Publikationsserver der Universitätsbibliothek Marburg

Titel:Genetische Suppression endothelialer KCa3.1 und KCa2.3 unterdrückt die EDHF-vermittelte Vasodilatation und erzeugt Hypertonie
Autor:Brähler, Sebastian Paul
Weitere Beteiligte: Köhler, Ralf (PD Dr. )
Veröffentlicht:2009
URI:https://archiv.ub.uni-marburg.de/diss/z2010/0398
URN: urn:nbn:de:hebis:04-z2010-03986
DOI: https://doi.org/10.17192/z2010.0398
DDC: Medizin
Titel (trans.):Genetic Deficit of SK3 and IK1 Channels Disrupts the Endothelium-Derived Hyperpolarizing Factor Vasodilator Pathway and Causes Hypertension
Publikationsdatum:2010-08-02
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Endothel, Hypertonie, Ionenkanal, Kaliumkanal, hypertension, ion channel, Stickstoffmonoxid, potassium channel, endothelium

Zusammenfassung:
Das Endothel nimmt Einfluss auf den Tonus der glatten Gefäßmuskulatur und ist somit wichtig für die adäquate Regulation der Gewebeperfusion und des systemischen Blutdrucks. Zur endothelvermittelten Vasodilatation tragen die diffusiblen Moleküle Stickstoffmonoxid (NO) und Prostazyklin (PGI2) sowie der sogenannte EDHF (endothelium-derived hyperpolarizing factor) bei. Obwohl dieser EDHF insbesondere in kleineren Arterien und Arteriolen eine wesentliche Rolle zu spielen scheint, konnte die molekulare Identität bzw. die physiologischen Mechanismen dieses Faktors noch nicht abschließend geklärt werden. Mittlerweile werden sowohl eine Reihe diffusibler Moleküle als auch elektrophysiologische Prozesse als Ursache für das EDHF-Phänomen diskutiert. Eine der Hypothesen schreibt der Hyperpolarisation durch die endothelialen Ca2+-aktivierten Kaliumkanäle KCa2.3 und KCa3.1 eine wesentliche Rolle bei der EDHF-vermittelten Vasodilatation zu. Zur Klärung der Funktion von KCa2.3 und KCa3.1 im Endothel sollte in dieser Arbeit erstmals ein Mausmodell generiert und untersucht werden, bei dem die Expression beider Ionenkanäle durch genetische Veränderungen beeinflusst wurde. Hierzu sollten zwei bestehende Mausmodelle, die KCa3.1-/- - Maus und die KCa2.3T/T - Maus, miteinander gekreuzt werden. Während es sich bei der KCa3.1-/- - Maus um einen konventionellen Knockout handelte, ließ sich bei dem KCa2.3T/T - Gen die Kanalexpression durch orale Gabe der Antibiotikums Doxyzyklin (Dox) unterdrücken. Ohne die Gabe von Doxyzyklin wurde der Kanal durch das veränderte Gen stark überexprimiert. Die Gene wurden gemäß der Mendelschen Regeln vererbt und der Genotyp der Tiere wurde durch Polymerasekettenreaktion (PCR) bestimmt. KCa3.1-/-/KCa2.3T/T-Tiere zeigten sowohl mit als auch ohne orale Gabe von Doxyzyklin gegenüber Wildtyptieren keine offensichtlichen Auffälligkeiten in Verhalten und Gesundheitszustand. Die elektrophysiologischen Eigenschaften der Endothelzellen dieser Tiere wurden durch die Patch-Clamp-Technik untersucht. Hierbei zeigte sich jeweils eine Halbierung des KCa-Stomes bei KCa3.1-/- - Tieren und KCa2.3T/T - Tieren (+Dox) gegenüber Wildtyptieren und eine nahezu vollständige Unterdrückung des KCa-Stromes bei KCa3.1-/-/KCa2.3T/T -Tieren (+ Dox). Die Sharp-Electrode-Untersuchung des Membranpotenzials der glatten Gefäßmuskulatur ergab, dass der Verlust der KCa-Kanäle im Endothel zu einer signifikanten Reduktion der Hyperpolarisation der Gefäßmuskelzellen auf einen intravasalen Azetylcholinstimulus führte, wobei der Verlust von KCa3.1 einen stärkeren Effekt hatte als der Verlust von KCa2.3. Somit konnte die funktionelle Bedeutung der endothelialen KCa-Kanäle für die Azetylcholin-induzierte Hyperpolarisation der glatten Gefäßmuskulatur und eine funktionelle Interaktion zwischen Endothelzelle und glatter Gefäßmuskulatur bei der EDHF-mediierten Vasodilatation bestätigt werden. Die Vasodilatation der Gefäße wurde durch Myographenexperimente an der Arteria carotis communis der Versuchstiere bestimmt. Der Knockout beider KCa-Kanäle führte zu einer signifikanten Reduktion der Vasodilatation auf intravasale Stimulation mit Azetylcholin. KCa3.1 schien die dominierende Rolle bei der Azetylcholin-induzierten EDHF-vermittelten Vasodilatation einzunehmen. Außerdem war die fluss- und shear-stress- induzierte Vasodilatation ebenfalls signifikant reduziert, wobei der Vergleich der KCa3.1-/-/KCa2.3T/T - Mäuse (+ Dox) mit KCa2.3T/T- Mäusen (+ Dox) für eine dominierende Rolle von KCa2.3 bei der fluss- und shear- stress- induzierten Vasodilatation sprach. Neben den beschriebenen gravierenden funktionellen Veränderungen auf der zellulären und vaskulären Ebene führten die genetischen Veränderungen auch zu einer signifikanten Erhöhung des arteriellen Blutdruckes der KCa3.1-/-/KCa2.3T/T - Mäuse (+Dox) gegenüber den Wildtypmäusen, was die Bedeutung von KCa3.1 und KCa2.3 und der von ihnen initiierten EDHF-vermittelten Vasodilatation für die systemische Blutdruckregulation zeigt. Insgesamt konnte durch die vorliegenden Ergebnisse dieser Studie bestätigt werden, dass die beiden untersuchten KCa-Kanäle bei der Entstehung der EDHF-Antwort eine wichtige Rolle spielen. Offensichtlich tragen KCa3.1 und KCa2.3 über unterschiedliche Mechanismen und Stimuli zur Vasodilatation bei: KCa2.3 scheint die wichtigere Rolle bei der flussinduzierten Vasodilatation zu spielen, während KCa3.1 vor allem für die Azetylcholin-induzierten Vasodilatation verantwortlich zu sein scheint. Die Bedeutung des EDHF als wesentlicher Faktor der Kreislaufregulation konnte durch die Blutdruckuntersuchungen und die Myographenexperimente bestätigt werden. Das bessere Verständnis der physiologischen Funktion des Endothels und des vaskulären Systems liefert den Schlüssel zum Verständnis pathophysiologischer Prozesse und eröffnet neue therapeutische Perspektiven. So ist es vorstellbar, dass spezifische Ionenkanalöffner für KCa3.1 und KCa2.3 zukünftig als Antihypertensiva und Vasodilatatoren eingesetzt werden.

Bibliographie / References

  1. Dora, K. A., N. T. Gallagher, et al. (2008). "Modulation of endothelial cell KCa3.1 channels during endothelium-derived hyperpolarizing factor signaling in mesenteric resistance arteries." Circ Res 102(10): 1247-55.
  2. Yeh, H., S. Rothery, et al. (1998). "Individual gap junction plaques contain multiple connexins in arterial endothelium." Circ Res. 83(12): 1248-1263.
  3. Hartmannsgruber, V., W.T. Heyken, et al. (2007). "Arterial response to shear stress critically depends on endothelial TRPV4 expression." PLoS ONE 2(9): e827.
  4. Laurent S, Boutouyrie P. (2007). " Recent advances in arterial stiffness and wave reflection in human hypertension. " Hypertension 49:1202-1206.
  5. de Wit, C., F. Roos, et al. (2000). "Impaired conduction of vasodilation along arterioles in connexin40-deficient mice." Circ Res 86(6): 649-55.
  6. Pohl, U., J. Holtz, et al. (1986). "Crucial role of endothelium in the vasodilator response to increased flow in vivo." Hypertension 8(1): 37-44.
  7. Popp, R., I. Fleming, R. Busse (1998). " Pulsatile stretch in coronary arteries elicits release of endothelium-derived hyperpolarizing factor: a modulator of arterial compliance. " Circ Res 82:696-703.
  8. Stocker, M., P. Pedarzani (2000). "Differential distribution of three Ca(2+)-activated K(+) channel subunits, SK1, SK2, and SK3, in the adult rat central nervous system." Mol Cell Neurosci 15(5): 476-93.
  9. Köhler, R., J. Hoyer (2007). "The endothelium-derived hyperpolarizing factor: insights from genetic animal models." Kidney Int 72(2): 145-50.
  10. Fisslthaler, B., R. Popp, et al. (1999). "Cytochrome P450 2C is an EDHF synthase in coronary arteries." Nature 401(6752): 493-7.
  11. Prior, H.M., N. Webster, et al. (1998). "K(+)-induced dilation of small renal artery: no role for inward rectifier K(+)-channels." Cardiovasc Res. 37: 780-790.
  12. Si, H., W. T. Heyken, et al. (2006). "Impaired endothelium-derived hyperpolarizing factor-mediated dilations and increased blood pressure in mice deficient of the intermediate-conductance Ca2+-activated K+ channel." Circ Res 99(5): 537-44.
  13. Dror, V., E. Shamir, et al. (1999). "hKCa3/KCNN3 potassium channel gene: association of longer CAG repeats with schizophrenia in Israeli Ashkenazi Jews, expression in human tissues and localization to chromosome 1q21." Mol Psychiatry 4: 254- 60.
  14. Shimokawa, H., H. Yasutake, et al. (1996). "The importance of the hyperpolarizing mechanism increases as the vessel size decreases in endothelium-dependent relaxations in rat mesenteric circulation." J Cardiovasc Pharmacol 28(5): 703-11.
  15. Köhler, R., H. Wulff, et al. (2003). "Blockade of the intermediate-conductance calcium- activated potassium channel as a new therapeutic strategy for restenosis." Circulation 108(9): 1119-25.
  16. Saliez, J., C. Bouzin et al. (2008). "Role of caveolar compartmentation in endothelium- derived hyperpolarizing factor-mediated relaxation: Ca2+ signals and gap junction function are regulated by caveolin in endothelial cells." Circulation. 117(8):1065-74
  17. Gauthier, K., C. Deeter, et al. (2002). "14,15-Epoxyeicosa-5(Z)-enoic acid: a selective epoxyeicosatrienoic hyperpolarization and relaxation in coronary arteries." Circ Res. 90(9): 1028-1036.
  18. ,3),8(1,4)-dibenzena-1,5(1,4)-diquinolinacyclodecaphane (UCL 1684), the First Nanomolar, Non-Peptidic Blocker of the Apamin-Sensitive Ca-Activated K+ Channel." J. Med. Chem. 41: 2-5.
  19. Logsdon, N. J., J. Kang, et al. (1997). "A novel gene, hKCa4, encodes the calcium- activated potassium channel in human T lymphocytes." J Biol Chem 272(52): 32723-6.
  20. Singh, S., C. Syme, et al. (2001). "Benzimidazolone activators of chloride secretion: potential therapeutics for cystic fibrosis and chronic obstructive pulmonary disease." J Pharmacol Exp Ther. 296(2): 600-11.
  21. Moncada S., R.M. Palmer, E. Higgs (1989). "Biosynthesis of nitric oxide from L- arginine. A pathway for the regulation of cell function and communication. " Biochem Pharmacol 38(11): 1709-15.
  22. Stocker, M. (2004). "Ca2+-Activated K+Channels: Molecular determinants and function of the SK family." Nature 5:758-770.
  23. Ledoux, J., M. Werner, et al. (2006). "Calcium-activated potassium channels and the regulation of vascular tone." Physiology (Bethesda) 21: 69-78.
  24. Chen, G., D. Cheung (1992). "Calcium activation of hyperpolarization response to acetylcholine in coronary endothelial cells." J Cardiovasc Pharmacol 12: S119- S123.
  25. Fabiato, A., Fabiato, F. (1979). " Calculator programs for computing the composition of the solutions containing multiple metals und ligands used for experiments in skinned muscle cells. " J Physiol (Paris) 75(5): 463-505.
  26. Fanger, C.M., S. Ghanshani, et al. (1999). "Calmodulin mediates calcium-dependent activation of the intermediate conductance KCa channel, IKCa1." J Biol Chem 274(9): 5746-54.
  27. Joiner, W., R. Khanna, et al. (2001). "Calmodulin Regulates Assembly and Trafficking of SK4/IK1 Ca2+-activated K+ Channels." J Biol Chem 276(41): 37980–37985.
  28. Koeppen, M., R. Feil, et al. (2004). "cGMP-dependent protein kinase mediates NO-but not acetylcholine-induced dilations in resistance vessels in vivo." Hypertension 44(6): 952-5.
  29. Tseng-Crank, J., N. Godinot, et al. (1996). "Cloning, expression, and distribution of a Ca(2+)-activated K+ channel beta-subunit from human brain." Proc Natl Acad Sci U S A 93(17): 9200-5.
  30. Schumacher, M., M. Crum, et al. (2004). "Crystal structures of apocalmodulin and an apocalmodulin/SK potassium channel gating domain complex." Structure (Camb) 12: 849-860.
  31. Murray, K. (1990). "Cyclic AMP and mechanisms of vasodilation." Pharmacol Ther 47(3): 329-45.
  32. Vazquez, E., Nobles M., et al. (2001). "Defective regulatory volume decrease in human cystic fibrosis tracheal cells because of altered regulation of intermediate conductance Ca21-dependent potassium channels." Proc Natl Acad Sci U S A. 2001 98(9): 5329-34.
  33. Wulff, H., G. Gutman, et al. (2001). "Delineation of the clotrimazole/TRAM-34 binding site on the intermediate conductance calcium-activated potassium channel, IKCa1." J Biol Chem 276(34): 32040-5.
  34. Richard, V., F. Tanner, et al. (1990). "Different activation of L-arginine pathway by bradykinin, serotonin, and clonidine in coronary arteries." Am J Physiol. 259: H1433-9.
  35. Tacconi, S., R. Carletti, et al. (2001). "Distribution of the messenger RNA for the small conductance calcium-activated potassium channel SK3 in the adult rat brain and correlation with immunoreactivity." Neuroscience 102: 209-15.
  36. de Wit, C., C. Schafer, et al. (1997). "Elevation of plasma viscosity induces sustained NO-mediated dilation in the hamster cremaster microcirculation in vivo." Pflugers Arch 434(4): 354-61.
  37. Grgic, I., Kaistha, B.P., et al. (2009) "Endothelial Ca+-activated K+ channels in normal and impaired EDHF-dilator responses-relevance to cardiovascular pathologies and drug discovery." Br J Pharmacol. 157(4):509-26.
  38. Endemann, D.H., E.L. Schiffrin (2004). "Endothelial dysfunction." J Am Soc Nephrol. 15(8):1983-92
  39. Feletou, M., P. Vanhoutte (1988). "Endothelium-dependent hyperpolarization of canine coronary smooth muscle." Br J Pharmacol. 93(3): 515-524.
  40. Rapoport, R., M. Draznin, et al. (1983). "Endothelium-dependent relaxation in rat aorta may be mediated through cyclic GMP-dependent protein phosphorylation." Nature 306(5939): 174-6.
  41. Griffith, T. M. (2004). "Endothelium-dependent smooth muscle hyperpolarization: do gap junctions provide a unifying hypothesis?" Br J Pharmacol 141(6): 881-903.
  42. Fleming, I., R. Busse (2006). "Endothelium-derived epoxyeicosatrienoic acids and vascular function." Hypertension 47(4): 629-33.
  43. Feletou, M., P. Vanhoutte (2006). "Endothelium-derived hyperpolarizing factor: where are we now?" Arterioscler Thromb Vasc Biol 26(6): 1215-25.
  44. Ignarro, L., R. Byrns, et al. (1987). "Endothelium-derived relaxing factor from pulmonary artery and vein possesses pharmacologic and chemical properties identical to those of nitric oxide radical." Circ Res. 61(6): 866-879.
  45. Najibi, S., C. Cowan, et al. (1994). "Enhanced role of potassium channels in relaxations to acetylcholine in hypercholesterolemic rabbit carotid artery." Am J Physiol 266: 2061-7.
  46. Huang, A., D. Sun, et al. (2005). "Epoxyeicosatrienoc acids are released to mediate shear-stress-dependent hyperpolarisation of arteriolar smooth muscle." Circ Res. 96(3): 376-383.
  47. Köhler, R., C. Degenhardt, et al. (2000). "Expression and function of endothelial Ca(2+)-activated K(+) channels in human mesenteric artery: A single-cell reverse transcriptase-polymerase chain reaction and electrophysiological study in situ." Circ Res 87(6): 496-503.
  48. Litt, M., D. LaMorticella, et al. (1999). "Gene structure and chromosome mapping of the human small-conductance calcium-activated potassium channel SK1 gene (KCNN1)." Cytogenet Cell Genet 86: 70-3.
  49. Joiner, W., L. Wang, et al. (1997). "hSK4, a member of a novel subfamily of calcium- activated potassium channels." Proc. Natl Acad. Sci.USA 94: 11013-11018.
  50. Campbell, W., D. Gebremedhin, et al. (1996). "Identification of epoxyeicosatrienoic acids as endothelium-derived hyperpolarizing factors." Circ Res 78(3): 414-23.
  51. Köhler, R., S. Brakemeier, et al. (2001). "Impaired hyperpolarization in regenerated endothelium after balloon catheter injury." Circ Res 89(2): 174-9.
  52. Urakami-Harasawa, L., H. Shimokawa, et al. (1997). "Importance of endothelium- derived hyperpolarizing factor in human arteries." J Clin Invest 100(11): 2793-9.
  53. Hamill, O.P., A. Marty et al. (1981). "Improved patch-clamp techniques for high- resolution current recording from cells and cell-free membrane patches." Pflugers Arch. 391(2):85-100.
  54. Sandow S.L., C.E. Hill (2000). "Incidence of myoendothelial gap junczions in the proximal and distal mesenteric arteries of the rat is suggestive of a role in endothelium-derived hyperpolarizing factor mediated-responses." Circ Res 86: 341-346.
  55. Liu, Y., A. Hudetz, et al. (1998). "Increased expression of Ca2+-sensitive K+ channels in the cerebral microcirculation of genetically hypertensive rats: evidence for their protection against cerebral vasospasm." Circ Res. 82(6): 729-37.
  56. Taylor, H., A. Chaytor, et al. (1998). "Inhibition of the gap junctional component of endotheliumdependent relaxation in rabbit iliac artery by 18a-glycyrrhetinic acid." Br J Pharmacol. 125: 1-4.
  57. Gutman, G. A., K. Chandy, et al. (2003). "International Union of Pharmacology. XLI. Compendium of voltage-gated ion channels: potassium channels." Pharmacol Rev. 55(4): 583-6.
  58. Hille, B., C. Armstrong, et al. (1999). "Ion channels: from idea to reality." Nat Med 5(10): 1105-9.
  59. Roux, B. (2005). "Ion conduction and selectivity in K(+) channels." Annu Rev Biophys Biomol Struct 34: 153-71.
  60. Voets, T., G. Droogmans, et al. (1996). "Ionic currents in non-stimulated endothelial cells from bovine pulmonary artery." J Physiol 497: 95-107.
  61. Vaca, L., D. Kunze (1995). "IP 3 -activated Ca2+channels in the plasma membrane of cultured vascular endothelial cells." Am J Physiol Cell Physiol 269: c733-c738.
  62. Edwards, G., K.A. Dora, et al. (1998). "K+ is an endothelium-derived hyperpolarizing factor in rat arteries." Nature 396(6708): 269-72.
  63. Xia, X., B. Fakler, et. al. (1998). "Mechanism of calcium gating in small-conductance calcium-activated potassium channels." Nature 395: 503-507.
  64. Itoh, T., N. Seki, et al. (1992). "Membrane hyperpolarisation inhibits agonist-induced synthesis of inositol 1,4,5-trisphosphate in rabbit mesenteric artery." J Physiol 451: 307-28.
  65. Neylon, C., R. Lang, et al. (1999). "Molecular cloning and characterization of the intermediate-conductance Ca(2+)-activated K(+) channel in vascular smooth muscle: relationship between K(Ca) channel diversity and smooth muscle function." Circ Res. 85: 33-43.
  66. Carvajal, J., A. Germain, et al. (2000). "Molecular mechanism of cGMP-mediated smooth muscle relaxation." J Cell Physiol. 184(3): 409-20.
  67. Joannides, R., W.E. Haefeli, et al. (1995). "Nitric oxide is responsible for flow- dependent dilatation of human peripheral conduit arteries in vivo." Circulation 91(5): 1314-9.
  68. Cohen, R., F. Plane, et al. (1997). "Nitric oxide is the mediator of both endothelium- dependent relaxation and hyperpolarisation of the rabbit carotid artery." Proc Natl Acad Sci USA. 94: 4193-8.
  69. Moncada S., R.M. Palmer, et al. (1991). "Nitric oxide: physiology, pathophysiology, and pharmacology." Pharmacol Rev. 43(2): 109-42.
  70. Tomita, H., V.G. Shakkotai et al. (2003). "Novel truncated isoform of SK3 potassium channel is a potent dominant-negative regulator of SK currents: implications in schizophrenia." Mol. Psychiatry 8:524-535.
  71. Numberger, M., A. Draguhn (1996). Patch-Clamp-Technik, Spektrum Akademischer Verlag, Heidelberg.
  72. Syme, C., A. Gerlach, et al. (2000). "Pharmacological activation of cloned intermediate- and small-conductance Ca(2+)-activated K(+) channels." Am J Physiol Cell Physiol. 278(3): 570-81.
  73. Moncada S., J.R. Vane. (1978). "Pharmacology and endogenous roles of prostaglandin endoperoxides, thromboxane A2, and prostacyclin." Pharmacol Rev 30(3): 293- 331.
  74. Knaus, H., A. Eberhart, et al. (1994). "Pharmacology and structure of high conductance calcium-activated potassium channels." Cell Signal 6: 861-870.
  75. Moncada S., J.R. Vane (1981). "Prostacyclin: its biosynthesis, actions and clinical potential." Philos Trans R Soc Lond B Biol Sci. 294(1072): 305-29.
  76. Smith W.L. (1992). " Prostanoid biosynthesis and mechanisms of action." Am J Physiol. 263: F181-91.
  77. Galvez, A., G. Gimenez-Gallego, et al. (1990). "Purification and characterization of a unique, potent, peptidyl probe for the high conductance calcium-activated potassium channel from venom of the scorpion Buthus tamulus." J Biol Chem 265: 11083-11090.
  78. Dolor, H., L. Hurwitz, et al. (1992). "Regulation of extracellular calcium entry in endothelial cells: role of intracellular calcium pool." Am J Physiol Cell Physiol 262: C171-C181.
  79. Johns A., A.D. Freay, D.J. Adams, et al. (1988). "Role of calcium in the activation of endothelial cells." J Cardiovasc Pharmacol 12: 119-123.
  80. Fitzgerald, S.M., B.K. Kemp-Harper, et al. (2005). " Role of endothelium-derived hyperpolarizing factor in endothelial dysfunction during diabetes. " Clin Exp Pharmacol Physiol 32: 482–487.
  81. Olesen, S., E. Munch, et al. (1994). "Selective activation of Ca(2+)-dependent K+ channels by novel benzimidazolone." Eur J Pharmacol 251: 53-59.
  82. Eichler, I., J. Wibawa, et al. (2003). "Selective blockade of endothelial Ca2+-activated small-and intermediate-conductance K+-channels suppresses EDHF-mediated vasodilation." Br J Pharmacol 138(4): 594-601.
  83. Grgic, I., I. Eichler, et al. (2005). "Selective blockade of the intermediate-conductance Ca2+-activated K+ channel suppresses proliferation of microvascular and macrovascular endothelial cells and angiogenesis in vivo." Arterioscler Thromb Vasc Biol 25(4): 704-9.
  84. Neher, E., B. Sakmann (1976). "Single-channel currents recorded from membrane of denervated frog muscle fibres." Nature 260: 799-802.
  85. Köhler, M., B. Hirschberg, et al. (1996). "Small-conductance, calcium-activated potassium channels from mammalian brain." Science 273(5282): 1709-14.
  86. Shmukler, B. , C.T. Bond, et al. (2001). "Structure and complex transcription pattern of the mouse SK1 K(Ca) channel gene, KCNN1." Biochim. Biophys. Acta 1518: 36-46.
  87. Schumacher, M., A. Rivard, et al. (2001). "Structure of the gating domain of a Ca2+- activated K+ channel complexed with Ca2+/calmodulin." Nature 410: 1120- 1124.
  88. Fukao, M., Y. Hattori, et al. (1995). "Thapsigargin-and cyclopiazonic acid-induced endothelium-dependent hyperpolarization in rat mesenteric artery." Br J Pharmacol. 115(6): 987-92.
  89. Pena, T.L., S.G. Rane (1999). "The fibroblast intermediate conductance K(Ca) channel, FIK, as a prototype for the cell growth regulatory function of the IK channel family." J Membr Biol 172(3): 249-57.
  90. Gardos, G. (1958). "The function of calcium in the potassium permeability of human erythrocytes." Biochim Biophys Acta 30(3): 653-4.
  91. Gribkoff, V., J. Starrett, et al. (1997). "The pharmacology and molecular biology of large-conductance calcium-activated (BK) potassium channels." Adv Pharmacol 37: 319-348.
  92. Doyle, D., J. Cabral, et al. (1998). "The structure of the potassium channel: molecular basis of K conduction and selectivity." Science 280: 69-77.
  93. Yellen, G. (2002). "The voltage-gated potassium channels and their relatives." Nature 419(6902): 35-42.
  94. Ghanshani, S., H. Wulff, et al. (2000). "Up-regulation of the IKCa1 potassium channel during T-cell activation. Molecular mechanism and functional consequences." J Biol Chem. 275(47): 37137-49.
  95. Munzel, T., A. Daiber, et al. (2005). "Vascular consequences of endothelial nitric oxide synthase uncoupling for the activity and expression of the soluble guanylyl cyclase and the cGMP-dependent protein kinase." Arterioscler Thromb Vasc Biol 25: 1551-1557.
  96. McNeish, A.J., S.L. Sandow, et al. (2006). "Evidence for involvement of both IKCa and SKCa channels in hyperpolarizing responses of the rat middle cerebral artery." Stroke 37(5): 1277-82.
  97. Furchgott, R., J.V. Zawadzki (1980). "The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine." Nature 288(5789): 373-6.
  98. Weston, A. H., M. Absi, et al. (2005). "Evidence in favor of a calcium-sensing receptor in arterial endothelial cells: studies with calindol and Calhex 231." Circ Res 97(4): 391-8.
  99. Schubert, R., M. Nelson (2001). "Protein kinases: tuners of the BKCa channel in smooth muscle." Trends Pharmacol Sci 22(10): 505-512.
  100. Nelson, M., J. Quayle (1995). "Physiological roles and properties of potassium channels in arterial smooth muscle." Am J Physiol. 268: C799-822.
  101. Ledoux, J., M.S. Taylor, et al. (2008). "Functional architecture of inositol 1,4,5- trisphosphate signaling in restricted spaces of myoendothelial projections." Proc Natl Acad Sci U S A 105(28): 9627-32.
  102. Taylor, M.S., A.D. Bonev, et al. (2003). "Altered expression of small-conductance Ca2+-activated K+ (SK3) channels modulates arterial tone and blood pressure." Circ Res 93(2): 124-31.
  103. Schilling, W., O. Cabello, et al. (1992). "Depletion of the 1,4,5-trisphosphate-sensitive intracellular Ca2+ store in vascular endothelial cells activates the agonist- sensitive Ca2+-influx pathway." Biochem J. 284: 521-530.
  104. Tanaka, Y., P. Meera, et al. (1997). "Molecular constituents of maxi KCa channels in human coronary smooth muscle: predominant alpha + beta subunit complexes." J Physiol 502: 545-557.
  105. Schreiber, M., L. Salkoff (1997). "A novel calcium-sensing domain in the BK channel." Biophys J 73: 1355–1363.
  106. Talukder, G., R. Aldrich (2000). "Complex voltagedependent behavior of single unliganded calcium-sensitive potassium channels." Biophys J 78: 761-772.
  107. Soh, H., C. Park (2001). "Inwardly rectifying current-voltage relationship of small- conductance Ca2+-activated K+ channels rendered by intracellular divalent cation blockade." Biophys. J. 80: 2207-2215.
  108. Woolfson, R., N. Benjamin, et al. (1991). "Ouabain and responses to endothelium- dependent vasodilators in the human forearm." Br J Clin Pharmacol. 32: 758-60.
  109. Edwards, G., M. Feletou, et al. (1999). "Role of gap-junctions in the responses to EDHF in rat and guinea pig arteries." Br J Pharmacol. 128: 1788-1794.
  110. Lacy, P., G. Pilkington, et al. (2000). "Evidence against potassium as an endothelium- derived hyperpolarizing factor in rat mesenteric small arteries." Br J Pharmacol. 129: 605-611.
  111. Bychkov, R., M. P. Burnham, et al. (2002). "Characterization of a charybdotoxin- sensitive intermediate conductance Ca2+-activated K+ channel in porcine coronary endothelium: relevance to EDHF." Br J Pharmacol 137(8): 1346-54.
  112. Wulff, H., M. J. Miller, et al. (2000). "Design of a potent and selective inhibitor of the intermediate-conductance Ca2+-activated K+ channel, IKCa1: a potential immunosuppressant." Proc Natl Acad Sci U S A 97(14): 8151-6.
  113. Kusama, N., J. Kajiguri, et al. (2005). "Reduced hyperpolarization in endothelial cells of rabbit aortic valve following chronic nitroglycerine administration." Br J Pharmacol. 146: 487-497.
  114. Chen, G., H. Suzuki, et al. (1988). "Acetylcholine releases endothelium-derived hyperpolarizing factor and EDRF from rat blood vessels." Br J Pharmacol 95: 1165-1174.
  115. Rees D., Palmer R.M., et al. (1990). "Characterization of three inhibitors of endothelial nitric oxide synthase in vitro and in vivo." Br J Pharmacol. 101(3): 746-52.
  116. Cox, D., J. Cui, et al. (1997). "Allosteric gating of a large conductance Ca-activated K+ channel." J Gen Physiol 110: 257-281.
  117. Horrigan, F., J. Cui, et al. (1999). "Allosteric voltage gating of potassium channels. I. Mslo ionic currents in the absence of Ca(2+)." J GenPhysiol 114: 277-304.
  118. Hillig, T., P. Krustrup, et al. (2003). "Cytochrome P450 2C9 plays an important role in the regulation of exercise-induced skeletal muscle blood flow and oxygen uptake in humans." J Physiol 546: 307-14.
  119. Ishii, T. M., C. Silvia, et al. (1997). "A human intermediate conductance calcium- activated potassium channel." Proc Natl Acad Sci U S A 94(21): 11651-6.
  120. Sankaranarayanan, A., G. Raman, et al. (2009). " Naphtho[1,2-d]thiazol-2-ylamine (SKA-31), a new activator of KCa2 and KCa3.1 potassium channels, potentiates the endothelium-derived hyperpolarizing factor response and lowers blood pressure. " Mol Pharmacol 75(2):281-95.
  121. Cipolla, M.J., J. Smith, et al. (2009). " SKCa and IKCa Channels, myogenic tone, and vasodilator responses in middle cerebral arteries and parenchymal arterioles: effect of ischemia and reperfusion. " Stroke 40(4):1451-7.
  122. Pedersen, S., G. Owsianik, et al. (2005). "TRP channels: an overview." Cell Calcium. 38(3-4): 233-52.
  123. Nilius, B., G. Droogmans (2001). "Ion channels and their functional role in vascular endothelium." Physiol Rev 81(4): 1415-59.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten