Publikationsserver der Universitätsbibliothek Marburg

Titel:Strong-Coupling Solution of the Dynamical Mean-Field Equations for the Mott-Hubbard Insulator on a Bethe Lattice
Autor:Ruhl, Daniel F.
Weitere Beteiligte: Gebhard, Florian (Prof. Dr.)
Veröffentlicht:2010
URI:https://archiv.ub.uni-marburg.de/diss/z2010/0377
DOI: https://doi.org/10.17192/z2010.0377
URN: urn:nbn:de:hebis:04-z2010-03773
DDC: Physik
Titel (trans.):Lösung der Selbstkonsistenzgleichungen der Dynamischen Molekularfeldtheorie für den Mott-Hubbard Isolator auf einem Bethegitter bei starker Kopplung
Publikationsdatum:2010-07-08
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Mott-Transition, Single Impurity Anderson Model, Selbstkonsistenz, Störungstheorie, Mott-Übergang, Correlated Electrons, Dynamical Mean Field Theory, Mehrpunktfunktion, Anderson-Modell, Hubbard-Modell, Hubbard Model

Summary:
In this work, we analyze the single-particle Green function of the Hubbard model on the Bethe lattice with an infinite number of nearest neighbors at zero temperature. The Hubbard model is conceptually the simplest many-electron model. Nevertheless, it poses a most difficult many-body problem. Except in one spatial dimension, no exact solution has been found up to today. Therefore, systematic analytical approximations are of major importance as they provide results in the thermodynamic limit against which numerical methods can be tested. We aim to calculate the single-particle density of states and the gap for charge-carrying single-particle excitations. Both of these quantities are rather difficult to obtain in numerical studies which necessarily deal with rather small system sizes. Reliable analytical results provide reliable benchmark tests for the numerics. We employ the Dynamical Mean-Field theory (DMFT), which permits the mapping of the Hubbard model in infinite dimensions or, equivalently, with an infinite number of nearest neighbors, onto an effective quantum impurity system. We use the Single Impurity Anderson Model (SIAM) as the quantum impurity model. New to our approach is the fact that we solve the DMFT equations for the Mott-Hubbard insulator up to third order in 1/U . We achieve this goal with the help of the Kato-Takahashi perturbation after successfully adapting it to our problem. This is the first time an analytical solution of the DMFT self-consistency equations for the insulator has been found.

Bibliographie / References

  1. J. Bardeen, L. N. Cooper, and J. R. Schrieffer, " Microscopic theory of superconductivity " , Physical Review, vol. 106, pp. 162–164, 1957.
  2. E. Wigner and F. Seitz, " On the constitution of metallic sodium " , Physical Review, vol. 43, pp. 804–810, 1933.
  3. E. Kalinowski and F. Gebhard, " Mott-Hubbard insulator in infinite dimensions " , Journal of Low Temperature Physics, vol. 126, pp. 979–1007, 2002.
  4. M. P. Eastwood, F. Gebhard, E. Kalinowski, S. Nishimoto, and R. M. Noack, " Analytical and numerical treatment of the Mott-Hubbard insulator in infinite dimensions " , The European Physical Journal B, vol. 35, pp. 155–175, 2003.
  5. M. Eckstein, M. Kollar, K. Byczuk, and D. Vollhardt, " Hopping on the Bethe lattice: Exact results for densities of states and Dynamical Mean-Field Theory " , Physical Review B, vol. 71, p. 235119, 2005.
  6. R. Bulla, T. A. Costi, and T. Pruschke, " Numerical renormalization group method for quantum impurity systems " , Reviews of Modern Physics, vol. 80, pp. 395–450, 2008.
  7. F. H. L. Essler, V. E. Korepin, and K. Schoutens, " Complete solution of the one-dimensional Hubbard model " , Physical Review Letters, vol. 67, pp. 3848–3851, 1991.
  8. T. Hanisch, B. Kleine, and E. Müller-Hartmann, " Ferromagnetism in the Hubbard model: in- stability of the Nagaoka state on the triangular, honeycomb and kagome lattices " , Annalen der Physik, vol. 507, no. 4, pp. 303–328, 1995.
  9. U. Fano, " Effects of configuration interaction on intensities and phase shifts " , Physical Review, vol. 124, pp. 1866–1878, 1961.
  10. M. Nahrgang, " Multichain Approach to the Single-Impurity Anderson Model in the Dynamical Mean-Field Theory " , Diplomarbeit, Philipps-Universität Marburg, 2008.
  11. P. de Faget de Casteljau and J. Friedel, " ´ Etude de la résistivité et du pouvoir thermoélectrique des impuretés dissoutes dans les métaux nobles " , Journal de Physique et Le Radium, vol. 17, no. 1, pp. 27–32, 1956.
  12. J. Friedel, " Sur la structuré electronique des métaux et alliages de transition et des métaux lourds " , Journal de Physique et Le Radium, vol. 19, no. 6, pp. 573–581, 1958.
  13. P. Weiss, " L'hypothèse du champ moléculaire et la propriété ferromagnétique " , Journal de Physique Théorique et Appliquée, vol. 6, no. 1, pp. 661–690, 1907.
  14. M.-B. Lepetit, M. Cousy, and G. Pastor, " Density-matrix renormalization study of the Hubbard model on a Bethe lattice " , European Physical Journal B, vol. 13, no. 3, pp. 421–427, 2000.
  15. L. Kantorovich, Quantum Theory of the Solid State: An Introduction, vol. 136 of Fundamental Theories of Physics. Kluwer Academic Publishers, 2004.
  16. E. H. Lieb and F. Y. Wu, " Absence of Mott transition in an exact solution of the short-range, one-band model in one dimension " , Physical Review Letters, vol. 20, pp. 1445–1448, 1968.
  17. P. Phillips, Advanced Solid State Physics. Advanced Book Program, Westview Press, 2003.
  18. R. D. Mattuck, A Guide to Feynman Diagrams in the Many-Body Problem. Dover Publications Inc., second ed., 1992.
  19. J. D. Cloizeaux, " Analytical properties of n-dimensional energy bands and Wannier functions " , Physical Review, vol. 135, pp. A698–A707, 1964.
  20. W. Kohn, " Analytic properties of Bloch waves and Wannier functions " , Physical Review, vol. 115, pp. 809–821, 1959.
  21. C. Lanczos, " An iteration method for the solution of the eigenvalue problem of linear differential and integral operators " , Journal of Research of the National Bureau of Standards, vol. 45, pp. 255– 282, 1950.
  22. P. L. Taylor and O. Heinonen, A Quantum Approach to Condensed Matter Physics. Cambridge University Press, 2002. Bibliography [20] G. Czycholl, Theoretische Festkörperphysik. Springer, 2004.
  23. R. Abou-Chacra, D. J. Thouless, and P. W. Anderson, " A selfconsistent theory of localization " , Journal of Physics C: Solid State Physics, vol. 6, no. 10, pp. 1734–1752, 1973. Bibliography [59] R. Abou-Chacra and D. J. Thouless, " Self-consistent theory of localization: II. Localization near the band edges " , Journal of Physics C: Solid State Physics, vol. 7, no. 1, pp. 65–75, 1974.
  24. E. Ising, " Beitrag zur Theorie des Ferromagnetismus " , Zeitschrift für Physik, vol. 31, pp. 253–258, 1925.
  25. J. Chalupa, P. L. Leath, and G. R. Reich, " Bootstrap percolation on a Bethe lattice " , Journal of Physics C: Solid State Physics, vol. 12, no. 1, pp. L31–L35, 1979.
  26. L. N. Cooper, " Bound electron pairs in a degenerate Fermi gas " , Physical Review, vol. 104, pp. 1189–1190, 1956.
  27. T. P. Eggarter, " Cayley trees, the Ising problem, and the thermodynamic limit " , Physical Review B, vol. 9, pp. 2989–2992, 1974.
  28. J. P. Boyd, Chebyshev and Fourier Spectral Methods. Dover Publications, second ed., 2001. Curriculum Vitae Persönliches Name Daniel Friedrich Ruhl Geburtstag 18.10.1978
  29. S. Lang, ed., Complex Analysis, vol. 103 of Graduate Texts in Mathematics. Springer, fourth ed., 1999.
  30. E. Müller-Hartmann, " Correlated fermions on a lattice in high dimensions " , Zeitschrift für Physik B: Condensed Matter, vol. 74, pp. 507–512, 1989.
  31. W. Metzner and D. Vollhardt, " Correlated lattice fermions in d = ∞ dimensions " , Physical Review Letters, vol. 62, pp. 324–327, 1989.
  32. L. Onsager, " Crystal statistics. I. A two-dimensional model with an order-disorder transition " , Physical Review, vol. 65, pp. 117–149, 1944.
  33. Diplomarbeit mit dem Titel Ground-State Properties of Correlated Electron Systems in the Limit of High Spatial Dimensions in der AG Vielteilchentheorie des Fachbereichs Physik der Philipps-Universität Marburg unter der Betreuung von Prof. Dr. Florian Gebhard 12/2006
  34. N. F. Mott and R. Peierls, " Discussion of the paper by de Boer and Verwey " , Proceedings of the Physical Society, vol. 49, no. 4S, p. 72, 1937.
  35. Doktorand in der AG Vielteilchentheorie des Fachbereichs Physik der Philipps-Universität Marburg
  36. S. Nishimoto, F. Gebhard, and E. Jeckelmann, " Dynamical density-matrix renormalization group for the Mott-Hubbard insulator in high dimensions " , Journal of Physics: Condensed Matter, vol. 16, pp. 7063–7081, 2004.
  37. A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, " Dynamical Mean-Field Theory of strongly correlated Fermion systems and the limit of infinite dimensions " , Reviews of Modern Physics, vol. 68, pp. 13–125, 1996.
  38. E. N. Economou, Green's Functions in Quantum Physics. Springer Series in Solid-State Sciences, Springer, third ed., 2006.
  39. M. C. Gutzwiller, " Effect of correlation on the ferromagnetism of transition metals " , Physical Review Letters, vol. 10, pp. 159–162, 1963.
  40. P. Tittmann, Einführung in die Kombinatorik. Spektrum-Hochschultaschenbuch, Spektrum Akademischer Verlag, 2007.
  41. J. Kanamori, " Electron correlation and ferromagnetism of transition metals " , Progress of Theo- retical Physics, vol. 30, pp. 275–289, 1963.
  42. J. Hubbard, " Electron correlations in narrow energy bands. " , Proceedings of the Royal Society, vol. 276, pp. 238–257, 1963.
  43. R. Haydock, V. Heine, and M. J. Kelly, " Electronic structure based on the local atomic environ- ment for tight-binding bands " , Journal of Physics C: Solid State Physics, vol. 5, no. 20, p. 2845, 1972.
  44. J. M. Ziman, Electrons and Phonons. Oxford Classic Texts in the Physical Sciences, Oxford University Press, 2004.
  45. J. D. Cloizeaux, " Energy bands and projection operators in a crystal: Analytic and asymptotic properties " , Physical Review, vol. 135, pp. A685–A697, 1964.
  46. G. D. Mahan, " Energy bands of the Bethe lattice " , Physical Review B, vol. 63, p. 155110, 2001.
  47. C.-K. Hu and N. S. Izmailian, " Exact correlation functions of Bethe lattice spin models in external magnetic fields " , Physical Review E, vol. 58, pp. 1644–1653, 1998.
  48. R. J. Baxter, Exactly Solved Models in Statistical Mechanics. Dover Publications, Inc., 2007.
  49. J. M. Luttinger, " Fermi surface and some simple equilibrium properties of a system of interacting fermions " , Physical Review, vol. 119, pp. 1153–1163, 1960.
  50. J. L. Gross and J. Yellen, Graph Theory and its Applications. Discrete Mathematics and its Applications, Chapman & Hall/CRC, second ed., 2006.
  51. F. Harary, Graph theory and theoretical physics. Academic Press, 1967.
  52. M. Kollar, M. Eckstein, K. Byczuk, N. Blümer, P. van Dongen, M. R. de Cuba, W. Metzner, D. Tanaskovi´Tanaskovi´c, V. Dobrosavljevi´Dobrosavljevi´c, G. Kotliar, and D. Vollhardt, " Green functions for nearest- and next-nearest-neighbor hopping on the Bethe lattice " , Annalen der Physik, vol. 14, no. 9-10, pp. 642–657, 2005.
  53. M. Takahashi, " Half-filled Hubbard model at low temperature " , Journal of Physics C: Solid State Physics, vol. 10, pp. 1289–1301, 1977.
  54. M.-S. Chen, L. Onsager, J. Bonner, and J. Nagle, " Hopping of ions in ice " , The Journal of Chemical Physics, vol. 60, no. 2, pp. 405–419, 1974.
  55. M. Jarrell, " Hubbard model in infinite dimensions: A quantum Monte Carlo study " , Physical Review Letters, vol. 69, pp. 168–171, 1992. Bibliography [116] A. Georges and G. Kotliar, " Hubbard model in infinite dimensions " , Physical Review B, vol. 45, pp. 6479–6483, 1992.
  56. O. Madelung, Introduction to Solid-State Theory. Springer Series in Solid-State Sciences, Springer, 1995.
  57. D. Vollhardt, " Investigation of correlated electron systems using the limit of high dimensions " , in Correlated Electron Systems: Jerusalem, Israel, 30 Dec 91-8 Jan 92 (Jerusalem Winter School for Theoretical Physics) (V. J. Emery, ed.), p. 57, World Scientific Publishing Co. Pte. Ltd, 1993.
  58. C. J. Thompson, " Ising model in the high density limit " , Communications in Mathematical Physics, vol. 36, pp. 255–262, 1974.
  59. T. Morita and T. Horiguchi, " Lattice Green's functions for the cubic lattices in terms of the complete elliptic integral " , Journal of Mathematical Physics, vol. 12, no. 6, pp. 981–986, 1971. Bibliography [40] G. S. Joyce, " Lattice Green function for the simple cubic lattice " , Journal of Physics A: General Physics, vol. 5, no. 8, pp. L65–L68, 1972.
  60. J. L. Beeby, " Localization on a Bethe lattice " , Journal of Physics C: Solid State Physics, vol. 6, no. 14, pp. L283–L287, 1973.
  61. M. R. Zirnbauer, " Localization transition on the Bethe lattice " , Physical Review B, vol. 34, pp. 6394–6408, 1986.
  62. A. M. Clogston, B. T. Matthias, M. Peter, H. J. Williams, E. Corenzwit, and R. C. Sherwood, " Lo- cal magnetic moment associated with an iron atom dissolved in various transition metal alloys " , Physical Review, vol. 125, pp. 541–552, 1962.
  63. F. Yndurain, R. Barrio, R. J. Elliott, and M. F. Thorpe, " Long-range correlations in Bethe lattices " , Physical Review B, vol. 28, pp. 3576–3578, 1983.
  64. R. O. Zaitsev and M. I. Dushenat, " Magnetic and Mott transition in the Hubbard model " , Soviet physics–Solid state, vol. 25, no. 11, p. 1979, 1984.
  65. B. T. Matthias, M. Peter, H. J. Williams, A. M. Clogston, E. Corenzwit, and R. C. Sherwood, " Magnetic moment of transition metal atoms in dilute solution and their effect on superconducting transition temperature " , Physical Review Letters, vol. 5, pp. 542–544, 1960.
  66. H. Bruus and K. Flensberg, Many-Body Quantum Theory in Condensed Matter Physics. Oxford Graduate Texts, Oxford University Press, first ed., 2004.
  67. G. D. Mahan, Many-Particle Physics. Physics of Solids and Liquids, Plenum Press, second ed., 1990.
  68. W. Heisenberg, " Mehrkörperproblem und Resonanz in der Quantenmechanik " , Zeitschrift für Physik, vol. 38, pp. 411–426, 1926.
  69. M. Imada, A. Fujimori, and Y. Tokura, " Metal-insulator transitions " , Reviews of Modern Physics, vol. 70, no. 4, pp. 1039–1263, 1998.
  70. J. Friedel, " Metallic alloys " , Supplemento del Il Nuovo Cimento, vol. 7, no. 0, pp. 287–311, 1958.
  71. J. E. Hirsch and R. M. Fye, " Monte Carlo method for magnetic impurities in metals " , Physical Review Letters, vol. 56, no. 23, pp. 2521–2524, 1986.
  72. E. Müller-Hartmann and J. Zittartz, " New type of phase transition " , Physical Review Letters, vol. 33, pp. 893–897, 1974.
  73. V. Fock, " Näherungsmethode zur Lösung des quantenmechanischen Mehrkörperproblems " , Zeit- schrift für Physik, vol. 61, pp. 126–148, 1930.
  74. J. C. Slater, " Note on Hartree's method " , Physical Review, vol. 35, pp. 210–211, 1930.
  75. P. Fazekas, Lecture Notes on Electron Correlation and Magnetism, vol. 5 of Series in Modern Condensed Matter Physics. World Scientific Publishing Co. Pte. Ltd, 1999.
  76. H. Fehske, R. Schneider, and A. Weiße, eds., Computational Many-Particle Physics, vol. 739 of The Lecture Notes in Physics. Springer, 2008.
  77. T. Kato, " On the convergence of the perturbation method I " , Progress of Theoretical Physics, vol. 4, pp. 514–523, 1949.
  78. C. Domb, " On the theory of cooperative phenomena in crystals " , Advances in Physics, vol. 9, pp. 149–244, 1960.
  79. N. F. Mott, " On the transition to metallic conduction in semiconductors " , Canadian Journal of Physics, vol. 34, pp. 1356–1368, 1956.
  80. Z. Q. Zhang, T. C. Li, and F. C. Pu, " Percolation on a Bethe lattice with multi-neighbour bonds– exact results " , Journal of Physics A: Mathematical and General, vol. 16, no. 10, pp. 2267–2280, 1983.
  81. T. Kato, Perturbation theory for linear operators, vol. 132 of Die Grundlehren der mathemati- schen Wissenschaften in Einzeldarstellung mit besonderer Berücksichtigung der Anwendungsge- biete. Springer, 1966.
  82. J. W. Negele and H. Orland, Quantum Many-Particle Systems. Advanced Book Classics, Westview Press, 1998.
  83. A. Bohm, Quantum Mechanics–Foundations and Applications. Texts and Monographs in Physics, Springer, third ed., 2001.
  84. T. Giamarchi, Quantum Physics in One Dimension. The International Series of Monographs in Physics, Oxford University Press, 2004.
  85. A. M. Zagoskin, Quantum Theory of Many-Body Systems. Graduate Texts in Contemporary Physics, Springer, 1998.
  86. A. L. Fetter and J. D. Walecka, Quantum Theory of Many-Particle Systems. Dover Publicatons Inc., 2003.
  87. Diplom für Physik ( " sehr gut – mit Auszeichnung " ) seit 01/2007
  88. J. H. de Boer and E. J. W. Verwey, " Semi-conductors with partially and with completely filled 3d-lattice bands " , Proceedings of the Physical Society, vol. 49, no. 4S, p. 59, 1937.
  89. W. F. Brinkman and T. M. Rice, " Single-particle excitations in magnetic insulators " , Physical Review B, vol. 2, pp. 1324–1338, 1970.
  90. A. B. Harris and R. V. Lange, " Single-particle excitations in narrow energy bands " , Physical Review, vol. 157, pp. 295–314, 1967.
  91. N. W. Ashcroft and N. D. Mermin, Solid State Physics. Thomson Learning, 1975.
  92. M. E. Fisher and J. W. Essam, " Some cluster size and percolation problems " , Journal of Mathe- matical Physics, vol. 2, no. 4, pp. 609–619, 1961.
  93. S. Doniach and E. H. Sondheimer, Green's Functions for Solid State Physicists. Imperial College Press, Imperial College Press ed., 1998. Bibliography [77] P. W. Anderson, " Localized magnetic states in metals " , Physical Review, vol. 124, pp. 41–53, 1961.
  94. G. Mussardo, Statistical Field Theory. Oxford University Press, 2009.
  95. C. Itzykson and J.-M. Drouffe, Statistical Field Theory, Volume 1: From Brownian Motion to Renormalization and Lattice Gauge Theory. Cambridge University Press, 1991.
  96. R. Brout, " Statistical mechanical theory of ferromagnetism. High density behavior " , Physical Review, vol. 118, pp. 1009–1019, 1960.
  97. H. A. Bethe, " Statistical theory of superlattices " , Proceedings of the Royal Society of London. Series A -Mathematical and Physical Sciences, vol. 150, no. 871, pp. 552–575, 1935.
  98. –03/2010 Stipendiat des Europäischen Graduiertenkollegs Electron-Electron Interactions in Solids der DFG 08/2009–10/2009 Forschungsaufenthalt mit Prof. Dr. Fabian Essler am Rudolf Peierls Centre for Theo- retical Physics in Oxford, United Kingdom seit 04/2010
  99. D. Vollhardt, " Strong-coupling approaches to correlated fermions. " , in Proceedings of the Inter- national School of Physics 'Enrico Fermi', Course CXXI: 'Perspectives in many-particle physics' (Varenna on Lake Como, Villa Monastero, 7-17 July 1992) (R. A. Broglia, J. R. Schrieffer, and P. F. Bortignon, eds.), p. 31, North-Holland Publishing Co., 1994.
  100. S. Pairault, D. Sénéchal, and A.-M. S. Tremblay, " Strong-coupling expansion for the Hubbard model " , Physical Review Letters, vol. 80, pp. 5389–5392, 1998.
  101. S. Pairault, D. Sénéchal, and A.-M. S. Tremblay, " Strong-coupling perturbation theory of the Hubbard model " , European Physical Journal B, vol. 16, pp. 85–105, 2000.
  102. F. Yndurain, " Surface magnetic order in the Ising model: A Cayley tree approximation " , Physics Letters A, vol. 62, no. 2, pp. 93–94, 1977.
  103. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products. Academic Press, sixth ed., 2000.
  104. N. F. Mott, " The basis of the electron theory of metals, with special reference to the transition metals " , Proceedings of the Physical Society. Section A, vol. 62, no. 7, pp. 416–422, 1949.
  105. D. M. Edwards and L. A. Hertz, " The breakdown of Fermi liquid theory in the Hubbard model " , Physica B: Condensed Matter, vol. 163, no. 1-3, pp. 527–529, 1990.
  106. G. C. Wick, " The evaluation of the collision matrix " , Physical Review, vol. 80, pp. 268–272, 1950. [27] T. Koopmans, " ¨ Uber die Zuordnung von Wellenfunktionen und Eigenwerten zu den einzelnen Elektronen eines Atoms " , Physica, vol. 1, no. 1-6, pp. 104–113, 1934.
  107. E. Müller-Hartmann, " The Hubbard model at high dimensions: some exact results and weak coupling theory " , Zeitschrift für Physik B: Condensed Matter, vol. 76, pp. 211–217, 1989. Bibliography [97] W. Metzner, " Linked-cluster expansion around the atomic limit of the Hubbard model " , Physical Review B, vol. 43, pp. 8549–8563, 1991.
  108. A. C. Hewson, The Kondo Problem to Heavy Fermions. Cambridge Studies in Magnetism, Cam- bridge University Press, 1997.
  109. F. Gebhard, The Mott Metal-Insulator Transition, vol. 137 of Springer Tracts in Modern Physics. Springer, 1997.
  110. F. H. L. Essler, H. Frahm, F. Göhmann, A. Klümper, and V. E. Korepin, The One-Dimensional Hubbard Model. Cambridge University Press, 2005.
  111. J. Bardeen, L. N. Cooper, and J. R. Schrieffer, " Theory of superconductivity " , Physical Review, vol. 108, pp. 1175–1204, 1957.
  112. M. Takahashi, Thermodynamics of One-Dimensional Solvable Models. Cambridge University Press, 1999.
  113. N. F. Mott, " The transition to the metallic state " , Philosophical Magazine, vol. 6, pp. 287–309, 1961.
  114. D. R. Hartree, " The wave mechanics of an atom with a non-coulomb central field. Part I. Theory and methods " , Mathematical Proceedings of the Cambridge Philosophical Society, vol. 24, no. 01, pp. 89–110, 1928.
  115. F. Bloch, " ¨ Uber die Quantenmechanik der Elektronen in Kristallgittern " , Zeitschrift für Physik, vol. 52, pp. 555–600, 1929.
  116. H. Lehmann, " ¨ Uber Eigenschaften von Ausbreitungsfunktionen und Renormierungskonstanten quantisierter Felder " , Il Nuovo Cimento, vol. 11, no. 4, pp. 342–357, 1954.
  117. V. Janiš and D. Vollhardt, " Construction of analytically tractable mean-field theories for quan- tum models: I. General formalism with application to the Hubbard model at strong coupling " , Zeitschrift für Physik B: Condensed Matter, vol. 91, pp. 317–323, 1993.
  118. M. Koecher, Lineare Algebra und analytische Geometrie. Springer, 1997.
  119. P. Drude, " Zur Elektronentheorie der Metalle " , Annalen der Physik, vol. 306, no. 3, pp. 566–613, 1900.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten