Publikationsserver der Universitätsbibliothek Marburg

Titel:The Ustilago maydis forkhead transcription factor Fox1 is involved in the regulation of genes required for the attenuation of plant defenses during pathogenic development
Autor:Zahiri, Alexander
Weitere Beteiligte: Kämper, Jörg (Prof. Dr.)
Veröffentlicht:2010
URI:https://archiv.ub.uni-marburg.de/diss/z2010/0133
DOI: https://doi.org/10.17192/z2010.0133
URN: urn:nbn:de:hebis:04-z2010-01333
DDC: Pflanzen (Botanik)
Titel (trans.):Der Ustilago maydis forkhead Transkriptionsfaktor Fox1 reguliert Gene, die eine Reduktion des pflanzlichen Abwehrsystems während der pathogenen Entwicklung steuern
Publikationsdatum:2010-05-12
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Forkhead Transkriptionsfaktoren, Zea Mays, Ustilago maydis, Effektoren, effectors, secreted proteins, ustilago maydis, forkhead transcription factor, zea mays, Sekretierte Proteine
Referenziert von:

Summary:
The basidiomycete Ustilago maydis is a phytopathogenic fungus that causes common smut disease on maize. U. maydis is a dimorphic fungus that can exist as a non-pathogenic yeast-like haploid cell, or as a filamentous growing pathogenic dikaryon. As a biotrophic fungus, completion of the life cycle depends on living host tissue. The biotrophic interaction is initiated upon breaching of the host epidermal layer, and involves invagination of the host plasma membrane around hyphae to form an interaction zone. This is thought to facilitate nutrient acquisition by the fungus, as well as the translocation of fungal effector proteins into the plant cell. The establishment and maintenance of the biotrophic phase requires an adaptation to a multitude of nutritional/environmental conditions, and the response to host specific signals and defense reactions. Dynamic processes during the host interaction entail a complex regulatory network including a variety of different transcription factors, which work in concert to coordinate successful pathogenic development. While transcriptional regulators involved in the establishment of an infectious dikaryon and penetration into the host have been characterized, transcriptional regulators exclusively required for the post-penetration stages remained to be identified. The potential forkhead transcription factor Fox1 has been identified by global gene expression profiling. Fox1 is specifically expressed in planta and required for biotrophic development. In particular, U. maydis delta-fox1 mutant strains are unable to incite tumor formation, and infected leaf tissue displays increased anthocyanin levels. Expression analysis of the host response revealed the deregulation of genes required for plant cell growth and enlargement, and the induction of genes associated with the production of anthocyanins. Microscopic analyses identified that unlike wild-type-hyphae, which are found frequently within the plant vasculature and mesophyll, hyphae of delta-fox1 mutants predominantly aggregate within the plant vasculature and are rarely detected in the mesophyll. The reason behind this focused growth remains to be elucidated, however the delta-fox1-dependent repression of genes involved in sugar transport and processing could have a decisive effect on the ability of the fungus to grow in sugar-sparse plant tissue. Global gene expression profiling identified Fox1 as a b-independent, plant specific regulator. fox1-dependent genes comprise those encoding secreted proteins, including potential effectors belonging to gene clusters required for virulence. As a consequence, !fox1-hyphae trigger host defense reactions, including the overproduction and accumulation of H2O2 in and around infected cells, and a novel maize defense response phenotypically represented by the encasement of proliferating hyphae in a plant-produced matrix consisting of cellulose and callose.

Bibliographie / References

  1. Sigrist, C.J., De Castro, E., Langendijk-Genevaux, P.S., Le Saux, V., Bairoch, A., and Hulo, N. (2005). ProRule: a new database containing functional and structural information on PROSITE profiles. Bioinformatics 21, 4060-4066.
  2. Hua, S., and Sun, Z. (2001). Support vector machine approach for protein subcellular localization prediction. Bioinformatics 17, 721-728.
  3. Kämper, J. (2004). A PCR-based system for highly efficient generation of gene replacement mutants in Ustilago maydis. Mol. Genet. Genomics 271, 103-110.
  4. Multiallelic recognition: nonself-dependent dimerization of the bE and bW homeodomain proteins in Ustilago maydis. Cell 81, 73-83.
  5. Zheng, Y., Kief, J., Auffarth, K., Farfsing, J.W., Mahlert, M., Nieto, F., and Basse, C.W. (2008). The Ustilago maydis Cys2His2-type zinc finger transcription factor Mzr1 regulates fungal gene expression during the biotrophic growth stage. Mol. Microbiol. 68, 1450-1470.
  6. STE12-like transcription factor from the plant pathogen Colletotrichum lindemuthianum. Mol. Microbiol. 64, 68-82.
  7. Smith, R.C., and Fry, S.C. (1991). Endotransglycosylation of xyloglucans in plant cell suspension cultures. Biochem. J. 279 ( Pt 2), 529-535.
  8. Reynolds, D., Shi, B.J., McLean, C., Katsis, F., Kemp, B., and Dalton, S. (2003). Recruitment of Thr 319-phosphorylated Ndd1p to the FHA domain of Fkh2p requires Clb kinase activity: a mechanism for CLB cluster gene activation. Genes Dev. 17, 1789-1802.
  9. Khan, R., Tan, R., Mariscal, A.G., and Straney, D. (2003). A binuclear zinc transcription factor binds the host isoflavonoid-responsive element in a fungal cytochrome p450 gene responsible for detoxification. Mol. Microbiol. 49, 117-130.
  10. Kamoun, S. (2006). A catalogue of the effector secretome of plant pathogenic oomycetes. Annu. Rev. Phytopathol. 44, 41-60.
  11. Wu, Y., Meeley, R.B., and Cosgrove, D.J. (2001). Analysis and expression of the alpha-expansin and beta-expansin gene families in maize. Plant Physiol. 126, 222-232.
  12. Jacobs, A.K., Lipka, V., Burton, R.A., Panstruga, R., Strizhov, N., Schulze- Lefert, P., and Fincher, G.B. (2003). An Arabidopsis Callose Synthase, GSL5, Is Required for Wound and Papillary Callose Formation. Plant Cell 15, 2503-2513.
  13. Hückelhoven, R. (2007). Cell wall-associated mechanisms of disease resistance and susceptibility. Annu. Rev. Phytopathol. 45, 101-127.
  14. Kim, S.H., Virmani, D., Wake, K., MacDonald, K., Kronstad, J.W., and Ellis, B.E. (2001). Cloning and disruption of a phenylalanine ammonia-lyase gene from Ustilago maydis. Curr. Genet. 40, 40-48.
  15. Spellman, P.T., Sherlock, G., Zhang, M.Q., Iyer, V.R., Anders, K., Eisen, M.B., Brown, P.O., Botstein, D., and Futcher, B. (1998). Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol. Biol. Cell 9, 3273-3297.
  16. Kaufmann, E., Müller, D., and Knochel, W. (1995). DNA recognition site analysis of Xenopus winged helix proteins. J. Mol. Biol. 248, 239-254.
  17. Sanger, J., Nicklen, S., and Coulson, A.R. (1992). DNA sequencing with chain- terminating inhibitors. Biotechnology 24, 104-108.
  18. Talarczyk, A., and Hennig, J. (2001). Early defense responses in plants infected with pathogenic organisms. Cell Mol. Biol. Lett. 6, 955-970.
  19. Epidermal anthocyanin production as an indicator of bacterial blight resistance in cotton. Physiol. Mol. Plant Pathol. 61, 189-195.
  20. Koranda, M., Schleiffer, A., Endler, L., and Ammerer, G. (2000). Forkhead-like transcription factors recruit Ndd1 to the chromatin of G2/M-specific promoters. Nature 406, 94-98.
  21. Kops, G.J., and Burgering, B.M. (1999). Forkhead transcription factors: new insights into protein kinase B (c-akt) signaling. J. Mol. Med. 77, 656-665.
  22. Salas Fernandez, M.G., Becraft, P.W., Yin, Y., and Lübberstedt, T. (2009). From dwarves to giants? Plant height manipulation for biomass yield. Trends Plant Sci. 14, 454-461.
  23. Roux, J., Pictet, R., and Grange, T. (1995). Hepatocyte nuclear factor 3 determines the amplitude of the glucocorticoid response of the rat tyrosine aminotransferase gene. DNA Cell. Biol. 14, 385-396.
  24. Isolation and characterization of an autonomously replicating sequence from Ustilago maydis. Mol. Cell. Biol. 8, 3703-3709.
  25. Tan, P.B., Lackner, M.R., and Kim, S.K. (1998). MAP kinase signaling specificity mediated by the LIN-1 Ets/LIN-31 WH transcription factor complex during C. elegans vulval induction. Cell 93, 569-580.
  26. Sambrook, J., Frisch, E.F., and Maniatis, T. (1989). Molecular Cloning: A Laboratory Manual. (Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press).
  27. Innis, M.A., Gelfand, D.H., Sninsky, J.J., and White, T.J. (1990). PCR Protocols: a guide to methods and applications. (San Diego, USA, Academic Press).
  28. Hückelhoven, R., and Kogel, K.H. (2003). Reactive oxygen intermediates in plant- microbe interactions: who is who in powdery mildew resistance? Planta 216, 891-902.
  29. van Dongen, M.J., Cederberg, A., Carlsson, P., Enerback, S., and Wikstrom, M. (2000). Solution structure and dynamics of the DNA-binding domain of the adipocyte-transcription factor FREAC-11. J. Mol. Biol. 296, 351-359.
  30. Subcellular localization of H 2 O 2 in plants. H 2 O 2 accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction. Plant Journal 11, 1187-1194.
  31. Snyder, B.A., and Nicholson, R.L. (1990). Synthesis of Phytoalexins in Sorghum as a Site-Specific Response to Fungal Ingress. Science 248, 1637-1639.
  32. Kothe, E. (1996). Tetrapolar fungal mating types: sexes by the thousands. FEMS Microbiol. Rev. 18, 65-87.
  33. Urban, M., Kahmann, R., and Bölker, M. (1996). The biallelic a mating type locus of Ustilago maydis: remnants of an additional pheromone gene indicate evolution from a multiallelic ancestor. Mol. Gen. Genet. 250, 414-420.
  34. Sampedro, J., and Cosgrove, D.J. (2005). The expansin superfamily. Genome Biol. 6, 242.
  35. Weigel, D., Jurgens, G., Kuttner, F., Seifert, E., and Jackle, H. (1989). The homeotic gene fork head encodes a nuclear protein and is expressed in the terminal regions of the Drosophila embryo. Cell 57, 645-658.
  36. Kuzniak, E., and Urbanek, H. (2000). The involvement of hydrogen peroxide in plant responses to stresses. Acta. Physiol. Plant 22, 195-203.
  37. Wahl, R., Zahiri, A., and Kämper, J. (2010). The Ustilago maydis b mating type locus controls hyphal proliferation and expression of secreted virulence factors in planta. Mol. Microbiol. 75, 208-220.
  38. Ramberg, J.E., and McLaughlin, D.J. (1979). Ultrastructural study of promycelial development and basidiospore initiation in Ustilago maydis. . Can. J. Bot. 58, 1548-1561.
  39. Kahmann, R., and Kämper, J. (2004). Ustilago maydis: how its biology relates to pathogenic development. New Phytologist 164, 31-42.
  40. Snetselaar, K.M., Bölker, M., and Kahmann, R. (1996). Ustilago maydis mating hyphae orient their growth toward pheromone sources. Fungal Genetics and Biology 20, 299-312.
  41. Snetselaar, K.M., and Mims, C.W. (1994). Light and electron microscopy of Ustilago maydis hyphae in maize. Mycol. Res. 98, 347-355.
  42. Snetselaar, K.M., and Mims, C.W. (1993). Infection of maize stigmas by Ustilago maydis: Light and electron microscopy. Phytopathology 83, 843.
  43. Holliday, R. (1974). Ustilago maydis. In Handbook of Genetics, R.C. King, ed (New York, USA: Plenum Press), pp. 575-595.
  44. Taylor, N.G., Laurie, S., and Turner, S.R. (2000). Multiple cellulose synthase catalytic subunits are required for cellulose synthesis in Arabidopsis. Plant Cell 12, 2529-2540.
  45. Inouhe, M., and Nevins, D.J. (1991). Auxin-Enhanced Glucan Autohydrolysis in Maize Coleoptile Cell Walls. Plant Physiol. 96, 285-290.
  46. Kimura, S., Laosinchai, W., Itoh, T., Cui, X., Linder, C.R., and Brown, R.M. (1999). Immunogold labeling of rosette terminal cellulose-synthesizing complexes in the vascular plant vigna angularis. Plant Cell 11, 2075-2086.
  47. Taylor, N.G., Scheible, W.R., Cutler, S., Somerville, C.R., and Turner, S.R. (1999). The irregular xylem3 locus of Arabidopsis encodes a cellulose synthase required for secondary cell wall synthesis. Plant Cell 11, 769-780.
  48. Ridout, C.J., Skamnioti, P., Porritt, O., Sacristan, S., Jones, J.D., and Brown, J.K. (2006). Multiple avirulence paralogues in cereal powdery mildew fungi may contribute to parasite fitness and defeat of plant resistance. Plant Cell 18, 2402-2414.
  49. Scherer, M., Heimel, K., Starke, V., and Kämper, J. (2006). The Clp1 protein is required for clamp formation and pathogenic development of Ustilago maydis. Plant Cell 18, 2388-2401.
  50. Turner, S.R., and Somerville, C.R. (1997). Collapsed xylem phenotype of Arabidopsis identifies mutants deficient in cellulose deposition in the secondary cell wall. Plant Cell 9, 689-701.
  51. Lee, D., and Douglas, C.J. (1996). Two divergent members of a tobacco 4- coumarate:coenzyme A ligase (4CL) gene family. cDNA structure, gene inheritance and expression, and properties of recombinant proteins. Plant Physiol. 112, 193-205.
  52. Xu, W., Purugganan, M.M., Polisensky, D.H., Antosiewicz, D.M., Fry, S.C., and Braam, J. (1995). Arabidopsis TCH4, regulated by hormones and the environment, encodes a xyloglucan endotransglycosylase. Plant Cell 7, 1555- 1567.
  53. Tanaka, K., Murata, K., Yamazaki, M., Onosato, K., Miyao, A., and Hirochika, H. (2003). Three distinct rice cellulose synthase catalytic subunit genes required for cellulose synthesis in the secondary wall. Plant Physiol. 133, 73- 83.
  54. Taylor, N.G., Howells, R.M., Huttly, A.K., Vickers, K., and Turner, S.R. (2003). Interactions among three distinct CesA proteins essential for cellulose synthesis. Proc. Natl. Acad. Sci. U S A 100, 1450-1455.
  55. Hollenhorst, P.C., Pietz, G., and Fox, C.A. (2001). Mechanisms controlling differential promoter-occupancy by the yeast forkhead proteins Fkh1p and Fkh2p: implications for regulating the cell cycle and differentiation. Genes Dev. 15, 2445-2456.
  56. Schuddekopf, K., Schorpp, M., and Boehm, T. (1996). The whn transcription factor encoded by the nude locus contains an evolutionarily conserved and functionally indispensable activation domain. Proc. Natl. Acad. Sci. U S A 93, 9661-9664.
  57. Spellig, T., Bölker, M., Lottspeich, F., Frank, R.W., and Kahmann, R. (1994). Pheromones trigger filamentous growth in Ustilago maydis. EMBO J. 13, 1620-1627.
  58. Schulz, B., Banuett, F., Dahl, M., Schlesinger, R., Schäfer, W., Martin, T., Herskowitz, I., and Kahmann, R. (1990). The b alleles of U. maydis, whose combinations program pathogenic development, code for polypeptides containing a homeodomain-related motif. Cell 60, 295-306.
  59. Kamoun, S. (2007). Groovy times: filamentous pathogen effectors revealed. Curr Opin. Plant. Biol. 10, 358-365.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten