleotide-binding protein p21H-ras. J Biol Chem 268, 923-929.
  69. Sambrook, J., Fritsch, E.F., and Maniatis, T. (1989). Molecular cloning. A laboratory manual (Cold Spring Harbor, N.Y., Cold Spring Harbor Laboratory Press).
  70. Mahadevan, L., and Matsudaira, P. (2000). Motility powered by supramolecular springs and ratchets. Science 288, 95-100.
  71. Welch, R., and Kaiser, D. (2001). Pattern formation and traveling waves in myxobacteria: Experimental demonstration. Proc Natl Acad Sci USA 98, 14907-14912.
  72. Place of birth Minsk, Belarus Education 10/2006 – 03/2010 PhD (Dr. rer. nat.) Philipps-University Marburg Max-Planck-Institute for Terrestrial Microbiology, Marburg, Germany Supervisor: Prof. MD, PhD Lotte Søgaard-Andersen PhD thesis: Regulation of type IV pili localization in Myxococcus xanthus 09/2005 – 09/2006 Master of natural sciences Subjects: Genetics & Microbiology Belarusian State University, Minsk, Belarus Faculty of Biology, Department of Genetics Supervisor: Prof. Dr. Marina A. Titok Master thesis: Characteristics of naphthalene-utilizing bacteria, isolated on the territory of Belarus 09/2000 – 06/2005 Diploma of Biologist Subjects: Biology & Chemistry Belarusian State University, Minsk, Belarus Faculty of Biology, Department of Genetics Supervisor: Prof. Dr. Marina A. Titok Diploma thesis: Description of Nah-plasmids from natural strains of Pseudomonas 06/1996-05/2000 High school certificate Jacub Kolas National State Lyceum for Humanities, Minsk, Belarus List of publications:
  73. Ward, M.J., and Zusman, D.R. (1997). Regulation of directed motility in Myxococcus xanthus.
  74. Andersen, L. (in review). Regulation of dynamic polarity switching in bacteria by a Ras-like G- protein and its cognate GAP.
  75. Kirn, T.J., Bose, N., and Taylor, R.K. (2003). Secretion of a soluble colonization factor by the TCP type 4 pilus biogenesis pathway in Vibrio cholerae. Mol Microbiol 49, 81-92.
  76. Zusman, D.R., and McBride, M.J. (1991). Sensory transduction in the gliding bacterium Myxococcus xanthus. Mol Microbiol 5, 2323-2329.
  77. Bradley, D.E. (1972b). Shortening of Pseudomonas aeruginosa pili after RNA-phage adsorption. J Gen Microbiol 72, 303-319.
  78. Laird, D.J., von Andrian, U.H., and Wagers, A.J. (2008). Stem cell trafficking in tissue development, growth, and disease. Cell 132, 612-630.
  79. Wolgemuth, C.W., and Oster, G. (2004). The junctional pore complex and the propulsion of bacterial cells. J Mol Microbiol Biotechnol 7, 72-77.
  80. Sliusarenko, O., Zusman, D.R., and Oster, G. (2007). The motors powering A-motility in Myxococcus xanthus are distributed along the cell body. J Bacteriol 189, 7920-7921.
  81. Bowden, M.G., and Kaplan, H.B. (1998). The Myxococcus xanthus lipopolysaccharide O- antigen is required for social motility and multicellular development. Mol Microbiol 30, 275-284.
  82. Saraste, M., Sibbald, P.R., and Wittinghofer, A. (1990). The P-loop--a common motif in ATP- and GTP-binding proteins. Trends Biochem Sci 15, 430-434.
  83. Inclan, Y.F., Laurent, S., and Zusman, D.R. (2008). The receiver domain of FrzE, a CheA- CheY fusion protein, regulates the CheA histidine kinase activity and downstream signalling to the A-and S-motility systems of Myxococcus xanthus. Mol Microbiol 68, 1328-1339.
  84. LaPointe, C.F., and Taylor, R.K. (2000). The type 4 prepilin peptidases comprise a novel family of aspartic acid proteases. J Biol Chem 275, 1502-1510.
  85. Hansen, J.K., and Forest, K.T. (2006). Type IV pilin structures: insights on shared architecture, fiber assembly, receptor binding and type II secretion. J Mol Microbiol Biotechnol 11, 192-207.
  86. Burrows, L.L. (2005). Weapons of mass retraction. Mol Microbiol 57, 878-888.
  87. Wall, D., and Kaiser, D. (1999). Type IV pili and cell motility. Mol Microbiol 32, 01-10.
  88. Carbonnelle, E., Helaine, S., Prouvensier, L., Nassif, X., and Pelicic, V. (2005). Type IV pilus biogenesis in Neisseria meningitidis: PilW is involved in a step occurring after pilus assembly, essential for fibre stability and function. Mol Microbiol 55, 54-64.
  89. Inclan, Y.F., Vlamakis, H.C., and Zusman, D.R. (2007). FrzZ, a dual CheY-like response regulator, functions as an output for the Frz chemosensory pathway of Myxococcus xanthus.
  90. Klausen, M., Aaes-Jorgensen, A., Molin, S., and Tolker-Nielsen, T. (2003). Involvement of bacterial migration in the development of complex multicellular structures in Pseudomonas aeruginosa biofilms. Mol Microbiol 50, 61-68.
  91. Henrichsen, J. (1983). Twitching motility. Annu Rev Microbiol 37, 81-93.
  92. Gitai, Z., Dye, N.A., Reisenauer, A., Wachi, M., and Shapiro, L. (2005). MreB actin-mediated segregation of a specific region of a bacterial chromosome. Cell 120, 329-341.
  93. Shimkets, L.J. (1999). Intercellular signaling during fruiting-body development of Myxococcus xanthus. Annu Rev Microbiol 53, 525-549.
  94. Szurmant, H., Muff, T.J., and Ordal, G.W. (2004). Bacillus subtilis CheC and FliY are members of a novel class of CheY-P-hydrolyzing proteins in the chemotactic signal transduction cascade. J Biol Chem 279, 21787-21792.
  95. Interaction with type IV pili induces structural changes in the bacterial outer membrane secretin PilQ. J Biol Chem 280, 18923-18930.
  96. Merz, A.J., So, M., and Sheetz, M.P. (2000). Pilus retraction powers bacterial twitching motility. Nature 407, 98-102.
  97. Mauriello, E.M., Nan, B., and Zusman, D.R. (2009b). AglZ regulates adventurous (A-) motility in Myxococcus xanthus through its interaction with the cytoplasmic receptor, FrzCD. Mol Microbiol 72, 964-977.
  98. Wall, D., Kolenbrander, P.E., and Kaiser, D. (1999). The Myxococcus xanthus pilQ (sglA) gene encodes a secretin homolog required for type IV pilus biogenesis, social motility, and development. J Bacteriol 181, 24-33.
  99. Li, Y., Bustamante, V.H., Lux, R., Zusman, D., and Shi, W. (2005). Divergent regulatory pathways control A and S motility in Myxococcus xanthus through FrzE, a CheA-CheY fusion protein. J Bacteriol 187, 1716-1723.
  100. Wall, D., Wu, S.S., and Kaiser, D. (1998). Contact stimulation of Tgl and type IV pili in Myxococcus xanthus. J Bacteriol 180, 759-761.
  101. Jelsbak, L., and Søgaard-Andersen, L. (2002). Pattern formation by a cell surface-associated morphogen in Myxococcus xanthus. Proc Natl Acad Sci USA 99, 2032-2037.
  102. Sliusarenko, O., Neu, J., Zusman, D.R., and Oster, G. (2006). Accordion waves in Myxococcus xanthus. Proc Natl Acad Sci U S A 103, 1534-1539.
  103. Maier, B., Potter, L., So, M., Long, C.D., Seifert, H.S., and Sheetz, M.P. (2002). Single pilus motor forces exceed 100 pN. Proc Natl Acad Sci U S A 99, 16012-16017.
  104. Li, Y., Sun, H., Ma, X., Lu, A., Lux, R., Zusman, D., and Shi, W. (2003). Extracellular polysaccharides mediate pilus retraction during social motility of Myxococcus xanthus. Proc Natl Acad Sci U S A 100, 5443-5448.
  105. Savvides, S.N., Yeo, H.J., Beck, M.R., Blaesing, F., Lurz, R., Lanka, E., Buhrdorf, R., Fischer, W., Haas, R., and Waksman, G. (2003). VirB11 ATPases are dynamic hexameric assemblies: new insights into bacterial type IV secretion. Embo J 22, 1969-1980.
  106. Julien, B., Kaiser, A.D., and Garza, A. (2000). Spatial control of cell differentiation in Myxococcus xanthus. Proc Natl Acad Sci U S A 97, 9098-9103.
  107. Wu, S.S., and Kaiser, D. (1996). Markerless deletions of pil genes in Myxococcus xanthus generated by counterselection with the Bacillus subtilis sacB gene. J Bacteriol 178, 5817-5821.
  108. Charest, P.G., and Firtel, R.A. (2007). Big roles for small GTPases in the control of directed cell movement. Biochem J 401, 377-390.
  109. Tripathi, S.A., and Taylor, R.K. (2007). Membrane association and multimerization of TcpT, the cognate ATPase ortholog of the Vibrio cholerae toxin-coregulated-pilus biogenesis apparatus. J Bacteriol 189, 4401-4409.
  110. Satyshur, K.A., Worzalla, G.A., Meyer, L.S., Heiniger, E.K., Aukema, K.G., Misic, A.M., and Forest, K.T. (2007). Crystal structures of the pilus retraction motor PilT suggest large domain movements and subunit cooperation drive motility. Structure 15, 363-376.
  111. Coupling of protein localization and cell movements by a dynamically localized response regulator in Myxococcus xanthus. EMBO J 26, 4433-4444.
  112. Kruse, T., Moller-Jensen, J., Lobner-Olesen, A., and Gerdes, K. (2003). Dysfunctional MreB inhibits chromosome segregation in Escherichia coli. Embo J 22, 5283-5292.
  113. Li, S.F., and Shimkets, L.J. (1993). Effect of dsp mutations on the cell-to-cell transmission of CsgA in Myxococcus xanthus. J Bacteriol 175, 3648-3652.
  114. Varley, A.W., and Stewart, G.C. (1992). The divIVB region of the Bacillus subtilis chromosome encodes homologs of Escherichia coli septum placement (minCD) and cell shape (mreBCD) determinants. J Bacteriol 174, 6729-6742.
  115. Stephens, K., Hartzell, P., and Kaiser, D. (1989). Gliding motility in Myxococcus xanthus: mgl locus, RNA, and predicted protein products. J Bacteriol 171, 819-830.
  116. Rosenbluh, A., Nir, R., Sahar, E., and Rosenberg, E. (1989). Cell-density-dependent lysis and sporulation of Myxococcus xanthus in agarose microbeads. J Bacteriol 171, 4923-4929.
  117. Shimkets, L.J. (1986a). Correlation of energy-dependent cell cohesion with social motility in Myxococcus xanthus. J Bacteriol 166, 837-841.
  118. Shimkets, L.J. (1986b). Role of cell cohesion in Myxococcus xanthus fruiting body formation. J Bacteriol 166, 842-848.
  119. Zusman, D.R. (1982). "Frizzy" mutants: a new class of aggregation-defective developmental mutants of Myxococcus xanthus. J Bacteriol 150, 1430-1437.
  120. Kuner, J.M., and Kaiser, D. (1982). Fruiting body morphogenesis in submerged cultures of Myxococcus xanthus. J Bacteriol 151, 458-461.
  121. Shimkets, L.J., and Kaiser, D. (1982). Induction of coordinated movement of Myxococcus xanthus cells. J Bacteriol 152, 451-461.
  122. Jakovljevic, V., Leonardy, S., Hoppert, M., and Sogaard-Andersen, L. (2008). PilB and PilT are ATPases acting antagonistically in type IV pilus function in Myxococcus xanthus. J Bacteriol 190, 2411-2421.
  123. Rosenberg, E., Keller, K.H., and Dworkin, M. (1977). Cell density-dependent growth of Myxococcus xanthus on casein. J Bacteriol 129, 770-777.
  124. Wireman, J.W., and Dworkin, M. (1977). Developmentally induced autolysis during fruiting body formation by Myxococcus xanthus. J Bacteriol 129, 798-802.
  125. Hwang, J., Bieber, D., Ramer, S.W., Wu, C.Y., and Schoolnik, G.K. (2003). Structural and topographical studies of the type IV bundle-forming pilus assembly complex of enteropathogenic Escherichia coli. J Bacteriol 185, 6695-6701.
  126. Mauriello, E.M., Astling, D.P., Sliusarenko, O., and Zusman, D.R. (2009a). Localization of a bacterial cytoplasmic receptor is dynamic and changes with cell-cell contacts. Proc Natl Acad Sci U S A 106, 4852-4857.
  127. Clausen, M., Koomey, M., and Maier, B. (2009). Dynamics of type IV pili is controlled by switching between multiple states. Biophys J 96, 1169-1177.
  128. Bulyha, I., Schmidt, C., Lenz, P., Jakovljevic, V., Hone, A., Maier, B., Hoppert, M., and Sogaard-Andersen, L. (2009). Regulation of the type IV pili molecular machine by dynamic localization of two motor proteins. Mol Microbiol 74, 691-706.
  129. Mauriello, E.M., Mouhamar, F., Nan, B., Ducret, A., Dai, D., Zusman, D.R., and Mignot, T. (2010). Bacterial motility complexes require the actin-like protein, MreB and the Ras homologue, MglA. EMBO J 29, 315-326.
  130. Kuhn, J., Briegel, A., Morschel, E., Kahnt, J., Leser, K., Wick, S., Jensen, G.J., and Thanbichler, M. (2010). Bactofilins, a ubiquitous class of cytoskeletal proteins mediating polar localization of a cell wall synthase in Caulobacter crescentus. Embo J 29, 327-339.
  131. Components and dynamics of fiber formation define a ubiquitous biogenesis pathway for bacterial pili. Embo J 19, 6408-6418.
  132. Skerker, J.M., and Berg, H.C. (2001). Direct observation of extension and retraction of type IV pili. Proc Natl Acad Sci USA 98, 6901-6904.
  133. Karnoub, A.E., and Weinberg, R.A. (2008). Ras oncogenes: split personalities. Nat Rev Mol Cell Biol 9, 517-531.
  134. Shimkets, L.J., Gill, R.E., and Kaiser, D. (1983). Developmental cell interactions in Myxococcus xanthus and the spoC locus. Proc Natl Acad Sci USA 80, 1406-1410.
  135. Sandkvist, M., Bagdasarian, M., Howard, S.P., and DiRita, V.J. (1995). Interaction between the autokinase EpsE and EpsL in the cytoplasmic membrane is required for extracellular secretion in Vibrio cholerae. Embo J 14, 1664-1673.
  136. Kaiser, D. (1979). Social gliding is correlated with the presence of pili in Myxococcus xanthus. Proc Natl Acad Sci USA 76, 5952-5956.
  137. Hodgkin, J., and Kaiser, D. (1977). Cell-to-cell stimulation of movement in nonmotile mutants of Myxococcus. Proc Natl Acad Sci U S A 74, 2938-2942.
  138. Maier, B., Koomey, M., and Sheetz, M.P. (2004). A force-dependent switch reverses type IV pilus retraction. Proc Natl Acad Sci U S A 101, 10961-10966.
  139. AglZ is a filament-forming coiled-coil protein required for adventurous gliding motility of Myxococcus xanthus. J Bacteriol 186, 6168-6178.
  140. Camberg, J.L., and Sandkvist, M. (2005). Molecular analysis of the Vibrio cholerae type II secretion ATPase EpsE. J Bacteriol 187, 249-256.
  141. Chiang, P., Habash, M., and Burrows, L.L. (2005). Disparate subcellular localization patterns of Pseudomonas aeruginosa Type IV pilus ATPases involved in twitching motility. J Bacteriol 187, 829-839.
  142. Soto, G.E., and Hultgren, S.J. (1999). Bacterial adhesins: common themes and variations in architecture and assembly. J Bacteriol 181, 1059-1071.
  143. Yoshida, T., Kim, S.R., and Komano, T. (1999). Twelve pil genes are required for biogenesis of the R64 thin pilus. J Bacteriol 181, 2038-2043.
  144. Yang, Z., Ma, X., Tong, L., Kaplan, H.B., Shimkets, L.J., and Shi, W. (2000). Myxococcus xanthus dif genes are required for biogenesis of cell surface fibrils essential for social gliding motility. J Bacteriol 182, 5793-5798.
  145. Bourne, H.R., Sanders, D.A., and McCormick, F. (1991). The GTPase superfamily: conserved structure and molecular mechanism. Nature 349, 117-127.
  146. Sun, H., Zusman, D.R., and Shi, W. (2000). Type IV pilus of Myxococcus xanthus is a motility apparatus controlled by the frz chemosensory system. Curr Biol 10, 1143-1146.
  147. Vetter, I.R., and Wittinghofer, A. (2001). The guanine nucleotide-binding switch in three dimensions. Science 294, 1299-1304.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten