Publikationsserver der Universitätsbibliothek Marburg

Titel:Control of Optically Induced Currents in Semiconductor Crystals
Autor:Kohli, Kapil Kumar
Weitere Beteiligte: Chatterjee, Sangam (PD)
Veröffentlicht:2010
URI:https://archiv.ub.uni-marburg.de/diss/z2010/0399
DOI: https://doi.org/10.17192/z2010.0399
URN: urn:nbn:de:hebis:04-z2010-03995
DDC: Physik
Titel (trans.):Kontrolle von optisch induzierten Strömen in Halbleiterkristallen
Publikationsdatum:2010-08-02
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Halbleiterphysik, Terahertz, genetic Algorithm, Pulsformer, Ultraschnell, genetischer Algorithmus, Terahertz, Ultrafast, Pulseshaper

Summary:
The generation and control of optically induced currents has the potential to become an important building block for optical computers. Here, shift and rectification currents are investigated that emerge from a divergence of the optical susceptibility. It is known that these currents react to the shape of the impinging laser pulse, and especially to the shape of the pulse envelope. The main goal is the systematic manipulation of the pulse envelope with an optical pulse shaper that is integrated into a standard THz emission setup. The initial approach, the chirping of the laser pulse only has a weak influence on the envelope and the currents. Instead, a second approach is suggested that uses the combined envelope of a phase-stable pulse-pair as a parameter. In a laser pulse, the position of the maxima of the electrical field and the pulse envelope are shifted relative to each other. This shift is known as the Carrier-Envelope Phase (CEP). It is a new degree of freedom that is usually only accessible in specially stabilized systems. It is shown, that in a phase-stable pulse-pair, at least the relative CEP is usable as a new degree of freedom. It has a great influence on the shape of the pulse envelope and thus on the current density. It is shown that this approach enables the coherent control of the current density. The experiments are corroborated by a theoretical model of the system. The potential of this approach is demonstrated in an application. A framework is presented that uses an iterative genetic algorithm to create arbitrarily shaped THz traces. The algorithm controls the optical pulse shaper, and varies the phase of the impinging laser pulses until the desired target trace is found.

Bibliographie / References

  1. T. Grunwald. " Terahertz-Antwort von zweidimensionalen Ladungsträger- systemen in GaAs-basierten Heterostrukturen. " Dissertation. Philipps- Universität Marburg, 2009. See p. 47.
  2. S. T. Cundiff and J. Ye. " Colloquium: Femtosecond optical frequency combs. " Reviews of Modern Physics 75, 325–342 (2003). url: http:// dx.doi.org/10.1103/RevModPhys.75.325. See pp. 38, 39.
  3. T. Kleine-Ostmann, K. Pierz, G. Hein, P. Dawson, and M. Koch. " Audio sig- nal transmission over THz communication channel using semiconductor modulator. " Electronics Letters 40, 124+ (2004). url: http://dx.doi. org/10.1049/el:20040106. See p. 1.
  4. S. Wietzke et al. " Terahertz imaging: a new non-destructive technique for the quality control of plastic weld joints. " Journal of the European Optical Society: Rapid Publications 2, 07013+ (2007). url: http://dx.doi.org/ 10.2971/jeos.2007.07013. See p. 1.
  5. D. M. Mittleman, S. Hunsche, L. Boivin, and M. C. Nuss. " T-ray tomogra- phy. " Optics Letters 22, 904–906 (1997). url: http://dx.doi.org/10. 1364/OL.22.000904. See p. 1.
  6. F. Rutz et al. " Terahertz Quality Control of Polymeric Products. " Interna- tional Journal of Infrared and Millimeter Waves 27, 547–556 (2006). url: http://dx.doi.org/10.1007/s10762-006-9106-7. See p. 1.
  7. K. Wynne and J. Carey. " An integrated description of terahertz generation through optical rectification, charge transfer, and current surge. " Optics Communications 256, 400–413 (2005). url: http://dx.doi.org/10.101
  8. G. Gunter et al. " Sub-cycle switch-on of ultrastrong light-matter interac- tion. " Nature 458, 178–181 (2009). url: http://dx.doi.org/10.1038/ nature07838. See p. 1.
  9. T. Udem, R. Holzwarth, and T. W. Hansch. " Optical frequency metrology. " Nature 416, 233–237 (2002). url: http://dx.doi.org/10.1038/416233 a. See p. 39. Bibliography [81] R. Trebino. Frequency-resolved Optical Gating: The Measurement of Ultra- short Laser Pulses. Springer, 2000. See pp. 42, 54, 55, 71.
  10. R. Köhler et al. " Terahertz semiconductor-heterostructure laser. " Nature 417, 156–159 (2002). url: http://dx.doi.org/10.1038/417156a. See p. 1.
  11. J. L. Herek, W. Wohlleben, R. J. Cogdell, D. Zeidler, and M. Motzkus. " Quan- tum control of energy flow in light harvesting. " Nature 417, 533–535 (2002). url: http://dx.doi.org/10.1038/417533a. See p. 67.
  12. L. Costa, M. Betz, M. Spasenovic, A. D. Bristow, and H. M. van Driel. " All- optical injection of ballistic electrical currents in unbiased silicon. " Nature Physics 3, 632–635 (2007). url: http://dx.doi.org/10.1038/nphys674.
  13. C. Jördens et al. " Fibre-coupled terahertz transceiver head. " Electronics Letters 44, 1473+ (2008). url: http://dx.doi.org/10.1049/el:200830 17. See p. 1. Bibliography
  14. D. Côté, J. M. Fraser, M. DeCamp, P. H. Bucksbaum, and H. M. van Driel. " THz emission from coherently controlled photocurrents in GaAs. " Applied Physics Letters 75, 3959–3961 (1999). url: http://dx.doi.org/10.1063 /1.125531. See pp. 36, 37.
  15. M. J. Stevens et al. " Optical injection and coherent control of a ballistic charge current in GaAs/AlGaAs quantum wells. " Journal of Applied Physics 94, 4999–5004 (2003). url: http://dx.doi.org/10.1063/1.1609639.
  16. Y. C. Shen et al. " Detection and identification of explosives using terahertz pulsed spectroscopic imaging. " Applied Physics Letters 86, 241116+ (2005). url: http://dx.doi.org/10.1063/1.1946192. See p. 1.
  17. N. Krumbholz et al. " Omnidirectional terahertz mirrors: A key element for future terahertz communication systems. " Applied Physics Letters 88, 202905+ (2006). url: http://dx.doi.org/10.1063/1.2205727. See p. 1.
  18. Y. S. Lee, W. C. Hurlbut, K. L. Vodopyanov, M. M. Fejer, and V. G. Kozlov. " Generation of multicycle terahertz pulses via optical rectification in peri- odically inverted GaAs structures. " Applied Physics Letters 89, 181104+ (2006). url: http://dx.doi.org/10.1063/1.2367661. See p. 106.
  19. R. M. Woodward et al. " Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue. " Physics in Medicine and Biology 47, 3853–3863 (2002). url: http://dx.doi.org/10.1088/0031-9155/47/ 21/325. See p. 1.
  20. M. Spasenovi´Spasenovi´c, M. Betz, L. Costa, and H. M. van Driel. " All-optical coherent control of electrical currents in centrosymmetric semiconductors. " Phys- ical Review B 77, 085201+ (2008). url: http://dx.doi.org/10.1103/ PhysRevB.77.085201. See p. 14.
  21. D. Zeidler, S. Frey, K. L. Kompa, and M. Motzkus. " Evolutionary algorithms and their application to optimal control studies. " Physical Review A 64, 023420+ (2001). url: http://dx.doi.org/10.1103/PhysRevA.64.02342 0. See p. 67.
  22. A. Najmaie, R. D. R. Bhat, and J. E. Sipe. " All-optical injection and control of spin and electrical currents in quantum wells. " Physical Review B 68, 165348+ (2003). url: http://dx.doi.org/10.1103/PhysRevB.68.16534
  23. H. Zhao et al. " Injection of ballistic pure spin currents in semiconductors by a single-color linearly polarized beam. " Physical Review B 72, 201302+ (2005). url: http://dx.doi.org/10.1103/PhysRevB.72.201302. See p. 23.
  24. F. Nastos and J. E. Sipe. " Optical rectification and shift currents in GaAs and GaP response: Below and above the band gap. " Physical Review B 74, 035201+ (2006). url: http://dx.doi.org/10.1103/PhysRevB.74. 035201. See pp. 2, 29–31, 106. Bibliography [38] T. C. Weinacht, J. Ahn, and P. H. Bucksbaum. " Controlling the shape of a quantum wavefunction. " Nature 397, 233–235 (1999). url: http://dx. doi.org/10.1038/16654. See p. 2.
  25. H. Zhao, A. L. Smirl, and H. M. van Driel. " Temporally and spatially resolved ballistic pure spin transport. " Physical Review B 75, 075305+ (2007). url: http://dx.doi.org/10.1103/PhysRevB.75.075305. See p. 23.
  26. A. Haché et al. " Observation of Coherently Controlled Photocurrent in Unbiased, Bulk GaAs. " Physical Review Letters 78, 306–309 (1997). url: http://dx.doi.org/10.1103/PhysRevLett.78.306. See p. 15.
  27. M. J. Stevens et al. " Quantum Interference Control of Ballistic Pure Spin Currents in Semiconductors. " Physical Review Letters 90, 136603+ (2003). url: http://dx.doi.org/10.1103/PhysRevLett.90.136603. See pp. 20–22.
  28. J. Hübner et al. " Direct Observation of Optically Injected Spin-Polarized Currents in Semiconductors. " Physical Review Letters 90, 216601+ (2003). url: http://dx.doi.org/10.1103/PhysRevLett.90.216601. See pp. 20, 23.
  29. J. R. Danielson et al. " Interaction of Strong Single-Cycle Terahertz Pulses with Semiconductor Quantum Wells. " Physical Review Letters 99, 237401+ (2007). url: http://dx.doi.org/10.1103/PhysRevLett.99. 237401. See p. 1.
  30. A. Haché, J. E. Sipe, and H. M. van Driel. " Quantum interference control of electrical currents in GaAs. " Quantum Electronics, IEEE Journal of 34, 1144–1154 (1998). url: http://dx.doi.org/10.1109/3.687857. See p. 15.
  31. R. Piesiewicz, M. Jacob, M. Koch, J. Schoebel, and T. Kürner. " Perfor- mance Analysis of Future Multigigabit Wireless Communication Systems at THz Frequencies With Highly Directive Antennas in Realistic Indoor En- vironments. " IEEE Journal of Selected Topics in Quantum Electronics 14, 421–430 (2008). url: http://dx.doi.org/10.1109/JSTQE.2007.910984.
  32. I. A. Ibraheem, N. Krumbholz, D. Mittleman, and M. Koch. " Low-Dispersive Dielectric Mirrors for Future Wireless Terahertz Communication Systems. " IEEE Microwave and Wireless Components Letters 18, 67–69 (2008). url: http://dx.doi.org/10.1109/LMWC.2007.912050. See p. 1.
  33. R. Piesiewicz et al. " Short-Range Ultra-Broadband Terahertz Communica- tions: Concepts and Perspectives. " IEEE Antennas and Propagation Mag- azine 49, 24–39 (2007). url: http://dx.doi.org/10.1109/MAP.2007. 4455844. See p. 1.
  34. A. Semenov, H. Richter, U. Böttger, and H. W. Hübers. " Imaging terahertz radar for security applications. " Ed. by J. O. Jensen, H. L. Cui, D. L. Woolard, and R. J. Hwu. Terahertz for Military and Security Applications VI 6949, 694902+ (2008). url: http://dx.doi.org/10.1117/12.778477. See p. 1.
  35. D. J. Jones et al. " Carrier-Envelope Phase Control of Femtosecond Mode- Locked Lasers and Direct Optical Frequency Synthesis. " Science 288, 635–639 (2000). url: http://dx.doi.org/10.1126/science.288.5466. 635. See p. 82.
  36. J. B. Khurgin. " Optical rectification and terahertz emission in semicon- ductors excited above the band gap. " J. Opt. Soc. Am. B 11, 2492–2501 (1994). url: http://dx.doi.org/10.1364/JOSAB.11.002492. See p. 1.
  37. J. B. Khurgin. " Dispersion and anisotropy of optical rectification in zinc blende quantum wells. " J. Opt. Soc. Am. B 13, 2129–2140 (1996). url: http://dx.doi.org/10.1364/JOSAB.13.002129. See pp. 1, 34.
  38. H. J. Bakker, G. C. Cho, H. Kurz, Q. Wu, and X. C. Zhang. " Distortion of ter- ahertz pulses in electro-optic sampling. " J. Opt. Soc. Am. B 15, 1795–1801 (1998). url: http://dx.doi.org/10.1364/JOSAB.15.001795. See p. 106.
  39. K. K. Kohli, A. Vaupel, S. Chatterjee, and W. W. Rühle. " Adaptive shaping of THz-pulses generated in <110> ZnTe crystals. " J. Opt. Soc. Am. B 26, A74–A78 (2009). url: http://dx.doi.org/10.1364/JOSAB.26.000A74.
  40. T. Otsuji, M. Hanabe, T. Nishimura, and E. Sano. " A grating-bicoupled plasma-wave photomixer with resonant-cavity enhanced structure. " Opt. Express 14, 4815–4825 (2006). url: http://dx.doi.org/10.1364/OE. 14.004815. See p. 1.
  41. S. Wietzke et al. " Terahertz time-domain spectroscopy as a tool to monitor the glass transition in polymers. " Optics Express 17, 19006+ (2009). url: http://dx.doi.org/10.1364/OE.17.019006. See p. 1.
  42. B. B. Hu and M. C. Nuss. " Imaging with terahertz waves. " Optics Letters 20, 1716+ (1995). url: http://dx.doi.org/10.1364/OL.20.001716.
  43. P. Y. Han, G. C. Cho, and X. C. Zhang. " Time-domain transillumination of biological tissues with terahertz pulses. " Opt. Lett. 25, 242–244 (2000). url: http://dx.doi.org/10.1364/OL.25.000242. See p. 105.
  44. P. A. Roos et al. " Solid-state carrier-envelope phase stabilization via quantum interference control of injected photocurrents. " Opt. Lett. 30, 735–737 (2005). url: http://dx.doi.org/10.1364/OL.30.000735. See p. 82.
  45. B. von Vacano, T. Buckup, and M. Motzkus. " Highly sensitive single- beam heterodyne coherent anti-Stokes Raman scattering. " Opt. Lett. 31, 2495–2497 (2006). url: http://dx.doi.org/10.1364/OL.31.002495.
  46. K. Fukunaga, Y. Ogawa, S. Hayashi, and I. Hosako. " Terahertz spectroscopy for art conservation. " IEICE Electronics Express 4, 258–263 (2007). url: http://dx.doi.org/10.1587/elex.4.258. See p. 1.
  47. A. Sell, A. Leitenstorfer, and R. Huber. " Phase-locked generation and field- resolved detection of widely tunable terahertz pulses with amplitudes ex- ceeding 100 MV/cm. " Opt. Lett. 33, 2767–2769 (2008). url: http://dx. doi.org/10.1364/OL.33.002767. See p. 1.
  48. Y. S. Lee, N. Amer, and W. C. Hurlbut. " Terahertz pulse shaping via op- tical rectification in poled lithium niobate. " Applied Physics Letters 82, 170–172 (2003). url: http : / / dx . doi . org / 10 . 1063 / 1 . 1535268. See p. 106.
  49. N. Krumbholz et al. " Monitoring polymeric compounding processes inline with THz time-domain spectroscopy. " Polymer Testing 28, 30–35 (2009).
  50. Kapil K. Kohli, Andreas Vaupel, Sangam Chatterjee, and Wolfgang W. Rühle: Adaptive shaping of THz-pulses generated in <110> ZnTe crystals. J. Opt.
  51. G. Stobrawa et al. " A new high-resolution femtosecond pulse shaper. " Applied Physics B: Lasers and Optics 72, 627–630 (2001). url: http:// dx.doi.org/10.1007/s003400100576. See p. 2.
  52. A. Vaupel. " Aufbau eines adaptiven Messsystems zur kohärenten Kon- trolle von Terahertzwellenformen am Beispiel eines Single-Cycle-Pulses. " Diplomarbeit. Philipps-Universität Marburg, 2008. See pp. 6, 47.
  53. T. Grunwald. " Aufbau eines Terahertz-Time-Domain-Spektrometers zur Untersuchung von THz-Absorption durch intraexzitonische Übergänge in (GaIn)As-Quantenfilmen. " Diplomarbeit. Philipps-Universität Marburg, 2006. See p. 47.
  54. H. R. Telle et al. " Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse genera- tion. " Applied Physics B: Lasers and Optics 69, 327–332 (1999). url: http: //dx.doi.org/10.1007/s003400050813. See p. 82.
  55. " Cherenkov Radiation from Femtosecond Optical Pulses in Electro-Optic Media. " Physical Review Letters 53, 1555–1558 (1984). url: http://dx. doi.org/10.1103/PhysRevLett.53.1555. See p. 1.
  56. J. D. Jackson. Classical Electrodynamics. 3rd. John Wiley & Sons, 1999. See p. 24.
  57. M. J. Stevens, A. L. Smirl, R. D. R. Bhat, J. E. Sipe, and H. M. van Driel. " Coherent control of an optically injected ballistic spin-polarized current in bulk GaAs. " Journal of Applied Physics 91, 4382–4386 (2002). url: http: //dx.doi.org/10.1063/1.1456943. See pp. 18, 19, 22.
  58. H. Ito, F. Nakajima, T. Furuta, and T. Ishibashi. " Continuous THz-wave generation using antenna-integrated uni-travelling-carrier photodiodes. " Semiconductor Science and Technology 20, S191–S198 (2005). url: http: //dx.doi.org/10.1088/0268-1242/20/7/008. See p. 1.
  59. C. Jördens and M. Koch. " Detection of foreign bodies in chocolate with pulsed terahertz spectroscopy. " Optical Engineering 47, 037003+ (2008).
  60. A. M. Weiner. " Femtosecond pulse shaping using spatial light modulators. " Review of Scientific Instruments 71, 1929–1960 (2000). url: http://dx. doi.org/10.1063/1.1150614. See pp. 2, 53.
  61. H. O. Moser et al. " Free-standing THz electromagneticmetamaterials. " Opt. Express 16, 13773–13780 (2008). url: http : / / dx . doi . org / 10 . 1364/OE.16.013773. See p. 105.
  62. M. Kakehata, H. Takada, Y. Kobayashi, and K. Torizuka. " Generation of optical-field controlled high-intensity laser pulses. " Journal of Photochem- istry and Photobiology A: Chemistry 182, 220–224 (2006). url: http:// dx.doi.org/10.1016/j.jphotochem.2006.05.025. See p. 119.
  63. R. W. Boyd. Nonlinear Optics. 3rd. Academic Press, 2008. See pp. 5, 12.
  64. R. D. R. Bhat and J. E. Sipe. " Optically Injected Spin Currents in Semi- conductors. " Physical Review Letters 85, 5432–5435 (2000). url: http: //dx.doi.org/10.1103/PhysRevLett.85.5432. See pp. 19, 20.
  65. F. Meier and B. P. Zakharchenya. Optical Orientation (Modern Problems in Condensed Matter Sciences, Vol 8). Ed. by F. Meier and B. P. Za- kharchenya. Elsevier Science Ltd, 1984. isbn: 0444867414. See p. 18. Bibliography
  66. M. Bieler, K. Pierz, U. Siegner, and P. Dawson. " Quantum interference cur- rents by excitation of heavy-and light-hole excitons in GaAs/Al 0.3 Ga 0.7 As quantum wells. " Physical Review B 73, 241312+ (2006). url: http://dx. doi.org/10.1103/PhysRevB.73.241312. See p. 33.
  67. H. Haug and S. W. Koch. Quantum Theory of the Optical and Electronc Properties of Semiconductors. 5th. Singapore: World Scientific, 2009. See pp. 7, 9.
  68. M. C. Kemp et al. " Security applications of terahertz technology. " Ed. by R.
  69. M. Bieler, K. Pierz, U. Siegner, and P. Dawson. " Shift currents from symme- try reduction and Coulomb effects in (110)-orientated GaAs/Al 0.3 Ga 0.7 As quantum wells. " Physical Review B 76, 161304+ (2007). url: http://dx. doi.org/10.1103/PhysRevB.76.161304. See pp. 33–35.
  70. F. Träger, ed. Springer Handbook of Lasers and Optics. Springer, 2007. See pp. 38, 40.
  71. Technical Documentation -SLM-S640d SLM-320d -V3. Jenoptik. 2006. See p. 53.
  72. H. O. Moser, B. D. F. Casse, O. Wilhelmi, and B. T. Saw. " Terahertz Response of a Microfabricated Rod–Split-Ring-Resonator Electromagnetic Metama- terial. " Physical Review Letters 94, 063901+ (2005). url: http://dx. doi.org/10.1103/PhysRevLett.94.063901. See p. 105.
  73. T. Jung. " Terahertz-Spektroskopie zur Untersuchung von intraexzi- tonischen und plasmonischen Übergängen in (GaIn)As/GaAs-Multi- Quantenfilmen. " Diplomarbeit. Philipps-Universität Marburg, 2008. See p. 47.
  74. M. Bieler. " THz Generation From Resonant Excitation of Semiconduc- tor Nanostructures: Investigation of Second-Order Nonlinear Optical Ef- fects. " IEEE Journal of Selected Topics in Quantum Electronics 14, 458–469 (2008). url: http : / / dx . doi . org / 10 . 1109 / JSTQE . 2007 . 910559. See p. 35.
  75. D. Köhler. " THz-Time-Domain-Spektroskopie an zweidimensionalen Halb- leiterstrukturen. " Diplomarbeit. Philipps-Universität Marburg, 2007. See p. 47.
  76. S. Wang, B. Ferguson, D. Abbott, and X. C. Zhang. " T-ray Imaging and Tomography. " Journal of Biological Physics 29, 247–256 (2003). url: http: //dx.doi.org/10.1023/A:1024457212578. See p. 1.
  77. H. M. van Driel and J. E. Sipe. " Ultrafast Phenomena in Semiconductors. " In: ed. by K.-T. Tsen. Springer-Verlag, 2001. Chap. 5: Coherence Control of Photocurrents in Semiconductors, 261–307. See pp. 13, 14, 16.
  78. N. Laman, M. Bieler, and H. M. van Driel. " Ultrafast shift and injection currents observed in wurtzite semiconductors via emitted terahertz radi- ation. " Journal of Applied Physics 98, 103507+ (2005). url: http://dx. doi.org/10.1063/1.2131191. See pp. 35, 36.
  79. R. A. Kaindl, M. A. Carnahan, D. Hagele, R. Lovenich, and D. S. Chemla. " Ultrafast terahertz probes of transient conducting and insulating phases in an electron-hole gas. " Nature 423, 734–738 (2003). url: http://dx. doi.org/10.1038/nature01676. See p. 105.
  80. H. Rabitz, R. de Vivie-Riedle, M. Motzkus, and K. Kompa. " Whither the Fu- ture of Controlling Quantum Phenomena? " Science 288, 824–828 (2000).
  81. A. Nahata, A. S. Weling, and T. F. Heinz. " A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sam- pling. " Applied Physics Letters 69, 2321–2323 (1996). url: http://dx. doi.org/10.1063/1.117511. See p. 63.
  82. C. Jördens, M. Scheller, B. Breitenstein, D. Selmar, and M. Koch. " Evalu- ation of leaf water status by means of permittivity at terahertz frequen- cies. " Journal of Biological Physics 35, 255–264 (2009). url: http://dx. doi.org/10.1007/s10867-009-9161-0. See p. 1.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten