Publikationsserver der Universitätsbibliothek Marburg

Titel:Strukturelle Charakterisierung zweier Schlüsselenzyme aus fermentativen Abbauwegen anaerober Bakterien
Autor:Kreß, Daniel
Weitere Beteiligte: Essen, Lars-Oliver (Prof. Dr.)
Veröffentlicht:2009
URI:https://archiv.ub.uni-marburg.de/diss/z2010/0392
DOI: https://doi.org/10.17192/z2010.0392
URN: urn:nbn:de:hebis:04-z2010-03927
DDC: Chemie
Titel (trans.):Structural characterization of two key enzymes in fermentation pathways of anaerobic bacteria
Publikationsdatum:2010-08-02
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Anaerobe Bakterien, Katabolismus, Natriumionenpumpe, Proteinstruktur, crystal structure, Amidohydrolase, membrane complex, Membrankomplex, Biochemie, anaerobic pathways, Membranproteine, Amidasen, sodium ion pump, anaerobe Abbauwege, amidohydrolase, Ionenpumpe

Zusammenfassung:
Enamidase Die Hydrolyse von 1,4,5,6-Tetrahydro-6-oxonicotinat (THON) zu 2-Formylglutarat ist ein Schlüsselschritt im Nicotinat-Katabolismus einer Reihe von Clostridien und Proteobakterien, der von dem Enzym Enamidase (EC 3.5.2.18) katalysiert wird. Auf Grund von Sequenzver-gleichen, der Art der katalysierten Reaktion und dem Nachweis stöchiometrischer Bindung von Metallionen wurde es der Amidohydrolase-Strukturfamilie zugeordnet. Enamidase ka-talysiert eine ungewöhnliche Zweistufenreaktion: die Dezyklizierung von THON zu 2 (Enamin) glutarat und dessen weitere Hydrolyse zu (S) 2 Formylglutarat. Die hier präsen-tierte 1.9 Å Kristallstruktur der Enamidase aus Eubacterium barkeri liefert die strukturelle Grundlage für den Katalysemechanismus dieser enantioselektiven Reaktion. Das Enzym bildet 222-symmetrische Tetramere. Die Enamidase-Monomere bestehen dabei aus einer β Sandwich-Domäne, die sich aus den N- und C Termini der Polypeptidkette zusammen-setzt, und einer zentralen (α/β)8-Fass-Domäne die das aktive Zentrum enthält. Letzteres be-inhaltet ein binukleares Metallzentrum aus Zink- und Eisenionen. Damit stellt Enamidase eine spezielle Typ-II-Amidohydrolase dar. Decarboxylase-Untereinheit der Natriumionen-Pumpe Glutaconyl-CoA-Decarboxylase Glutaconyl-CoA-Decarboxylase (Gcd, EC 4.1.1.70) koppelt die Decarboxylierung von Gluta-conyl-CoA mit dem Aufbau eines Na+-Gradienten. Das integrale Membranenzym besteht aus vier Untereinheiten: der α-Untereinheit (GcdA), die die Carboxyl-Gruppe von Glutaconyl-CoA auf die biotinylierte γ-Untereinheit (GcdC) transferiert, der β-Untereinheit (GcdB), die die Decarboxylierung des Carboxybiotins sowie die Na+-Translokation katalysiert, und der δ-Untereinheit (GcdD), deren Funktion noch nicht bekannt ist. Die in der vorliegenden Ar-beit präsentierten Kokristallstrukturen der GcdA-Untereinheit aus Clostridium symbiosum mit dem Substrat Glutaconyl-CoA, dem Produkt Crotonyl-CoA und dem Substratanalogon Glu-taryl-CoA liefern ein hochaufgelöstes Modell für die Quartär-struktur und den Katalyseme-chanismus des Enzyms, das bemerkenswerte strukturelle Veränderungen bei der Substrat-bindung aufdeckt. Auf der Grundlage dieser Daten wird ein neuartiges, asymmetrisches Modell für den intakten Gcd-Komplex vorgeschlagen, in dem GcdA ein Tetramer bildet, das von einem Netzwerk Lösungsmittel-gefüllter Kanäle durchzogen ist.

Bibliographie / References

  1. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-5.
  2. Finn, R. D., Tate, J., Mistry, J., Coggill, P. C., Sammut, S. J., Hotz, H. R., Ceric, G., Forslund, K., Eddy, S. R., Sonnhammer, E. L. & Bateman, A. (2008) The Pfam protein families database. Nucleic Acids Res 36, D281-8.
  3. Terwilliger, T. (2004) SOLVE and RESOLVE: automated structure solution, density modifica- tion and model building. J Synchrotron Radiat 11, 49-52.
  4. Thoden, J. B., Phillips, G. N., Jr., Neal, T. M., Raushel, F. M. & Holden, H. M. (2001) Molecu- lar structure of dihydroorotase: a paradigm for catalysis through the use of a binuclear metal center. Biochemistry 40, 6989-97.
  5. Terwilliger, T. C., Kim, S. H. & Eisenberg, D. (1987) Generalized method of determining heavy-atom positions using the difference Patterson function. Acta Crystallographica Section A 43, 1-5.
  6. Kleywegt, G. (1996) Use of Non-crystallographic Symmetry in Protein Structure Refinement.
  7. Kriminski, S., Caylor, C. L., Nonato, M. C., Finkelstein, K. D. & Thorne, R. E. (2002) Flash- cooling and annealing of protein crystals. Acta Crystallogr D Biol Crystallogr 58, 459-71.
  8. Collins, M. D., Lawson, P. A., Willems, A., Cordoba, J. J., Fernandez-Garayzabal, J., Garcia, P., Cai, J., Hippe, H. & Farrow, J. A. (1994) The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int J Syst Bacteriol 44, 812-26.
  9. Holm, L. & Sander, C. (1997) An evolutionary treasure: unification of a broad set of amido- hydrolases related to urease. Proteins 28, 72-82.
  10. Benning, M. M., Taylor, K. L., Liu, R. Q., Yang, G., Xiang, H., Wesenberg, G., Dunaway- Mariano, D. & Holden, H. M. (1996) Structure of 4-chlorobenzoyl coenzyme A dehalogenase determined to 1.8 A resolution: an enzyme catalyst generated via adaptive mutation. Bio- chemistry 35, 8103-9.
  11. Hamed, R. B., Batchelar, E. T., Clifton, I. J. & Schofield, C. J. (2008) Mechanisms and struc- tures of crotonase superfamily enzymes--how nature controls enolate and oxyanion reactiv- ity. Cell Mol Life Sci 65, 2507-27.
  12. Bennett, J. & Scott, K. J. (1971) Quantitative staining of fraction I protein in polyacrylamide gels using Coomassie brillant blue. Anal Biochem 43, 173-82.
  13. Giorgetti, A., Raimondo, D., Miele, A. E. & Tramontano, A. (2005) Evaluating the usefulness of protein structure models for molecular replacement. Bioinformatics 21 Suppl 2, ii72-6.
  14. Kawarabayasi, Y., Hino, Y., Horikawa, H., Jin-no, K., Takahashi, M., Sekine, M., Baba, S., Ankai, A., Kosugi, H., Hosoyama, A., Fukui, S., Nagai, Y., Nishijima, K., Otsuka, R., Naka- zawa, H., Takamiya, M., Kato, Y., Yoshizawa, T., Tanaka, T., Kudoh, Y., Yamazaki, J., Ku- shida, N., Oguchi, A., Aoki, K., Masuda, S., Yanagii, M., Nishimura, M., Yamagishi, A., Oshima, T. & Kikuchi, H. (2001) Complete genome sequence of an aerobic thermoacidophilic crenarchaeon, Sulfolobus tokodaii strain7. DNA Res 8, 123-40.
  15. Heinig, M. & Frishman, D. (2004) STRIDE: a web server for secondary structure assignment from known atomic coordinates of proteins. Nucleic Acids Res 32, W500-2.
  16. Yaffe, E., Fishelovitch, D., Wolfson, H. J., Halperin, D. & Nussinov, R. (2008) MolAxis: a server for identification of channels in macromolecules. Nucleic Acids Res 36, W210-5.
  17. Leslie, A. G., Powell, H. R., Winter, G., Svensson, O., Spruce, D., McSweeney, S., Love, D., Kinder, S., Duke, E. & Nave, C. (2002) Automation of the collection and processing of X-ray diffraction data --a generic approach. Acta Crystallogr D Biol Crystallogr 58, 1924-8.
  18. McPherson, A. (2003) Introduction to macromolecular crystallography John Wiley & Sons, Hobo- ken, New Jersey, USA.
  19. Mulkidjanian, A., Galperin, M., Makarova, K., Wolf, Y. & Koonin, E. (2008a) Evolutionary primacy of sodium bioenergetics. Biology Direct 3, 13.
  20. Petrek, M., Otyepka, M., Banas, P., Kosinova, P., Koca, J. & Damborsky, J. (2006) CAVER: a new tool to explore routes from protein clefts, pockets and cavities. BMC Bioinformatics 7, 316.
  21. Plugge, C. M., van Leeuwen, J. M., Hummelen, T., Balk, M. & Stams, A. J. (2001) Elucidation of the pathways of catabolic glutamate conversion in three thermophilic anaerobic bacteria. Arch Microbiol 176, 29-36.
  22. Harada, Y., Lifchitz, A., Berthou, J. & Jolles, P. (1981) A translation function combining pack- ing and diffraction information: an application to lysozyme (high-temperature form). Acta Crystallographica Section A 37, 398-406.
  23. Pfenninger-Li, X. D., Albracht, S. P., van Belzen, R. & Dimroth, P. (1996) NADH:ubiquinone oxidoreductase of Vibrio alginolyticus: purification, properties, and reconstitution of the Na+ pump. Biochemistry 35, 6233-42.
  24. Falb, M., Pfeiffer, F., Palm, P., Rodewald, K., Hickmann, V., Tittor, J. & Oesterhelt, D. (2005) Living with two extremes: conclusions from the genome sequence of Natronomonas pharaonis. Genome Res 15, 1336-43.
  25. Jozic, D., Kaiser, J. T., Huber, R., Bode, W. & Maskos, K. (2003) X-ray structure of isoaspartyl dipeptidase from E. coli: a dinuclear zinc peptidase evolved from amidohydrolases. J Mol Biol 332, 243-56.
  26. Wendt, K. S., Schall, I., Huber, R., Buckel, W. & Jacob, U. (2003) Crystal structure of the car- boxyltransferase subunit of the bacterial sodium ion pump glutaconyl-coenzyme A decar- boxylase. Embo J 22, 3493-502.
  27. Brünger, A. T. (1992) Free R value: a novel statistical quantity for assessing the accuracy of crystal structures. Nature 355, 472-5.
  28. Murzin, A. G., Brenner, S. E., Hubbard, T. & Chothia, C. (1995) SCOP: a structural classifica- tion of proteins database for the investigation of sequences and structures. J Mol Biol 247, 536-40.
  29. Brenner, S. E., Chothia, C. & Hubbard, T. J. P. (1997) Population statistics of protein struc- tures: lessons from structural classifications. Current Opinion in Structural Biology 7, 369-76.
  30. Speelmans, G., Poolman, B., Abee, T. & Konings, W. N. (1993) Energy transduction in the thermophilic anaerobic bacterium Clostridium fervidus is exclusively coupled to sodium ions. Proc Natl Acad Sci U S A 90, 7975-9.
  31. Hans, M., Sievers, J., Muller, U., Bill, E., Vorholt, J. A., Linder, D. & Buckel, W. (1999) 2- Hydroxyglutaryl-CoA dehydratase from Clostridium symbiosum. Eur J Biochem 265, 404-14.
  32. Buckel, W. & Semmler, R. (1982) A biotin-dependent sodium pump: glutaconyl-CoA decar- boxylase from Acidaminococcus fermentans. FEBS Lett 148, 35-8.
  33. Engh, R. A. & Huber, R. (1991) Accurate bond and angle parameters for X-ray protein struc- ture refinement. Acta Crystallographica Section A 47, 392-400.
  34. Krulwich, T. A. (1995) Alkaliphiles: 'basic' molecular problems of pH tolerance and bioener- getics. Mol Microbiol 15, 403-10.
  35. Buckel, W. (1980) Analysis of the fermentation pathways of clostridia using double labelled glutamade. Arch Microbiol 127, 167-9.
  36. Vagin, A. & Teplyakov, A. (2000) An approach to multi-copy search in molecular replace- ment. Acta Cryst D 56, 1622-4.
  37. Leslie, A. (1987) A reciprocal-space method for calculating a molecular envelope using the algorithm of B.C. Wang. Acta Crystallographica Section A 43, 134-6.
  38. Brünger, A. (1993) Assessment of phase accuracy by cross validation: the free R value. Meth- ods and applications. Acta Crystallographica Section D 49, 24-36.
  39. Wilson, D. K., Rudolph, F. B. & Quiocho, F. A. (1991) Atomic structure of adenosine deami- nase complexed with a transition-state analog: understanding catalysis and immunodefi- ciency mutations. Science 252, 1278-84.
  40. Van Duyne, G. D., Standaert, R. F., Karplus, P. A., Schreiber, S. L. & Clardy, J. (1993) Atomic structures of the human immunophilin FKBP-12 complexes with FK506 and rapamycin. J Mol Biol 229, 105-24.
  41. Perrakis, A., Morris, R. & Lamzin, V. S. (1999) Automated protein model building combined with iterative structure refinement. Nat Struct Biol 6, 458-63.
  42. Lamzin, V. S. & Wilson, K. S. (1997) Automated refinement for protein crystallography. Methods Enzymol 277, 269-305.
  43. Lamzin, V. S. & Wilson, K. S. (1993) Automated refinement of protein models. Acta Crystal- lographica Section D 49, 129-47.
  44. Ponstingl, H., Kabir, T. & M., T. J. (2003) Automatic inference of protein quaternary structure from crystals. J Appl Chrystallogr 36, 1116-22.
  45. Dimroth, P. (1990) Bacterial energy transductions coupled to sodium ions. Res Microbiol 141, 332-6.
  46. Harary, I. (1957) Bacterial fermentation of nicotinic acid. I. End products. J Biol Chem 227, 815- 22.
  47. J. (1998) Biochemical characterization and crystallographic structure of an Escherichia coli pro- tein from the phosphotriesterase gene family. Biochemistry 37, 5096-106.
  48. Kogure, K. (1998) Bioenergetics of marine bacteria. Curr Opin Biotechnol 9, 278-82.
  49. Bendrat, K., Berger, S., Buckel, W., Etzel, W. A. & Rohm, K. H. (1990) Carbon-13 labelled bio- tin--a new probe for the study of enzyme catalyzed carboxylation and decarboxylation reac- tions. FEBS Lett 277, 156-8.
  50. Naday, I., Westbrook, E. M., Westbrook, M. L., Travis, D. J., Stanton, M., Phillips, W. C., O'Mara, D. & Xie, J. (1994) Characterization and data collection on a direct-coupled CCD X- ray detector. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spec- trometers, Detectors and Associated Equipment 348, 635-40.
  51. Michael, B. & Rainer, S. (2006) Chemie und Biologie Hand in Hand. Enzyme als Katalysa- toren. Chemie in unserer Zeit 40, 104-11.
  52. Buckel, W., Janssen, P., Schuhmann, A., Eikmanns, U., Messner, P., Sleytr, U. & Liesack, W. (1994) Clostridium viride sp. nov., a strictly anaerobic bacterium using 5-aminovalerate as growth substrate, previously assigned to Clostridium aminovalericum. Archives of Microbiol- ogy 162, 387-94.
  53. Eggerer, H. (1985) Completion of the degradation scheme for nicotinic acid by Clostridium barkeri. Curr Top Cell Regul 26, 411-8.
  54. Wang, Z. & Quiocho, F. A. (1998) Complexes of adenosine deaminase with two potent inhibi- tors: X-ray structures in four independent molecules at pH of maximum activity. Biochemistry 37, 8314-24.
  55. Sussman, J. L., Harold W. Wyckoff, C. H. W. H. & Serge, N. T. (1985) Constrained-restrained least-squares (CORELS) refinement of proteins and nucleic acids. In Methods in Enzymology ed^eds), pp. 271-303. Academic Press.
  56. Castanie-Cornet, M. P., Penfound, T. A., Smith, D., Elliott, J. F. & Foster, J. W. (1999) Control of acid resistance in Escherichia coli. J Bacteriol 181, 3525-35.
  57. Bremer, E. & Krämer, R. (2000) Coping with osmotic challenges:Osmoregulation through accumulation and release of compatible solutes in bacteria. In Bacterial stress responses (Storz, G. & Hengge-Aronis, R.), ASM Press, Washington, D.C, 79–97.
  58. Dimroth, P., Jockel, P. & Schmid, M. (2001) Coupling mechanism of the oxaloacetate decar- boxylase Na(+) pump. Biochim Biophys Acta 1505, 1-14.
  59. McPherson, A. (1999) Crystallisation of Biological Macromolecules. Cold Spring Harbor Labora- tory Press.
  60. Ducruix, A. & Giegé, R. (1999) Crystallization of nucleic acids and proteins: a practical approach (2nd edition). Oxford University Press, Oxford, New York.
  61. Rhodes, G. (2006) Crystallography made crystal clear Academic Press, Burlington, San Diego, London.
  62. Liaw, S. H., Chen, S. J., Ko, T. P., Hsu, C. S., Chen, C. J., Wang, A. H. & Tsai, Y. C. (2003) Crystal structure of D-aminoacylase from Alcaligenes faecalis DA1. A novel subset of amido- hydrolases and insights into the enzyme mechanism. J Biol Chem 278, 4957-62.
  63. Diacovich, L., Mitchell, D. L., Pham, H., Gago, G., Melgar, M. M., Khosla, C., Gramajo, H. & Tsai, S. C. (2004) Crystal structure of the beta-subunit of acyl-CoA carboxylase: structure- based engineering of substrate specificity. Biochemistry 43, 14027-36.
  64. Liao, D. I., Qian, J., Chisholm, D. A., Jordan, D. B. & Diner, B. A. (2000) Crystal structures of the photosystem II D1 C-terminal processing protease. Nat Struct Biol 7, 749-53.
  65. Sander, C. & Schneider, R. (1991) Database of homology-derived protein structures and the structural meaning of sequence alignment. Proteins 9, 56-68.
  66. Kleywegt, G. J. & Jones, T. A. (1998) Databases in protein crystallography. Acta Crystallogr D Biol Crystallogr 54, 1119-31.
  67. Hendrickson, W. A. & Konnert, J. H. (1980) Diffraction Analysis of Motion in Proteins. Bio- phys J 32, 645-7.
  68. Haller, T., Buckel, T., Retey, J. & Gerlt, J. A. (2000) Discovering new enzymes and metabolic pathways: conversion of succinate to propionate by Escherichia coli. Biochemistry 39, 4622-9.
  69. Pos, K. M. (2009) Drug transport mechanism of the AcrB efflux pump. Biochim Biophys Acta 1794, 782-93.
  70. Cramer, W. A. & Knaff, D. B. (1990) Energy Transduction in Biological Membranes: A Textbook of Bioenergetics Springer-Verlag, Berlin.
  71. Kulla, H. G. (1991) Enzymatic hydroxylations in industrial application. Chimia 45, 81-5.
  72. Berger, S., Braune, A., Buckel, W., Härtel, U. & Lee, M. L. (1996) Enzyme catalysed formation of carboxybiotin as proved by the measurement of 15 N, 13 C and 13 C, 13 C spin-spin coupling.
  73. Knowles, J. R. (1980) Enzyme-catalyzed phosphoryl transfer reactions. Annu Rev Biochem 49, 877-919.
  74. Dimroth, P. & Hilbi, H. (1997) Enzymic and genetic basis for bacterial growth on malonate.
  75. Castanie-Cornet, M. P. & Foster, J. W. (2001) Escherichia coli acid resistance: cAMP receptor protein and a 20 bp cis-acting sequence control pH and stationary phase expression of the gadA and gadBC glutamate decarboxylase genes. Microbiology 147, 709-15.
  76. Bozarth, A. (2005) Examination of a Common Nicotinate Metabolism in Proteobacteria. Dip- lomarbeit, Fachbereich Biologie, Philipps-Universität Marburg.
  77. Nanninga, H. J., Drent, W. J. & Gottschal, J. C. (1987) Fermentation of glutamate by Seleno- monas acidaminophila sp. nov. Archives of Microbiology 147, 152-7.
  78. Zelder, O. (2008) Fermentative Herstellung von Chemikalien. BIOspektrum 04.08, 348-50.
  79. Bricogne, G. (1974) Geometric sources of redundancy in intensity data and their use for phase determination. Acta Crystallographica Section A 30, 395-405.
  80. Weiss, M. (2001) Global indicators of X-ray data quality. Journal of Applied Crystallography 34, 130-5.
  81. Garcia-Ruiz, J. M., Gonzalez-Ramirez, L. A., Gavira, J. A. & Otalora, F. (2002) Granada Crys- tallisation Box: a new device for protein crystallisation by counter-diffusion techniques. Acta Crystallogr D Biol Crystallogr 58, 1638-42.
  82. Thoden, J. B., Marti-Arbona, R., Raushel, F. M. & Holden, H. M. (2003) High-resolution X-ray structure of isoaspartyl dipeptidase from Escherichia coli. Biochemistry 42, 4874-82.
  83. Damborsky, J., Petrek, M., Banas, P. & Otyepka, M. (2007) Identification of tunnels in pro- teins, nucleic acids, inorganic materials and molecular ensembles. Biotechnol J 2, 62-7.
  84. Read, R. (1986) Improved Fourier coefficients for maps using phases from partial structures with errors. Acta Crystallographica Section A 42, 140-9.
  85. Krissinel, E. & Henrick, K. (2007) Inference of macromolecular assemblies from crystalline state. J Mol Biol 372, 774-97.
  86. Pieles, K. (2009) Interaktion zwischen dem Blaulichtrezeptor YtvA und dem Stressosom. Dip- lomarbeit, Fachbereich Chemie, Philipps-Universität Marburg.
  87. Imhoff-Stuckle, D. & Pfennig, N. (1983) Isolation and characterization of a nicotinic acid- degrading sulfate reducing bacterium, Desulfococcus niacini sp. nov. Arch Microbiol 136, 194-8.
  88. Frishman, D. & Argos, P. (1995) Knowledge-based protein secondary structure assignment. Proteins 23, 566-79.
  89. Harp, J. M., Timm, D. E. & Bunick, G. J. (1998) Macromolecular crystal annealing: overcom- ing increased mosaicity associated with cryocrystallography. Acta Crystallogr D Biol Crystal- logr 54, 622-8.
  90. Walsh, M. A., Evans, G., Sanishvili, R., Dementieva, I. & Joachimiak, A. (1999) MAD data collection -current trends. Acta Crystallogr D Biol Crystallogr 55, 1726-32.
  91. Terwilliger, T. (1994) MAD phasing: Bayesian estimates of FA. Acta Crystallographica Section D 50, 11-6.
  92. Terwilliger, T. C. (2000) Maximum-likelihood density modification. Acta Crystallogr D Biol Crystallogr 56, 965-72.
  93. Skulachev, V. P. (1985) Membrane-linked energy transductions. Bioenergetic functions of sodium: H+ is not unique as a coupling ion. Eur J Biochem 151, 199-208.
  94. Hardman, J. K. & Stadtman, T. C. (1960) Metabolism of omega-amino acids. I. Fermentation of gamma-aminobutyric acid by Clostridium aminobutyricum n. sp. J Bacteriol 79, 544-8.
  95. Turkenburg, J. P. & Dodson, E. J. (1996) Modern developments in molecular replacement.
  96. Petrek, M., Kosinova, P., Koca, J. & Otyepka, M. (2007) MOLE: a Voronoi diagram-based ex- plorer of molecular channels, pores, and tunnels. Structure 15, 1357-63.
  97. Vagin, A. & Teplyakov, A. (1997) MOLREP: an Automated Program for Molecular Replace- ment. Journal of Applied Crystallography 30, 1022-5.
  98. Gartner, P., Weiss, D. S., Harms, U. & Thauer, R. K. (1994) N5- methyltetrahydromethanopterin:coenzyme M methyltransferase from Methanobacterium thermoautotrophicum. Catalytic mechanism and sodium ion dependence. Eur J Biochem 226, 465-72.
  99. Padan, E. & Schuldiner, S. (1993) Na+/H+ antiporters, molecular devices that couple the Na+ and H+ circulation in cells. J Bioenerg Biomembr 25, 647-69.
  100. Steuber, J., Schmid, C., Rufibach, M. & Dimroth, P. (2000) Na+ translocation by complex I (NADH:quinone oxidoreductase) of Escherichia coli. Mol Microbiol 35, 428-34.
  101. Krebs, W., Steuber, J., Gemperli, A. C. & Dimroth, P. (1999) Na+ translocation by the NADH:ubiquinone oxidoreductase (complex I) from Klebsiella pneumoniae. Mol Microbiol 33, 590-8.
  102. Benning, M. M., Haller, T., Gerlt, J. A. & Holden, H. M. (2000) New reactions in the crotonase superfamily: structure of methylmalonyl CoA decarboxylase from Escherichia coli. Biochem- istry 39, 4630-9.
  103. Kung, H., Tsai, L. & Stadtman, T. C. (1971) Nicotinic acid metabolism. VIII. Tracer studies on the intermediary roles of α-methyleneglutarate, methylitaconate, dimethylmaleate, and py- ruvate. J Biol Chem 246, 6444-51.
  104. Weiss, M. S. & Hilgenfeld, R. (1997) On the use of the merging R factor as a quality indicator for X-ray data. Journal of Applied Crystallography 30, 203-5.
  105. Henrick, K. & Thornton, J. M. (1998) PQS: a protein quaternary structure file server. Trends Biochem Sci 23, 358-61.
  106. Dimroth, P. (1997) Primary sodium ion translocating enzymes. Biochim Biophys Acta 1318, 11- 51.
  107. Otwinowski, Z. & Minor, W. (1997) Processing of X-ray Diffraction Data Collected in Oscilla- tion Mode. In Volume 276: Macromolecular Crystallography, part A (Carter CWJ & Sweet RM, ed^eds), pp. 307-26. Academic Press, New York.
  108. Laskowski, R. A., MacArthur, M. W., Moss, D. S. & M., T. J. (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Chrystallogr 26, 283-91.
  109. Davies, D. R. & Segal, D. M. (1971) Protein crystallization: Micro techniques involving vapor diffusion Methods in Enzymology 22, 266-9
  110. Pierik, A. J., Wolbert, R. B., Mutsaers, P. H., Hagen, W. R. & Veeger, C. (1992) Purification and biochemical characterization of a putative [6Fe-6S] prismane-cluster-containing protein from Desulfovibrio vulgaris (Hildenborough). Eur J Biochem 206, 697-704.
  111. Buckel, W. & Semmler, R. (1983) Purification, characterisation and reconstitution of gluta- conyl-CoA decarboxylase, a biotin-dependent sodium pump from anaerobic bacteria. Eur J Biochem 136, 427-34.
  112. Schweiger, G., Dutscho, R. & Buckel, W. (1987) Purification of 2-hydroxyglutaryl-CoA dehy- dratase from Acidaminococcus fermentans. An iron-sulfur protein. Eur J Biochem 169, 441-8.
  113. Buckel, W. & Golding, B. T. (1998) Radical species in the catalytic pathways of enzymes from anaerobes. FEMS Microbiology Reviews 22, 523-41.
  114. Hayashi, M., Nakayama, Y. & Unemoto, T. (2001) Recent progress in the Na(+)-translocating NADH-quinone reductase from the marine Vibrio alginolyticus. Biochim Biophys Acta 1505, 37-44.
  115. Murshudov, G. N., Vagin, A. A. & Dodson, E. J. (1997) Refinement of macromolecular struc- tures by the maximum-likelihood method. Acta Cryst D 53, 240-55.
  116. Wang, B.-C. (1985) Resolution of phase ambiguity in macromolecular crystallography. In Methods in Enzymology, 115, Elsevier Academic Press, 90-112.
  117. Evans, P. (2006) Scaling and assessment of data quality. Acta Crystallogr D Biol Crystallogr 62, 72-82.
  118. Krissinel, E. & Henrick, K. (2004) Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta Cryst D 60, 2256-68.
  119. Gouaux, E. (1998) Single potassium ion seeks open channel for transmembrane travels: tales from the KcsA structure. Structure 6, 1221-6.
  120. Lipfert, J. & Doniach, S. (2007) Small-angle X-ray scattering from RNA, proteins, and protein complexes. Annu Rev Biophys Biomol Struct 36, 307-27.
  121. Boiangiu, C. D., Jayamani, E., Brugel, D., Herrmann, G., Kim, J., Forzi, L., Hedderich, R., Vgenopoulou, I., Pierik, A. J., Steuber, J. & Buckel, W. (2005) Sodium ion pumps and hydro- gen production in glutamate fermenting anaerobic bacteria. J Mol Microbiol Biotechnol 10, 105- 19.
  122. Buckel, W. (2001a) Sodium ion-translocating decarboxylases. Biochim Biophys Acta 1505, 15- 27.
  123. Matthews, B. W. (1968) Solvent content of protein crystals. J Mol Biol 33, 491-7.
  124. Jancarik, J. & Kim, S. H. (1991) Sparse matrix sampling: a screening method for crystalliza- tion of proteins. Journal of Applied Crystallography 24, 409-11.
  125. Ferreira, F. M., Mendoza-Hernandez, G., Castaneda-Bueno, M., Aparicio, R., Fischer, H., Cal- cagno, M. L. & Oliva, G. (2006) Structural analysis of N-acetylglucosamine-6-phosphate deacetylase apoenzyme from Escherichia coli. J Mol Biol 359, 308-21.
  126. Seibert, C. M. & Raushel, F. M. (2005) Structural and catalytic diversity within the amidohy- drolase superfamily. Biochemistry 44, 6383-91.
  127. Hall, R. S., Brown, S., Fedorov, A. A., Fedorov, E. V., Xu, C., Babbitt, P. C., Almo, S. C. & Raushel, F. M. (2007) Structural diversity within the mononuclear and binuclear active sites of N-acetyl-D-glucosamine-6-phosphate deacetylase. Biochemistry 46, 7953-62.
  128. Stickland, L. H. (1935) Studies in the metabolism of the strict anaerobes (Genus Clostridium): The reduction of proline by Cl. sporogenes. Biochem J 29, 288-90.
  129. CCP4 (1994) The CCP4 suite: Programs for protein crystallography. Acta Cryst D 50, 760-3.
  130. R. & Edwards, B. F. (2005) The crystal structure of a novel, latent dihydroorotase from Aqui- fex aeolicus at 1.7 Å resolution. J Mol Biol 348, 535-47.
  131. Kress, D., Alhapel, A., Pierik, A. J. & Essen, L. O. (2008) The crystal structure of enamidase: a bifunctional enzyme of the nicotinate catabolism. J Mol Biol 384, 837-47.
  132. Jabri, E., Carr, M. B., Hausinger, R. P. & Karplus, P. A. (1995) The crystal structure of urease from Klebsiella aerogenes. Science 268, 998-1004.
  133. Rossmann, M. G. a. B., D.M. (1962) The Detection of Sub-Units Within the Crystallographic Asymmetric Unit. Acta Crystallogr 15, 24-31.
  134. Harker, D. (1956) The determination of the phases of the structure factors of non- centrosymmetric crystals by the method of double isomorphous replacement. Acta Crystal- lographica 9, 1-9.
  135. Dimroth, P. (1982) The generation of an electrochemical gradient of sodium ions upon decar- boxylation of oxaloacetate by the membrane-bound and Na+-activated oxaloacetate decar- boxylase from Klebsiella aerogenes. Eur J Biochem 121, 443-9.
  136. Leslie, A. G. (2006) The integration of macromolecular diffraction data. Acta Crystallogr D Biol Crystallogr 62, 48-57.
  137. Hans, M., Buckel, W. & Bill, E. (2000) The iron-sulfur clusters in 2-hydroxyglutaryl-CoA de- hydratase from Acidaminococcus fermentans. Biochemical and spectroscopic investigations.
  138. Rossmann, M. G. (1972) The Molecular Replacement Method. A collection of papers on the use of non-crystallographic symmetry. In ed^eds). Gordon & Breach, New York.
  139. Ensign, J. C. & Rittenberg, S. C. (1964) The pathway of nicotinic acid oxidation by a Bacillus species. J Biol Chem 239, 2285-91.
  140. Wilson, A. (1949) The probability distribution of X-ray intensities. Acta Crystallographica 2, 318-21.
  141. & Bourne, P. E. (2000) The Protein Data Bank. Nucleic Acids Res 28, 235-42.
  142. Buckel, W. (1980) The reversible dehydration of (R)-2-hydroxyglutarate to (E)-glutaconate.
  143. Skulachev, V. P. (1989) The sodium cycle: a novel type of bacterial energetics. J Bioenerg Biomembr 21, 635-47.
  144. Braune, A., Bendrat, K., Rospert, S. & Buckel, W. (1999) The sodium ion translocating gluta- conyl-CoA decarboxylase from Acidaminococcus fermentans: cloning and function of the genes forming a second operon. Mol Microbiol 31, 473-87.
  145. Schmidt, T. G. & Skerra, A. (2007) The Strep-tag system for one-step purification and high- affinity detection or capturing of proteins. Nat Protoc 2, 1528-35.
  146. Wang, J., Hartling, J. A. & Flanagan, J. M. (1997) The structure of ClpP at 2.3 A resolution suggests a model for ATP-dependent proteolysis. Cell 91, 447-56.
  147. Ireton, G. C., McDermott, G., Black, M. E. & Stoddard, B. L. (2002) The structure of Escherichia coli cytosine deaminase. J Mol Biol 315, 687-97.
  148. Bilder, P., Lightle, S., Bainbridge, G., Ohren, J., Finzel, B., Sun, F., Holley, S., Al-Kassim, L., Spessard, C., Melnick, M., Newcomer, M. & Waldrop, G. L. (2006) The structure of the car- boxyltransferase component of acetyl-coA carboxylase reveals a zinc-binding motif unique to the bacterial enzyme. Biochemistry 45, 1712-22.
  149. Vincent, F., Yates, D., Garman, E., Davies, G. J. & Brannigan, J. A. (2004) The three- dimensional structure of the N-acetylglucosamine-6-phosphate deacetylase, NagA, from Ba- cillus subtilis: a member of the urease superfamily. J Biol Chem 279, 2809-16.
  150. Pedersen, P. L. (2007) Transport ATPases into the year 2008: a brief overview related to types, structures, functions and roles in health and disease. J Bioenerg Biomembr 39, 349-55.
  151. Buckel, W. (2001b) Unusual enzymes involved in five pathways of glutamate fermentation.
  152. Lunin, V. (1988) Use of the information on electron density distribution in macromolecules.
  153. Perrakis, A., Sixma, T. K., Wilson, K. S. & Lamzin, V. S. (1997) wARP: Improvement and Ex- tension of Crystallographic Phases by Weighted Averaging of Multiple-Refined Dummy Atomic Models. Acta Crystallographica Section D 53, 448-55.
  154. Kleywegt, G. J. & Jones, T. A. (1996) xdlMAPMAN and xdlDATAMAN -Programs for Re- formatting, Analysis and Manipulation of Biomacromolecular Electron-Density Maps and Reflection Data Sets. Acta Crystallographica Section D 52, 826-8.
  155. Putnam, C. D., Hammel, M., Hura, G. L. & Tainer, J. A. (2007) X-ray solution scattering (SAXS) combined with crystallography and computation: defining accurate macromolecular structures, conformations and assemblies in solution. Q Rev Biophys 40, 191-285.
  156. Lohkamp, B., Andersen, B., Piskur, J. & Dobritzsch, D. (2006) The crystal structures of dihy- dropyrimidinases reaffirm the close relationship between cyclic amidohydrolases and ex- plain their substrate specificity. J Biol Chem 281, 13762-76.
  157. Hilpert, W., Schink, B. & Dimroth, P. (1984) Life by a new decarboxylation-dependent energy conservation mechanism with Na as coupling ion. EMBO J 3, 1665-70.
  158. Diederichs, K. & Karplus, P. A. (1997) Improved R-factors for diffraction data analysis in macromolecular crystallography. Nat Struct Biol 4, 269-75.
  159. The CATH classification revisited--architectures reviewed and new ways to character- ize structural divergence in superfamilies. Nucleic Acids Res 37, D310-4.
  160. Pratt, J. W. (1976) F. Y. Edgeworth and R. A. Fisher on the Efficiency of Maximum Likelihood Estimation. The Annals of Statistics 4, 501-14.
  161. Rossmann, M. G. (1990) The molecular replacement method. Acta Crystallogr A 46 ( Pt 2), 73- 82.
  162. Emsley, P. & Cowtan, K. (2004) Coot: model-building tools for molecular graphics. Acta Cryst D 60, 2126-32.
  163. J. & Swanson, R. V. (1998) The complete genome of the hyperthermophilic bacterium Aqui- fex aeolicus. Nature 392, 353-8.
  164. Takami, H., Nakasone, K., Takaki, Y., Maeno, G., Sasaki, R., Masui, N., Fuji, F., Hirama, C., Nakamura, Y., Ogasawara, N., Kuhara, S. & Horikoshi, K. (2000) Complete genome sequence of the alkaliphilic bacterium Bacillus halodurans and genomic sequence comparison with Bacillus subtilis. Nucleic Acids Res 28, 4317-31.
  165. Benning, M. M., Kuo, J. M., Raushel, F. M. & Holden, H. M. (1995) Three-dimensional struc- ture of the binuclear metal center of phosphotriesterase. Biochemistry 34, 7973-8.
  166. Deo, R. C., Schmidt, E. F., Elhabazi, A., Togashi, H., Burley, S. K. & Strittmatter, S. M. (2004) Structural bases for CRMP function in plexin-dependent semaphorin3A signaling. Embo J 23, 9-22.
  167. Hall, P. R., Wang, Y. F., Rivera-Hainaj, R. E., Zheng, X., Pustai-Carey, M., Carey, P. R. & Yee, V. C. (2003) Transcarboxylase 12S crystal structure: hexamer assembly and substrate binding to a multienzyme core. EMBO J 22, 2334-47.
  168. Kitts, C. L., Lapointe, J. P., Lam, V. T. & Ludwig, R. A. (1992) Elucidation of the complete Azorhizobium nicotinate catabolism pathway. J Bacteriol 174, 7791-7.
  169. Hermann, J. C., Marti-Arbona, R., Fedorov, A. A., Fedorov, E., Almo, S. C., Shoichet, B. K. & Raushel, F. M. (2007) Structure-based activity prediction for an enzyme of unknown func- tion. Nature 448, 775-9.
  170. Evans, P. & McCoy, A. (2008) An introduction to molecular replacement. Acta Crystallogr D Biol Crystallogr 64, 1-10.
  171. Buckel, W. & Barker, H. A. (1974) Two pathways of glutamate fermentation by anaerobic bacteria. J Bacteriol 117, 1248-60.
  172. Stadtman, E. R., Stadtman, T. C., Pastan, I. & Smith, L. D. (1972) Clostridium barkeri sp. n. J Bacteriol 110, 758-60.
  173. Mulkidjanian, A. Y., Dibrov, P. & Galperin, M. Y. (2008b) The past and present of sodium energetics: May the sodium-motive force be with you. Biochimica et Biophysica Acta (BBA) - Bioenergetics 1777, 985-92.
  174. Kress, D., Bruegel, D., Schall, I., Linder, D., Buckel, W. & Essen, L. O. (2009) An asymmetric model for Na+-translocating glutaconyl-CoA decarboxylases. J Biol Chem.
  175. Thauer, R. K., Jungermann, K. & Decker, K. (1977) Energy conservation in chemotrophic an- aerobic bacteria. Bacteriol Rev 41, 100-80.
  176. Di Berardino, M. & Dimroth, P. (1996) Aspartate 203 of the oxaloacetate decarboxylase beta- subunit catalyses both the chemical and vectorial reaction of the Na + pump. Embo J 15, 1842- 9.
  177. Engel, C. K., Mathieu, M., Zeelen, J. P., Hiltunen, J. K. & Wierenga, R. K. (1996) Crystal struc- ture of enoyl-coenzyme A (CoA) hydratase at 2.5 angstroms resolution: a spiral fold defines the CoA-binding pocket. EMBO J 15, 5135-45.
  178. Hase, C. C., Fedorova, N. D., Galperin, M. Y. & Dibrov, P. A. (2001) Sodium ion cycle in bac- terial pathogens: evidence from cross-genome comparisons. Microbiol Mol Biol Rev 65, 353-70.
  179. Smith, P. K., Krohn, R. I., Hermanson, G. T., Mallia, A. K., Gartner, F. H., Provenzano, M. D., Fujimoto, E. K., Goeke, N. M., Olson, B. J. & Klenk, D. C. (1985) Measurement of protein us- ing bicinchoninic acid. Anal Biochem 150, 76-85.
  180. Doyle, D. A., Morais Cabral, J., Pfuetzner, R. A., Kuo, A., Gulbis, J. M., Cohen, S. L., Chait, B. T. & MacKinnon, R. (1998) The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280, 69-77.
  181. She, Q., Singh, R. K., Confalonieri, F., Zivanovic, Y., Allard, G., Awayez, M. J., Chan-Weiher, C. C., Clausen, I. G., Curtis, B. A., De Moors, A., Erauso, G., Fletcher, C., Gordon, P. M., Hei- kamp-de Jong, I., Jeffries, A. C., Kozera, C. J., Medina, N., Peng, X., Thi-Ngoc, H. P., Redder, P., Schenk, M. E., Theriault, C., Tolstrup, N., Charlebois, R. L., Doolittle, W. F., Duguet, M., Gaasterland, T., Garrett, R. A., Ragan, M. A., Sensen, C. W. & Van der Oost, J. (2001) The complete genome of the crenarchaeon Sulfolobus solfataricus P2. Proc Natl Acad Sci U S A 98, 7835-40.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten