Publikationsserver der Universitätsbibliothek Marburg

Titel:Die Zellwand-Hydrolase YocH aus Bacillus subtilis: Genetische Kontrolle durch das essentielle Zwei-Komponenten System YycFG, hohe Osmolarität und Kältestress.
Autor:Seibert, Tim Martin
Weitere Beteiligte: Bremer, Erhard (Prof. Dr.)
Veröffentlicht:2009
URI:https://archiv.ub.uni-marburg.de/diss/z2010/0132
URN: urn:nbn:de:hebis:04-z2010-01327
DOI: https://doi.org/10.17192/z2010.0132
DDC: Biowissenschaften, Biologie
Titel (trans.):The cell wall hydrolase YocH from Bacillus subtilis: Genetic control by the essential two-component system YycFG, high osmolarity and cold stress.
Publikationsdatum:2010-05-12
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Zellwand, Murein, osmotic stress, cold stress, Kältestress, Heubacillus, cell wall hydrolase, Zwei-Komponenten System YycFG, two-component system YycFG, Zellwand-Hydrolase, Osmotischer Stress

Zusammenfassung:
Bakterien besiedeln die unterschiedlichsten Lebensräume. Diese Habitate unterliegen oftmals großen Schwankungen biotischer und abiotischer Faktoren, denen die bakterielle Zelle ausgeliefert ist und auf die sie zeitgerecht reagieren muss, um ihr Wachstum und Überleben zu sichern. Das Habitat des Gram-positiven Bakteriums Bacillus subtilis sind die oberen Bodenschichten und die Rizosphäre. Hier nehmen zwei der wichtigsten abiotischen Wachstumsfaktoren unmittelbaren Einfluss auf die bakterielle Zelle. So ist B. subtilis durch Tag- und Nachtwechsel, Wetteränderungen und jahreszeitliche Unterschiede ständigen Schwankungen in Osmolarität und Temperatur unterworfen. DNA-Array Analysen bei B. subtilis haben gezeigt, dass eine Reihe von Genen, die im Zusammenhang mit dem Zellwandmetabolismus stehen durch hyperosmotische Bedingungen und adaptives Wachstum bei 15°C induziert werden (Steil et al., 2003, Budde et al., 2006). Dies deutet darauf hin, dass die von diesen Genen kodierten Proteine wesentliche Funktionen für die Anpassung der Zellwand-Struktur und -Zusammensetzung von B. subtilis unter Stress-Bediungungen ausüben. In diesem Zusammenhang konnten zuvor schon Veränderungen der Zellhülle - und insbesondere der Zellwand - als Antwort auf erhöhte Osmolarität und sinkende Wachstumstemperaturen bei verschiedenen Species nachgewiesen werden (Vijaranakul et al., 1995, Lopez et al., 1998, Lopez et al., 2000, Piuri et al., 2005, Palomino et al., 2008). Eines der durch die DNA-Arrays von osmotisch- und Kälte-gestressten B. subtilis Zellen in den Fokus des Interesses gerückten Gene ist yocH. Im Rahmen der vorliegenden Arbeit wurde die genetische Regulation des yocH Gens und die Funktion des YocH Proteins näher charakterisiert. Es konnte durch biochemische Analyse des gereinigten YocH Proteins und durch Untersuchungen mit einer YocH-GFP Fusion gezeigt werden, dass YocH als eine Peptidoglykan-assoziierte Zellwandhydrolase fungiert. YocH spielt eine wichtige Rolle beim dynamischen Umbau des Peptidoglykans während des Wachstums unter Stressbedingungen, da eine yocH Mutante osmotisch sensitiv ist. Die Expression des yocH Gens unterliegt der Kontrolle durch das einzige essentielle Zwei-Komponenten Regulationssystem (YycFG) von B. subtilis (Howell et al., 2003; Dubrac et al., 2008). Die hier vorgelegten Daten erlauben erstmals einen genaueren Einblick in die Architektur der yocH Kontrollregion und in die Regulation der Expression von yocH in Antwort auf eine Erhöhung der Osmolarität und eine Absenkung der Wachstumstemperatur. Die Bedeutung des YycFG Systems und des „transition-state“ Regulators AbrB auf die Induzierbarkeit des yocH Promotors bei adaptivem Wachstum bei hoher Osmolarität und bei niedriger Temperatur (15°C) wurde herausgearbeitet.

Bibliographie / References

  1. Laemmli, U. K., (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227: 680-5.
  2. Arnold, K., L. Bordoli, J. Kopp & T. Schwede, (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22: 195-201.
  3. Zuber, B., M. Haenni, T. Ribeiro, K. Minnig, F. Lopes, P. Moreillon & J. Dubochet, (2006) Granular layer in the periplasmic space of gram-positive bacteria and fine structures of Enterococcus gallinarum and Streptococcus gordonii septa revealed by cryo-electron microscopy of vitreous sections. J Bacteriol 188: 6652-6660.
  4. Oren, A., (2008) Microbial life at high salt concentrations: phylogenetic and metabolic diversity. Saline Systems 4: 2.
  5. Hecker, (1994) Analysis of the induction of general stress proteins of Bacillus subtilis. Microbiology 140 ( Pt 4): 741-752.
  6. Kuroda, A. & J. Sekiguchi, (1993) High-level transcription of the major Bacillus subtilis autolysin operon depends on expression of the sigma D gene and is affected by a sin (flaD) mutation. J Bacteriol 175: 795-801.
  7. Tjalsma, H., A. Bolhuis, J. D. Jongbloed, S. Bron & J. M. van Dijl, (2000) Signal peptide-dependent protein transport in Bacillus subtilis: a genome-based survey of the secretome. Microbiol Mol Biol Rev 64: 515-547.
  8. Chopra, I., C. Storey, T. J. Falla & J. H. Pearce, (1998) Antibiotics, peptidoglycan synthesis and genomics: the chlamydial anomaly revisited. Microbiology 144 ( Pt 10): 2673-2678.
  9. Atrih, A., G. Bacher, G. Allmaier, M. P. Williamson & S. J. Foster, (1999) Analysis of peptidoglycan structure from vegetative cells of Bacillus subtilis 168 and role of PBP 5 in peptidoglycan maturation. J Bacteriol 181: 3956-3966.
  10. Demchick, P. & A. L. Koch, (1996) The permeability of the wall fabric of Escherichia coli and Bacillus subtilis. J Bacteriol 178: 768-773.
  11. Horsburgh, G. J., A. Atrih, M. P. Williamson & S. J. Foster, (2003) LytG of Bacillus subtilis is a novel peptidoglycan hydrolase: the major active glucosaminidase. Biochemistry 42: 257-264.
  12. Roosild, T. P., S. Miller, I. R. Booth & S. Choe, (2002) A mechanism of regulating transmembrane potassium flux through a ligand-mediated conformational switch. Cell 109: 781-791.
  13. Nandy, S. K., V. Prasad & K. V. Venkatesh, (2008) Effect of temperature on the cannibalistic behavior of Bacillus subtilis. Appl Environ Microbiol 74: 7427- 7430.
  14. J. Henderson & M. K. Phillips-Jones, (2008) Expression, purification and activities of the entire family of intact membrane sensor kinases from Enterococcus faecalis. Mol Membr Biol 25: 449-473.
  15. Scheurwater, E., C. W. Reid & A. J. Clarke, (2008) Lytic transglycosylases: bacterial space-making autolysins. Int J Biochem Cell Biol 40: 586-591.
  16. Claessen, D., R. Emmins, L. W. Hamoen, R. A. Daniel, J. Errington & D. H. Edwards, (2008) Control of the cell elongation-division cycle by shuttling of PBP1 protein in Bacillus subtilis. Mol Microbiol 68: 1029-1046.
  17. Keep, N. H., J. M. Ward, M. Cohen-Gonsaud & B. Henderson, (2006) Wake up! Peptidoglycan lysis and bacterial non-growth states. Trends Microbiol 14: 271- 276.
  18. Collins, K. D., (2004) Ions from the Hofmeister series and osmolytes: effects on proteins in solution and in the crystallization process. Methods 34: 300-311.
  19. Schock, F., S. Gotsche & M. K. Dahl, (1996) Vectors using the phospho-alpha-(1,1)- glucosidase-encoding gene treA of Bacillus subtilis as a reporter. Gene 170: 77-80.
  20. Palomino, M. M., C. Sanchez-Rivas & S. M. Ruzal, (2009) High salt stress in Bacillus subtilis: involvement of PBP4* as a peptidoglycan hydrolase. Res Microbiol 160: 117-124.
  21. Wood, J. M., E. Bremer, L. N. Csonka, R. Kraemer, B. Poolman, T. van der Heide & L. T. Smith, (2001) Osmosensing and osmoregulatory compatible solute accumulation by bacteria. Comp Biochem Physiol A Mol Integr Physiol 130: 437-460.
  22. Jiang, M., W. Shao, M. Perego & J. A. Hoch, (2000) Multiple histidine kinases regulate entry into stationary phase and sporulation in Bacillus subtilis. Mol Microbiol 38: 535-542.
  23. Whatmore, A. M. & R. H. Reed, (1990) Determination of turgor pressure in Bacillus subtilis: a possible role for K + in turgor regulation. J Gen Microbiol 136: 2521- 2526.
  24. Fujita, M. & R. Losick, (2005) Evidence that entry into sporulation in Bacillus subtilis is governed by a gradual increase in the level and activity of the master regulator Spo0A. Genes Dev 19: 2236-2244.
  25. Dammel, C. S. & H. F. Noller, (1995) Suppression of a cold-sensitive mutation in 16S rRNA by overexpression of a novel ribosome-binding factor, RbfA. Genes Dev 9: 626-637.
  26. Holtje, J. V., U. Kopp, A. Ursinus & B. Wiedemann, (1994) The negative regulator of beta-lactamase induction AmpD is a N-acetyl-anhydromuramyl-L-alanine amidase. FEMS Microbiol Lett 122: 159-164.
  27. Vollmer, W., (2008) Structural variation in the glycan strands of bacterial peptidoglycan. FEMS Microbiol Rev 32: 287-306.
  28. Dramsi, S., S. Magnet, S. Davison & M. Arthur, (2008) Covalent attachment of proteins to peptidoglycan. FEMS Microbiol Rev 32: 307-320.
  29. Park, J. T. & T. Uehara, (2008) How bacteria consume their own exoskeletons (turnover and recycling of cell wall peptidoglycan). Microbiol Mol Biol Rev 72: 211-227, table of contents.
  30. Ponting, C. P., L. Aravind, J. Schultz, P. Bork & E. V. Koonin, (1999) Eukaryotic signalling domain homologues in archaea and bacteria. Ancient ancestry and horizontal gene transfer. J Mol Biol 289: 729-745.
  31. Bent, C. J., N. W. Isaacs, T. J. Mitchell & A. Riboldi-Tunnicliffe, (2004) Crystal structure of the response regulator 02 receiver domain, the essential YycF two-component system of Streptococcus pneumoniae in both complexed and native states. J Bacteriol 186: 2872-2879.
  32. Costerton, J. W., Z. Lewandowski, D. E. Caldwell, D. R. Korber & H. M. Lappin-Scott, (1995) Microbial biofilms. Annu Rev Microbiol 49: 711-745.
  33. Vocadlo, D. J., G. J. Davies, R. Laine & S. G. Withers, (2001) Catalysis by hen egg- white lysozyme proceeds via a covalent intermediate. Nature 412: 835-838.
  34. Kok, (2005) AcmA of Lactococcus lactis is an N-acetylglucosaminidase with an optimal number of LysM domains for proper functioning. FEBS J 272: 2854-2868.
  35. van Straaten, K. E., B. W. Dijkstra, W. Vollmer & A. M. Thunnissen, (2005) Crystal structure of MltA from Escherichia coli reveals a unique lytic transglycosylase fold. J Mol Biol 352: 1068-1080.
  36. van Straaten, K. E., T. R. Barends, B. W. Dijkstra & A. M. Thunnissen, (2007) Structure of Escherichia coli Lytic transglycosylase MltA with bound chitohexaose: implications for peptidoglycan binding and cleavage. J Biol Chem 282: 21197-21205.
  37. Buist, G., A. Steen, J. Kok & O. P. Kuipers, (2008) LysM, a widely distributed protein motif for binding to (peptido)glycans. Mol Microbiol 68: 838-847.
  38. Weber, M. H. & M. A. Marahiel, (2002) Coping with the cold: the cold shock response in the Gram-positive soil bacterium Bacillus subtilis. Philos Trans R Soc Lond B Biol Sci 357: 895-907.
  39. Ressl, S., A. C. Terwisscha van Scheltinga, C. Vonrhein, V. Ott & C. Ziegler, (2009) Molecular basis of transport and regulation in the Na(+)/betaine symporter BetP. Nature 458: 47-52.
  40. Marles-Wright, J., T. Grant, O. Delumeau, G. van Duinen, S. J. Firbank, P. J. Lewis, J. W. Murray, J. A. Newman, M. B. Quin, P. R. Race, A. Rohou, W. Tichelaar, M. van Heel & R. J. Lewis, (2008) Molecular architecture of the "stressosome," a signal integration and transduction hub. Science 322: 92-96.
  41. Mengin-Lecreulx, D. & B. Lemaitre, (2005) Structure and metabolism of peptidoglycan and molecular requirements allowing its detection by the Drosophila innate immune system. J Endotoxin Res 11: 105-111.
  42. Ohnishi, R., S. Ishikawa & J. Sekiguchi, (1999) Peptidoglycan hydrolase LytF plays a role in cell separation with CwlF during vegetative growth of Bacillus subtilis. J Bacteriol 181: 3178-3184.
  43. Araki, Y., S. Fukuoka, S. Oba & E. Ito, (1971) Enzymatic deacetylation of N- acetylglucosamine residues in peptidoglycan from Bacillus cereus cell walls. Biochem Biophys Res Commun 45: 751-758.
  44. Kaspar, S., R. Perozzo, S. Reinelt, M. Meyer, K. Pfister, L. Scapozza & M. Bott, (1999) The periplasmic domain of the histidine autokinase CitA functions as a highly specific citrate receptor. Mol Microbiol 33: 858-872.
  45. Sambrook, J., E. F. Fritsch und T. E. Maniatis (1989) Molecular cloning: a laboratory manual. N. Y., Cold Spring Harbor Laboratory, Cold Spring Harbor, N. Y.
  46. Kakinuma, Y. & K. Igarashi, (1988) Active potassium extrusion regulated by intracellular pH in Streptococcus faecalis. J Biol Chem 263: 14166-14170.
  47. Hurst, A., E. Ofori, I. Vishnubhatla & M. Kates, (1984) Adaptational changes in Staphylococcus aureus MF 31 grown above its maximum growth temperature when protected by sodium chloride: lipid studies. Can J Microbiol 30: 1424- 1427.
  48. Budde, I., L. Steil, C. Scharf, U. Volker & E. Bremer, (2006) Adaptation of Bacillus subtilis to growth at low temperature: a combined transcriptomic and proteomic appraisal. Microbiology 152: 831-853.
  49. Bremer, E. (2002). Adaptation to changing osmolality. In Bacillus subtilis and its closest relatives: from genes to cells. Edited by J. A. Hoch, A. L. Sonenshein & R. Losick, ASM Press, Washington, D. C., USA: 385-391.
  50. Graumann, P., T. M. Wendrich, M. H. Weber, K. Schroder & M. A. Marahiel, (1997) A family of cold shock proteins in Bacillus subtilis is essential for cellular growth and for efficient protein synthesis at optimal and low temperatures. Mol Microbiol 25: 741-756.
  51. Reizer, J., A. Reizer & M. H. Saier, Jr., (1994) A functional superfamily of sodium/solute symporters. Biochim Biophys Acta 1197: 133-166.
  52. Marra, N. G. Wallis, J. R. Brown, D. J. Holmes, M. Rosenberg & M. K. Burnham, (2000) A genomic analysis of two-component signal transduction in Streptococcus pneumoniae. Mol Microbiol 35: 566-576.
  53. Serwer, P., S. J. Hayes & K. Lieman, (2007) Aggregates of bacteriophage 0305phi8- 36 seed future growth. Virol J 4: 131.
  54. Altuvia, S., D. Kornitzer, D. Teff & A. B. Oppenheim, (1989) Alternative mRNA structures of the cIII gene of bacteriophage lambda determine the rate of its translation initiation. J Mol Biol 210: 265-280.
  55. Formstone, A. & J. Errington, (2005) A magnesium-dependent mreB null mutant: implications for the role of mreB in Bacillus subtilis. Mol Microbiol 55: 1646- 1657.
  56. Foster, S. J., (1993) Analysis of Bacillus subtilis 168 prophage-associated lytic enzymes; identification and characterization of CWLA-related prophage proteins. J Gen Microbiol 139: 3177-3184.
  57. Mauel, C., M. Young, A. Monsutti-Grecescu, S. A. Marriott & D. Karamata, (1994) Analysis of Bacillus subtilis tag gene expression using transcriptional fusions. Microbiology 140 ( Pt 9): 2279-2288.
  58. Popham, D. L., J. Helin, C. E. Costello & P. Setlow, (1996) Analysis of the peptidoglycan structure of Bacillus subtilis endospores. J Bacteriol 178: 6451- 6458.
  59. Wu, T. L., A. L. Koch & R. J. Doyle, (1993) Anomalies in cell wall turnover associated with the growth temperature of Bacillus subtilis. Biochim Biophys Acta 1156: 173-180.
  60. Ravagnani, A., C. L. Finan & M. Young, (2005) A novel firmicute protein family related to the actinobacterial resuscitation-promoting factors by non- orthologous domain displacement. BMC Genomics 6: 39.
  61. da Costa, M. S., H. Santos & E. A. Galinski, (1998) An overview of the role and diversity of compatible solutes in Bacteria and Archaea. Adv Biochem Eng Biotechnol 61: 117-153.
  62. Guerout-Fleury, A. M., K. Shazand, N. Frandsen & P. Stragier, (1995) Antibiotic- resistance cassettes for Bacillus subtilis. Gene 167: 335-336.
  63. Cao, M., T. Wang, R. Ye & J. D. Helmann, (2002) Antibiotics that inhibit cell wall biosynthesis induce expression of the Bacillus subtilis sigma(W) and sigma(M) regulons. Mol Microbiol 45: 1267-1276.
  64. Merchante, R., H. M. Pooley & D. Karamata, (1995) A periplasm in Bacillus subtilis. J Bacteriol 177: 6176-6183.
  65. Hurme, R., K. D. Berndt, S. J. Normark & M. Rhen, (1997) A proteinaceous gene regulatory thermometer in Salmonella. Cell 90: 55-64.
  66. Hall, M. N., J. Gabay, M. Debarbouille & M. Schwartz, (1982) A role for mRNA secondary structure in the control of translation initiation. Nature 295: 616-618.
  67. Fukushima, T., H. Szurmant, E. J. Kim, M. Perego & J. A. Hoch, (2008) A sensor histidine kinase co-ordinates cell wall architecture with cell division in Bacillus subtilis. Mol Microbiol 69: 621-632.
  68. Miller, J. H. (1992). A short course in bacterial genetics. A laboratory manulal and handbook for Escherichia coli and related bacteria., Cold Spring Harbor Laboratory, Cold Spring Harbor, N. Y.
  69. Ellermeier, C. D., E. C. Hobbs, J. E. Gonzalez-Pastor & R. Losick, (2006) A three- protein signaling pathway governing immunity to a bacterial cannibalism toxin. Cell 124: 549-559.
  70. Smith, T. J., S. A. Blackman & S. J. Foster, (2000) Autolysins of Bacillus subtilis: multiple enzymes with multiple functions. Microbiology 146 ( Pt 2): 249-262.
  71. Margot, P., M. Pagni & D. Karamata, (1999) Bacillus subtilis 168 gene lytF encodes a gamma-D-glutamate-meso-diaminopimelate muropeptidase expressed by the alternative vegetative sigma factor, sigmaD. Microbiology 145 ( Pt 1): 57-65.
  72. Mader, U., H. Antelmann, T. Buder, M. K. Dahl, M. Hecker & G. Homuth, (2002) Bacillus subtilis functional genomics: genome-wide analysis of the DegS- DegU regulon by transcriptomics and proteomics. Mol Genet Genomics 268: 455-467.
  73. Herbold, D. R. & L. Glaser, (1975) Bacillus subtilis N-acetylmuramic acid L-alanine amidase. J Biol Chem 250: 1676-1682.
  74. Blount, P. & P. C. Moe, (1999) Bacterial mechanosensitive channels: integrating physiology, structure and function. Trends Microbiol 7: 420-424.
  75. Carlton, R. M., W. H. Noordman, B. Biswas, E. D. de Meester & M. J. Loessner, (2005) Bacteriophage P100 for control of Listeria monocytogenes in foods: genome sequence, bioinformatic analyses, oral toxicity study, and application.
  76. Weidel, W. & H. Pelzer, (1964) Bagshaped Macromolecules--a New Outlook on Bacterial Cell Walls. Adv Enzymol Relat Areas Mol Biol 26: 193-232.
  77. Lopez, C. S., H. Heras, H. Garda, S. Ruzal, C. Sanchez-Rivas & E. Rivas, (2000) Biochemical and biophysical studies of Bacillus subtilis envelopes under hyperosmotic stress. Int J Food Microbiol 55: 137-142.
  78. Clausen, V. A., W. Bae, J. Throup, M. K. Burnham, M. Rosenberg & N. G. Wallis, (2003) Biochemical characterization of the first essential two-component signal transduction system from Staphylococcus aureus and Streptococcus pneumoniae. J Mol Microbiol Biotechnol 5: 252-260.
  79. Lawrence, P. J. & J. L. Strominger, (1970) Biosynthesis of the peptidoglycan of bacterial cell walls. XV. The binding of radioactive penicillin to the particulate enzyme preparation of Bacillus subtilis and its reversal with hydroxylamine or thiols. J Biol Chem 245: 3653-3659.
  80. Dubnau, D. & R. Losick, (2006) Bistability in bacteria. Mol Microbiol 61: 564-572.
  81. Pooley, H. M., F. X. Abellan & D. Karamata, (1992) CDP- glycerol:poly(glycerophosphate) glycerophosphotransferase, which is involved in the synthesis of the major wall teichoic acid in Bacillus subtilis 168, is encoded by tagF (rodC). J Bacteriol 174: 646-649.
  82. Goley, E. D., A. A. Iniesta & L. Shapiro, (2007) Cell cycle regulation in Caulobacter: location, location, location. J Cell Sci 120: 3501-3507.
  83. Merad, T., A. R. Archibald, I. C. Hancock, C. R. Harwood & J. A. Hobot, (1989) Cell wall assembly in Bacillus subtilis: visualization of old and new wall material by electron microscopic examination of samples stained selectively for teichoic acid and teichuronic acid. J Gen Microbiol 135: 645-655.
  84. Gally, D. & A. R. Archibald, (1993) Cell wall assembly in Staphylococcus aureus: proposed absence of secondary crosslinking reactions. J Gen Microbiol 139: 1907-1913.
  85. Scheffers, D. J., (2007) Cell wall growth during elongation and division: one ring to bind them? Mol Microbiol 64: 877-880.
  86. Piuri, M., C. Sanchez-Rivas & S. M. Ruzal, (2005) Cell wall modifications during osmotic stress in Lactobacillus casei. J Appl Microbiol 98: 84-95.
  87. Krispin, O. & R. Allmansberger, (1995) Changes in DNA supertwist as a response of Bacillus subtilis towards different kinds of stress. FEMS Microbiol Lett 134: 129-135.
  88. Tzeng, Y. L., V. A. Feher, J. Cavanagh, M. Perego & J. A. Hoch, (1998) Characterization of interactions between a two-component response regulator, Spo0F, and its phosphatase, RapB. Biochemistry 37: 16538-16545. van den Bogaart, G., N. Hermans, V. Krasnikov & B. Poolman, (2007) Protein mobility and diffusive barriers in Escherichia coli: consequences of osmotic stress. Mol Microbiol 64: 858-871.
  89. Boneca, I. G., Z. H. Huang, D. A. Gage & A. Tomasz, (2000) Characterization of Staphylococcus aureus cell wall glycan strands, evidence for a new beta-N- acetylglucosaminidase activity. J Biol Chem 275: 9910-9918.
  90. Kuroda, A. & J. Sekiguchi, (1992) Characterization of the Bacillus subtilis CwbA protein which stimulates cell wall lytic amidases. FEMS Microbiol Lett 74: 109- 113.
  91. Cayley, S., B. A. Lewis, H. J. Guttman & M. T. Record, Jr., (1991) Characterization of the cytoplasm of Escherichia coli K-12 as a function of external osmolarity. Implications for protein-DNA interactions in vivo. J Mol Biol 222: 281-300.
  92. Wendrich, T. M., C. L. Beckering & M. A. Marahiel, (2000) Characterization of the relA/spoT gene from Bacillus stearothermophilus. FEMS Microbiol Lett 190: 195-201.
  93. Rosario, M. M. & G. W. Ordal, (1996) CheC and CheD interact to regulate methylation of Bacillus subtilis methyl-accepting chemotaxis proteins. Mol Microbiol 21: 511-518.
  94. Tamura, A., N. Ohashi, H. Urakami & S. Miyamura, (1995) Classification of Rickettsia tsutsugamushi in a new genus, Orientia gen. nov., as Orientia tsutsugamushi comb. nov. Int J Syst Bacteriol 45: 589-591.
  95. Helfert, C., S. Gotsche & M. K. Dahl, (1995) Cleavage of trehalose-phosphate in Bacillus subtilis is catalysed by a phospho-alpha-(1-1)-glucosidase encoded by the treA gene. Mol Microbiol 16: 111-120.
  96. Wendrich, T. M. & M. A. Marahiel, (1997) Cloning and characterization of a relA/spoT homologue from Bacillus subtilis. Mol Microbiol 26: 65-79.
  97. Wistow, G., (1990) Cold shock and DNA binding. Nature 344: 823-824.
  98. Hebraud, M. & P. Potier, (1999) Cold shock response and low temperature adaptation in psychrotrophic bacteria. J Mol Microbiol Biotechnol 1: 211-219.
  99. Graumann, P. L. & M. A. Marahiel, (1999) Cold shock response in Bacillus subtilis. J Mol Microbiol Biotechnol 1: 203-209.
  100. Yamanaka, K., (1999) Cold shock response in Escherichia coli. J Mol Microbiol Biotechnol 1: 193-202.
  101. Fujita, J., (1999) Cold shock response in mammalian cells. J Mol Microbiol Biotechnol 1: 243-255.
  102. Cavicchioli, R., T. Thomas & P. M. Curmi, (2000) Cold stress response in Archaea. Extremophiles 4: 321-331.
  103. Parkinson, J. S. & E. C. Kofoid, (1992) Communication modules in bacterial signaling proteins. Annu Rev Genet 26: 71-112.
  104. Liu, W. & F. M. Hulett, (1998) Comparison of PhoP binding to the tuaA promoter with PhoP binding to other Pho-regulon promoters establishes a Bacillus subtilis Pho core binding site. Microbiology 144 ( Pt 5): 1443-1450.
  105. Ng, W. L., G. T. Robertson, K. M. Kazmierczak, J. Zhao, R. Gilmour & M. E. Winkler, (2003) Constitutive expression of PcsB suppresses the requirement for the essential VicR (YycF) response regulator in Streptococcus pneumoniae R6. Mol Microbiol 50: 1647-1663.
  106. Jones, L. J., R. Carballido-Lopez & J. Errington, (2001) Control of cell shape in bacteria: helical, actin-like filaments in Bacillus subtilis. Cell 104: 913-922.
  107. Bremer, E. und R. Krämer (2000). Coping with osmotic challenges: osmoregulation through accumulation and release of compatible solutes in bacteria. In Bacterial stress responses. Edited by G. Storz & R. Hengge-Aronis, ASM Press, Washington, D.C, USA: 79-97.
  108. Matias, V. R. & T. J. Beveridge, (2007) Cryo-electron microscopy of cell division in Staphylococcus aureus reveals a mid-zone between nascent cross walls. Mol Microbiol 64: 195-206.
  109. Matias, V. R. & T. J. Beveridge, (2005) Cryo-electron microscopy reveals native polymeric cell wall structure in Bacillus subtilis 168 and the existence of a periplasmic space. Mol Microbiol 56: 240-251.
  110. Riboldi-Tunnicliffe, A., M. C. Trombe, C. J. Bent, N. W. Isaacs & T. J. Mitchell, (2004) Crystallization and preliminary crystallographic studies of the D59A mutant of MicA, a YycF response-regulator homologue from Streptococcus pneumoniae.
  111. Ng, W. L., K. M. Kazmierczak & M. E. Winkler, (2004) Defective cell wall synthesis in Streptococcus pneumoniae R6 depleted for the essential PcsB putative murein hydrolase or the VicR (YycF) response regulator. Mol Microbiol 53: 1161-1175.
  112. Quinn & B. Lei, (2006) Defects in ex vivo and in vivo growth and sensitivity to osmotic stress of group A Streptococcus caused by interruption of response regulator gene vicR. Microbiology 152: 967-978.
  113. Seibert, T. M. (2004) Die molekulare und physiologische Analyse des osmotisch-und kälteinduzierten Gens yocH aus Bacillus subtilis. Diplomarbeit, Philipps- Universität Marburg Senadheera, M. D., B. Guggenheim, G. A. Spatafora, Y. C. Huang, J. Choi, D. C. Hung, J. S. Treglown, S. D. Goodman, R. P. Ellen & D. G. Cvitkovitch, (2005) A VicRK signal transduction system in Streptococcus mutans affects gtfBCD, gbpB, and ftf expression, biofilm formation, and genetic competence development. J Bacteriol 187: 4064-4076.
  114. Shemesh, M., A. Tam, M. Feldman & D. Steinberg, (2006) Differential expression profiles of Streptococcus mutans ftf, gtf and vicR genes in the presence of dietary carbohydrates at early and late exponential growth phases. Carbohydr Res 341: 2090-2097.
  115. Schirner, K., J. Marles-Wright, R. J. Lewis & J. Errington, (2009) Distinct and essential morphogenic functions for wall-and lipo-teichoic acids in Bacillus subtilis. EMBO J 28: 830-842.
  116. Sanger, F., S. Nicklen und A. R. Coulson (1977). DNA sequencing with chain- terminating inhibitors. Proc Natl Acad Sci U S A 74: 5463-5467.
  117. Grau, R., D. Gardiol, G. C. Glikin & D. de Mendoza, (1994) DNA supercoiling and thermal regulation of unsaturated fatty acid synthesis in Bacillus subtilis. Mol Microbiol 11: 933-941.
  118. Welsh, D. T., (2000) Ecological significance of compatible solute accumulation by micro-organisms: from single cells to global climate. FEMS Microbiol Rev 24: 263-290.
  119. Amano, K., Y. Araki & E. Ito, (1980) Effect of N-acyl substitution at glucosamine residues on lysozyme-catalyzed hydrolysis of cell-wall peptidoglycan and its oligosaccharides. Eur J Biochem 107: 547-553.
  120. Minton, A. P., (2000) Effects of excluded surface area and adsorbate clustering on surface adsorption of proteins I. Equilibrium models. Biophys Chem 86: 239- 247.
  121. Graumann, P. & M. A. Marahiel, (1997) Effects of heterologous expression of CspB, the major cold shock protein of Bacillus subtilis, on protein synthesis in Escherichia coli. Mol Gen Genet 253: 745-752.
  122. Westmacott, D. & H. R. Perkins, (1979) Effects of lysozyme on Bacillus cereus 569: rupture of chains of bacteria and enhancement of sensitivity to autolysins. J Gen Microbiol 115: 1-11.
  123. Doyle, R. J. & R. E. Marquis, (1994) Elastic, flexible peptidoglycan and bacterial cell wall properties. Trends Microbiol 2: 57-60.
  124. Booth, I. R. & C. F. Higgins, (1990) Enteric bacteria and osmotic stress: intracellular potassium glutamate as a secondary signal of osmotic stress? FEMS Microbiol Rev 6: 239-246.
  125. Zimmerman, S. B. & S. O. Trach, (1991) Estimation of macromolecule concentrations and excluded volume effects for the cytoplasm of Escherichia coli. J Mol Biol 222: 599-620.
  126. Bobay, B. G., L. Benson, S. Naylor, B. Feeney, A. C. Clark, M. B. Goshe, M. A. Strauch, R. Thompson & J. Cavanagh, (2004) Evaluation of the DNA binding tendencies of the transition state regulator AbrB. Biochemistry 43: 16106- 16118.
  127. Volker, U., B. Maul & M. Hecker, (1999) Expression of the sigmaB-dependent general stress regulon confers multiple stress resistance in Bacillus subtilis. J Bacteriol 181: 3942-3948.
  128. Clarke, A. J. (1993) Extent of peptidoglycan O-acetylation in the tribe Proteae.J Bacteriol 175, 4550-4553
  129. Eiamphungporn, W. & J. D. Helmann, (2009) Extracytoplasmic function sigma factors regulate expression of the Bacillus subtilis yabE gene via a cis-acting antisense RNA. J Bacteriol 191: 1101-1105.
  130. Saier, M. H., Jr., (2000) Families of transmembrane transporters selective for amino acids and their derivatives. Microbiology 146 ( Pt 8): 1775-1795.
  131. Hecker, M. & U. Volker, (2001) General stress response of Bacillus subtilis and other bacteria. Adv Microb Physiol 44: 35-91.
  132. Howell, A., S. Dubrac, K. K. Andersen, D. Noone, J. Fert, T. Msadek & K. Devine, (2003) Genes controlled by the essential YycG/YycF two-component system of Bacillus subtilis revealed through a novel hybrid regulator approach. Mol Microbiol 49: 1639-1655.
  133. Roten, C. A., C. Brandt & D. Karamata, (1991) Genes involved in meso- diaminopimelate synthesis in Bacillus subtilis: identification of the gene encoding aspartokinase I. J Gen Microbiol 137: 951-962.
  134. Dubnau, D., (1991) Genetic competence in Bacillus subtilis. Microbiol Rev 55: 395- 424.
  135. Grossman, A. D., (1995) Genetic networks controlling the initiation of sporulation and the development of genetic competence in Bacillus subtilis. Annu Rev Genet 29: 477-508.
  136. Steil, L., T. Hoffmann, I. Budde, U. Volker & E. Bremer, (2003) Genome-wide transcriptional profiling analysis of adaptation of Bacillus subtilis to high salinity. J Bacteriol 185: 6358-6370.
  137. Zipperle, G. F., Jr., J. W. Ezzell, Jr. & R. J. Doyle, (1984) Glucosamine substitution and muramidase susceptibility in Bacillus anthracis. Can J Microbiol 30: 553- 559.
  138. Rashid, M. H., M. Mori & J. Sekiguchi, (1995) Glucosaminidase of Bacillus subtilis: cloning, regulation, primary structure and biochemical characterization. Microbiology 141 ( Pt 10): 2391-2404.
  139. Meury, J., (1988) Glycine betaine reverses the effects of osmotic stress on DNA replication and cellular division in Escherichia coli. Arch Microbiol 149: 232- 239.
  140. Holtje, J. V., (1998) Growth of the stress-bearing and shape-maintaining murein sacculus of Escherichia coli. Microbiol Mol Biol Rev 62: 181-203.
  141. Hecker, M., W. Schumann & U. Volker, (1996) Heat-shock and general stress response in Bacillus subtilis. Mol Microbiol 19: 417-428.
  142. Nau-Wagner, G., J. Boch, J. A. Le Good & E. Bremer, (1999) High-affinity transport of choline-O-sulfate and its use as a compatible solute in Bacillus subtilis. Appl Environ Microbiol 65: 560-568.
  143. Fujita, M., J. E. Gonzalez-Pastor & R. Losick, (2005) High-and low-threshold genes in the Spo0A regulon of Bacillus subtilis. J Bacteriol 187: 1357-1368.
  144. Koch, A. L., (1985) How bacteria grow and divide in spite of internal hydrostatic pressure. Can J Microbiol 31: 1071-1084.
  145. Poolman, B., P. Blount, J. H. Folgering, R. H. Friesen, P. C. Moe & T. van der Heide, (2002) How do membrane proteins sense water stress? Mol Microbiol 44: 889- 902.
  146. Murray, T., D. L. Popham & P. Setlow, (1996) Identification and characterization of pbpC, the gene encoding Bacillus subtilis penicillin-binding protein 3. J Bacteriol 178: 6001-6005.
  147. Rushlow, K. E., A. H. Deutch & C. J. Smith, (1985) Identification of a mutation that relieves gamma-glutamyl kinase from allosteric feedback inhibition by proline. Gene 39: 109-112.
  148. Morbach, S. & R. Kramer, (2003) Impact of transport processes in the osmotic response of Corynebacterium glutamicum. J Biotechnol 104: 69-75.
  149. Jung, K. & K. Altendorf, (1998) Individual substitutions of clustered arginine residues of the sensor kinase KdpD of Escherichia coli modulate the ratio of kinase to phosphatase activity. J Biol Chem 273: 26415-26420.
  150. Watanabe, T., A. Okada, Y. Gotoh & R. Utsumi, (2008) Inhibitors targeting two- component signal transduction. Adv Exp Med Biol 631: 229-236.
  151. Niaudet, B., A. Goze & S. D. Ehrlich, (1982) Insertional mutagenesis in Bacillus subtilis: mechanism and use in gene cloning. Gene 19: 277-284.
  152. Herbold, D. R. & L. Glaser, (1975) Interaction of N-acetylmuramic acid L-alanine amidase with cell wall polymers. J Biol Chem 250: 7231-7238.
  153. McLaggan, D., J. Naprstek, E. T. Buurman & W. Epstein, (1994) Interdependence of K+ and glutamate accumulation during osmotic adaptation of Escherichia coli. J Biol Chem 269: 1911-1917.
  154. Reischl, S., T. Wiegert & W. Schumann, (2002) Isolation and analysis of mutant alleles of the Bacillus subtilis HrcA repressor with reduced dependency on GroE function. J Biol Chem 277: 32659-32667.
  155. LeDeaux, J. R. & A. D. Grossman, (1995) Isolation and characterization of kinC, a gene that encodes a sensor kinase homologous to the sporulation sensor kinases KinA and KinB in Bacillus subtilis. J Bacteriol 177: 166-175.
  156. Harz, H., K. Burgdorf & J. V. Holtje, (1990) Isolation and separation of the glycan strands from murein of Escherichia coli by reversed-phase high-performance liquid chromatography. Anal Biochem 190: 120-128.
  157. Jordan, S., E. Rietkotter, M. A. Strauch, F. Kalamorz, B. G. Butcher, J. D. Helmann & T. Mascher, (2007) LiaRS-dependent gene expression is embedded in transition state regulation in Bacillus subtilis. Microbiology 153: 2530-2540.
  158. Ohnuma, T., S. Onaga, K. Murata, T. Taira & E. Katoh, (2008) LysM domains from Pteris ryukyuensis chitinase-A: a stability study and characterization of the chitin-binding site. J Biol Chem 283: 5178-5187.
  159. Koraimann, G., (2003) Lytic transglycosylases in macromolecular transport systems of Gram-negative bacteria. Cell Mol Life Sci 60: 2371-2388.
  160. Hall, D. & A. P. Minton, (2003) Macromolecular crowding: qualitative and semiquantitative successes, quantitative challenges. Biochim Biophys Acta 1649: 127-139.
  161. Booth, I. R. & P. Louis, (1999) Managing hypoosmotic stress: aquaporins and mechanosensitive channels in Escherichia coli. Curr Opin Microbiol 2: 166- 169.
  162. Wolanin, P. M., D. J. Webre & J. B. Stock, (2003) Mechanism of phosphatase activity in the chemotaxis response regulator CheY. Biochemistry 42: 14075-14082.
  163. Arakawa, T. & S. N. Timasheff, (1985) Mechanism of poly(ethylene glycol) interaction with proteins. Biochemistry 24: 6756-6762.
  164. Booth, I. R., M. D. Edwards, S. Black, U. Schumann & S. Miller, (2007) Mechanosensitive channels in bacteria: signs of closure? Nat Rev Microbiol 5: 431-440.
  165. Dowhan, W., (1997) Molecular basis for membrane phospholipid diversity: why are there so many lipids? Annu Rev Biochem 66: 199-232.
  166. Harwood, C. R., and Cutting, S. M. (1990) Molecular biological methods for Bacillus.
  167. Le Rudulier, D., A. R. Strom, A. M. Dandekar, L. T. Smith & R. C. Valentine, (1984) Molecular biology of osmoregulation. Science 224: 1064-1068.
  168. Eichler, K., F. Bourgis, A. Buchet, H. P. Kleber & M. A. Mandrand-Berthelot, (1994) Molecular characterization of the cai operon necessary for carnitine metabolism in Escherichia coli. Mol Microbiol 13: 775-786.
  169. Calamita, G., W. R. Bishai, G. M. Preston, W. B. Guggino & P. Agre, (1995) Molecular cloning and characterization of AqpZ, a water channel from Escherichia coli. J Biol Chem 270: 29063-29066.
  170. Buist, G., J. Kok, K. J. Leenhouts, M. Dabrowska, G. Venema & A. J. Haandrikman, (1995) Molecular cloning and nucleotide sequence of the gene encoding the major peptidoglycan hydrolase of Lactococcus lactis, a muramidase needed for cell separation. J Bacteriol 177: 1554-1563.
  171. Kuroda, A., M. H. Rashid & J. Sekiguchi, (1992) Molecular cloning and sequencing of the upstream region of the major Bacillus subtilis autolysin gene: a modifier protein exhibiting sequence homology to the major autolysin and the spoIID product. J Gen Microbiol 138: 1067-1076.
  172. Guy, C., (1999) Molecular responses of plants to cold shock and cold acclimation. J Mol Microbiol Biotechnol 1: 231-242.
  173. Nanninga, N., (1998) Morphogenesis of Escherichia coli. Microbiol Mol Biol Rev 62: 110-129.
  174. Haseltine, W. A., R. Block, W. Gilbert & K. Weber, (1972) MSI and MSII made on ribosome in idling step of protein synthesis. Nature 238: 381-384.
  175. Perego, M., C. Hanstein, K. M. Welsh, T. Djavakhishvili, P. Glaser & J. A. Hoch, (1994) Multiple protein-aspartate phosphatases provide a mechanism for the integration of diverse signals in the control of development in B. subtilis. Cell 79: 1047-1055.
  176. Trach, K. A. & J. A. Hoch, (1993) Multisensory activation of the phosphorelay initiating sporulation in Bacillus subtilis: identification and sequence of the protein kinase of the alternate pathway. Mol Microbiol 8: 69-79.
  177. Schroder, K., P. Graumann, A. Schnuchel, T. A. Holak & M. A. Marahiel, (1995) Mutational analysis of the putative nucleic acid-binding surface of the cold- shock domain, CspB, revealed an essential role of aromatic and basic residues in binding of single-stranded DNA containing the Y-box motif. Mol Microbiol 16: 699-708.
  178. Bobay, B. G., G. A. Mueller, R. J. Thompson, A. G. Murzin, R. A. Venters, M. A. Strauch & J. Cavanagh, (2006) NMR structure of AbhN and comparison with AbrBN: FIRST insights into the DNA binding promiscuity and specificity of AbrB-like transition state regulator proteins. J Biol Chem 281: 21399-21409.
  179. Mendez, M. B., L. M. Orsaria, V. Philippe, M. E. Pedrido & R. R. Grau, (2004) Novel roles of the master transcription factors Spo0A and sigmaB for survival and sporulation of Bacillus subtilis at low growth temperature. J Bacteriol 186: 989- 1000.
  180. Kempf, B. & E. Bremer, (1995) OpuA, an osmotically regulated binding protein- dependent transport system for the osmoprotectant glycine betaine in Bacillus subtilis. J Biol Chem 270: 16701-16713.
  181. Carballido-Lopez, R., (2006) Orchestrating bacterial cell morphogenesis. Mol Microbiol 60: 815-819.
  182. Miller, K. J. & J. M. Wood, (1996) Osmoadaptation by rhizosphere bacteria. Annu Rev Microbiol 50: 101-136.
  183. Galinski, E. A., (1995) Osmoadaptation in bacteria. Adv Microb Physiol 37: 272-328.
  184. Spiegelhalter, F. & E. Bremer, (1998) Osmoregulation of the opuE proline transport gene from Bacillus subtilis: contributions of the sigma A-and sigma B- dependent stress-responsive promoters. Mol Microbiol 29: 285-296.
  185. von Blohn, C., B. Kempf, R. M. Kappes & E. Bremer, (1997) Osmostress response in Bacillus subtilis: characterization of a proline uptake system (OpuE) regulated by high osmolarity and the alternative transcription factor sigma B. Mol Microbiol 25: 175-187.
  186. Bursy, J., A. J. Pierik, N. Pica & E. Bremer, (2007) Osmotically induced synthesis of the compatible solute hydroxyectoine is mediated by an evolutionarily conserved ectoine hydroxylase. J Biol Chem 282: 31147-31155.
  187. White, B. A. (1993). PCR-protocols. In Methods in Microbiology. Edited by J. M. Walker. Totawa, NJ, USA, Humana Press Inc.
  188. Vollmer, W., D. Blanot & M. A. de Pedro, (2008) Peptidoglycan structure and architecture. FEMS Microbiol Rev 32: 149-167.
  189. Suzuki, I., D. A. Los & N. Murata, (2000) Perception and transduction of low- temperature signals to induce desaturation of fatty acids. Biochem Soc Trans 28: 628-630.
  190. Nau-Wagner, G. (1999). Physiologische und genetische Untersuchungen zur Biosynthese und Anhäufung osmotischer Schutzsubstanzen in Bacillus subtilis. Dissertation, Philipps-Universität Marburg.
  191. Kawano, M., R. Abuki, K. Igarashi & Y. Kakinuma, (2001) Potassium uptake with low affinity and high rate in Enterococcus hirae at alkaline pH. Arch Microbiol 175: 41-45.
  192. Sakata, N. & T. Mukai, (2007) Production profile of the soluble lytic transglycosylase homologue in Staphylococcus aureus during bacterial proliferation. FEMS Immunol Med Microbiol 49: 288-295.
  193. Desvaux, M., E. Dumas, I. Chafsey & M. Hebraud, (2006) Protein cell surface display in Gram-positive bacteria: from single protein to macromolecular protein structure. FEMS Microbiol Lett 256: 1-15.
  194. Minton, A. P., (2000) Protein folding: Thickening the broth. Curr Biol 10: R97-99.
  195. Timasheff, S. N., (2002) Protein hydration, thermodynamic binding, and preferential hydration. Biochemistry 41: 13473-13482.
  196. Bolen, D. W., (2001) Protein stabilization by naturally occurring osmolytes. Methods Mol Biol 168: 17-36.
  197. Navarre, W. W. & O. Schneewind, (1994) Proteolytic cleavage and cell wall anchoring at the LPXTG motif of surface proteins in gram-positive bacteria. Mol Microbiol 14: 115-121.
  198. Babe, L. M. & B. Schmidt, (1998) Purification and biochemical analysis of WprA, a 52-kDa serine protease secreted by B. subtilis as an active complex with its 23-kDa propeptide. Biochim Biophys Acta 1386: 211-219.
  199. Kuroda, A., M. Imazeki & J. Sekiguchi, (1991) Purification and characterization of a cell wall hydrolase encoded by the cwlA gene of Bacillus subtilis. FEMS Microbiol Lett 65: 9-13.
  200. Diven, W. F., J. J. Scholz & R. B. Johnston, (1964) Purification and Properties of the Alanine Racemase from Bacillus subtilis. Biochim Biophys Acta 85: 322-332.
  201. Jones, P. G. & M. Inouye, (1996) RbfA, a 30S ribosomal binding factor, is a cold- shock protein whose absence triggers the cold-shock response. Mol Microbiol 21: 1207-1218.
  202. Calamita, H. G. & R. J. Doyle, (2002) Regulation of autolysins in teichuronic acid- containing Bacillus subtilis cells. Mol Microbiol 44: 601-606.
  203. Jordan, S., A. Junker, J. D. Helmann & T. Mascher, (2006) Regulation of LiaRS- dependent gene expression in Bacillus subtilis: identification of inhibitor proteins, regulator binding sites, and target genes of a conserved cell envelope stress-sensing two-component system. J Bacteriol 188: 5153-5166.
  204. Nagai, H., H. Yuzawa & T. Yura, (1991) Regulation of the heat shock response in E coli: involvement of positive and negative cis-acting elements in translation control of sigma 32 synthesis. Biochimie 73: 1473-1479.
  205. Grau, R. & D. de Mendoza, (1993) Regulation of the synthesis of unsaturated fatty acids by growth temperature in Bacillus subtilis. Mol Microbiol 8: 535-542.
  206. Okajima, T., A. Doi, A. Okada, Y. Gotoh, K. Tanizawa & R. Utsumi, (2008) Response regulator YycF essential for bacterial growth: X-ray crystal structure of the DNA-binding domain and its PhoB-like DNA recognition motif. FEBS Lett 582: 3434-3438.
  207. Dutta, R. & M. Inouye, (1996) Reverse phosphotransfer from OmpR to EnvZ in a kinase-/phosphatase+ mutant of EnvZ (EnvZ.N347D), a bifunctional signal transducer of Escherichia coli. J Biol Chem 271: 1424-1429.
  208. Measures, J. C., (1975) Role of amino acids in osmoregulation of non-halophilic bacteria. Nature 257: 398-400.
  209. Jansen, A., M. Turck, C. Szekat, M. Nagel, I. Clever & G. Bierbaum, (2007) Role of insertion elements and yycFG in the development of decreased susceptibility to vancomycin in Staphylococcus aureus. Int J Med Microbiol 297: 205-215.
  210. Leaver, M. & J. Errington, (2005) Roles for MreC and MreD proteins in helical growth of the cylindrical cell wall in Bacillus subtilis. Mol Microbiol 57: 1196-1209.
  211. Takeshima, H., (2003) Ryanodine receptor and junctional membrane structure. Nippon Yakurigaku Zasshi 121: 203-210.
  212. Yang, D., Z. Pan, H. Takeshima, C. Wu, R. Y. Nagaraj, J. Ma & H. Cheng, (2001) RyR3 amplifies RyR1-mediated Ca(2+)-induced Ca(2+) release in neonatal mammalian skeletal muscle. J Biol Chem 276: 40210-40214.
  213. Lazarevic, V., P. Margot, B. Soldo & D. Karamata, (1992) Sequencing and analysis of the Bacillus subtilis lytRABC divergon: a regulatory unit encompassing the structural genes of the N-acetylmuramoyl-L-alanine amidase and its modifier.
  214. Maul, B., U. Volker, S. Riethdorf, S. Engelmann & M. Hecker, (1995) sigma B- dependent regulation of gsiB in response to multiple stimuli in Bacillus subtilis. Mol Gen Genet 248: 114-120.
  215. O'Connell-Motherway, M., D. van Sinderen, F. Morel-Deville, G. F. Fitzgerald, S. D. Ehrlich & P. Morel, (2000) Six putative two-component regulatory systems isolated from Lactococcus lactis subsp. cremoris MG1363. Microbiology 146 ( Pt 4): 935-947.
  216. Graumann, P. & M. A. Marahiel, (1996) Some like it cold: response of microorganisms to cold shock. Arch Microbiol 166: 293-300.
  217. Popham, D. L., (2002) Specialized peptidoglycan of the bacterial endospore: the inner wall of the lockbox. Cell Mol Life Sci 59: 426-433.
  218. Kobayashi, Y., (1995) [Sporulation in Bacillus subtilis: signal transduction at the initiation of sporulation]. Tanpakushitsu Kakusan Koso 40: 976-985.
  219. Antelmann, H., H. Yamamoto, J. Sekiguchi & M. Hecker, (2002) Stabilization of cell wall proteins in Bacillus subtilis: a proteomic approach. Proteomics 2: 591- 602.
  220. El Zoeiby, A., F. Sanschagrin & R. C. Levesque, (2003) Structure and function of the Mur enzymes: development of novel inhibitors. Mol Microbiol 47: 1-12.
  221. Blake, C. C., D. F. Koenig, G. A. Mair, A. C. North, D. C. Phillips & V. R. Sarma, (1965) Structure of hen egg-white lysozyme. A three-dimensional Fourier synthesis at 2 Angstrom resolution. Nature 206: 757-761.
  222. Warth, A. D. & J. L. Strominger, (1971) Structure of the peptidoglycan from vegetative cell walls of Bacillus subtilis. Biochemistry 10: 4349-4358.
  223. Warth, A. D. & J. L. Strominger, (1969) Structure of the peptidoglycan of bacterial spores: occurrence of the lactam of muramic acid. Proc Natl Acad Sci U S A 64: 528-535.
  224. Navarre, W. W. & O. Schneewind, (1999) Surface proteins of gram-positive bacteria and mechanisms of their targeting to the cell wall envelope. Microbiol Mol Biol Rev 63: 174-229.
  225. Morikawa, K., M. Nonaka, Y. Yoshikawa & I. Torii, (2005) Synergistic effect of fosfomycin and arbekacin on a methicillin-resistant Staphylococcus aureus- induced biofilm in a rat model. Int J Antimicrob Agents 25: 44-50.
  226. Okada, A., Y. Gotoh, T. Watanabe, E. Furuta, K. Yamamoto & R. Utsumi, (2007) Targeting two-component signal transduction: a novel drug discovery system. Methods Enzymol 422: 386-395.
  227. Soldo, B., V. Lazarevic, M. Pagni & D. Karamata, (1999) Teichuronic acid operon of Bacillus subtilis 168. Mol Microbiol 31: 795-805.
  228. Amano, K., H. Hayashi, Y. Araki & E. Ito, (1977) The action of lysozyme on peptidoglycan with N-unsubstituted glucosamine residues. Isolation of glycan fragments and their susceptibility to lysozyme. Eur J Biochem 76: 299-307.
  229. Mansilla, M. C. & D. de Mendoza, (2005) The Bacillus subtilis desaturase: a model to understand phospholipid modification and temperature sensing. Arch Microbiol 183: 229-235.
  230. Rogers, H. J., Perkins, H. R. & Ward, J. B. (1980) The bacterial autolysins.Microbial Cell Walls and Membranes, 191-214. London: Chapman & Hall Roberts, M. F., (2004) Osmoadaptation and osmoregulation in archaea: update 2004. Front Biosci 9: 1999-2019.
  231. Kunst, F., N. Ogasawara, I. Moszer, A. M. Albertini, G. Alloni, V. Azevedo, M. G. Bertero, P. Bessieres, A. Bolotin, S. Borchert, R. Borriss, L. Boursier, A. Brans, M. Braun, S. C. Brignell, S. Bron, S. Brouillet, C. V. Bruschi, B. Caldwell, V. Capuano, N. M. Carter, S. K. Choi, J. J. Codani, I. F. Connerton, A. Danchin & et al., (1997) The complete genome sequence of the gram- positive bacterium Bacillus subtilis. Nature 390: 249-256.
  232. Stanier, R. Y. & C. B. Van Niel, (1962) The concept of a bacterium. Arch Mikrobiol 42: 17-35.
  233. Park, J. T., (1996) The convergence of murein recycling research with beta- lactamase research. Microb Drug Resist 2: 105-112.
  234. Morlot, C., M. Noirclerc-Savoye, A. Zapun, O. Dideberg & T. Vernet, (2004) The D,D- carboxypeptidase PBP3 organizes the division process of Streptococcus pneumoniae. Mol Microbiol 51: 1641-1648.
  235. Whatmore, A. M., J. A. Chudek & R. H. Reed, (1990) The effects of osmotic upshock on the intracellular solute pools of Bacillus subtilis. J Gen Microbiol 136: 2527- 2535.
  236. Jolliffe, L. K., R. J. Doyle & U. N. Streips, (1981) The energized membrane and cellular autolysis in Bacillus subtilis. Cell 25: 753-763.
  237. Fukuchi, K., Y. Kasahara, K. Asai, K. Kobayashi, S. Moriya & N. Ogasawara, (2000) The essential two-component regulatory system encoded by yycF and yycG modulates expression of the ftsAZ operon in Bacillus subtilis. Microbiology 146 ( Pt 7): 1573-1583.
  238. M. Devine, (2007) The essential YycFG two-component system controls cell wall metabolism in Bacillus subtilis. Mol Microbiol 65: 180-200.
  239. Koch, A. L., (2006) The exocytoskeleton. J Mol Microbiol Biotechnol 11: 115-125.
  240. Koch, A. L. & S. Silver, (2005) The first cell. Adv Microb Physiol 50: 227-259.
  241. Singer, S. J. & G. L. Nicolson, (1972) The fluid mosaic model of the structure of cell membranes. Science 175: 720-731.
  242. Margot, P., C. Mauel & D. Karamata, (1994) The gene of the N- acetylglucosaminidase, a Bacillus subtilis 168 cell wall hydrolase not involved in vegetative cell autolysis. Mol Microbiol 12: 535-545.
  243. Collins, K. D. & M. W. Washabaugh, (1985) The Hofmeister effect and the behaviour of water at interfaces. Q Rev Biophys 18: 323-422.
  244. Minton, A. P., (2001) The influence of macromolecular crowding and macromolecular confinement on biochemical reactions in physiological media. J Biol Chem 276: 10577-10580.
  245. Graumann, P. & M. A. Marahiel, (1994) The major cold shock protein of Bacillus subtilis CspB binds with high affinity to the ATTGG-and CCAAT sequences in single stranded oligonucleotides. FEBS Lett 338: 157-160.
  246. Liu, Y. & D. W. Bolen, (1995) The peptide backbone plays a dominant role in protein stabilization by naturally occurring osmolytes. Biochemistry 34: 12884-12891.
  247. Vollmer, W. & A. Tomasz, (2000) The pgdA gene encodes for a peptidoglycan N- acetylglucosamine deacetylase in Streptococcus pneumoniae. J Biol Chem 275: 20496-20501.
  248. de Mendoza, D., A. Klages Ulrich & J. E. Cronan, Jr., (1983) Thermal regulation of membrane fluidity in Escherichia coli. Effects of overproduction of beta- ketoacyl-acyl carrier protein synthase I. J Biol Chem 258: 2098-2101.
  249. Foster, S. J., (1994) The role and regulation of cell wall structural dynamics during differentiation of endospore-forming bacteria. Soc Appl Bacteriol Symp Ser 23: 25S-39S.
  250. Blackman, S. A., T. J. Smith & S. J. Foster, (1998) The role of autolysins during vegetative growth of Bacillus subtilis 168. Microbiology 144 ( Pt 1): 73-82.
  251. Molle, V., M. Fujita, S. T. Jensen, P. Eichenberger, J. E. Gonzalez-Pastor, J. S. Liu & R. Losick, (2003) The Spo0A regulon of Bacillus subtilis. Mol Microbiol 50: 1683-1701.
  252. Hamon, M. A. & B. A. Lazazzera, (2001) The sporulation transcription factor Spo0A is required for biofilm development in Bacillus subtilis. Mol Microbiol 42: 1199- 1209.
  253. Bateman, A. & M. Bycroft, (2000) The structure of a LysM domain from E. coli membrane-bound lytic murein transglycosylase D (MltD). J Mol Biol 299: 1113-1119.
  254. Lazarevic, V. & D. Karamata, (1995) The tagGH operon of Bacillus subtilis 168 encodes a two-component ABC transporter involved in the metabolism of two wall teichoic acids. Mol Microbiol 16: 345-355.
  255. Deng, D. M., M. J. Liu, J. M. ten Cate & W. Crielaard, (2007) The VicRK system of Streptococcus mutans responds to oxidative stress. J Dent Res 86: 606-610.
  256. Margot, P. & D. Karamata, (1996) The wprA gene of Bacillus subtilis 168, expressed during exponential growth, encodes a cell-wall-associated protease. Microbiology 142 ( Pt 12): 3437-3444.
  257. Wolffe, A. P., S. Tafuri, M. Ranjan & M. Familari, (1992) The Y-box factors: a family of nucleic acid binding proteins conserved from Escherichia coli to man. New Biol 4: 290-298.
  258. Dmitriev, B., F. Toukach & S. Ehlers, (2005) Towards a comprehensive view of the bacterial cell wall. Trends Microbiol 13: 569-574.
  259. Stipp, R. N., R. B. Goncalves, J. F. Hofling, D. J. Smith & R. O. Mattos-Graner, (2008) Transcriptional analysis of gtfB, gtfC, and gbpB and their putative response regulators in several isolates of Streptococcus mutans. Oral Microbiol Immunol 23: 466-473.
  260. Aguilar, P. S., P. Lopez & D. de Mendoza, (1999) Transcriptional control of the low- temperature-inducible des gene, encoding the delta5 desaturase of Bacillus subtilis. J Bacteriol 181: 7028-7033.
  261. Spizizen, J., (1958) Transformation of Biochemically Deficient Strains of Bacillus subtilis by Deoxyribonucleate. Proc Natl Acad Sci U S A 44: 1072-1078.
  262. Dinnbier, U., E. Limpinsel, R. Schmid & E. P. Bakker, (1988) Transient accumulation of potassium glutamate and its replacement by trehalose during adaptation of growing cells of Escherichia coli K-12 to elevated sodium chloride concentrations. Arch Microbiol 150: 348-357.
  263. Schleyer, M., R. Schmid & E. P. Bakker, (1993) Transient, specific and extremely rapid release of osmolytes from growing cells of Escherichia coli K-12 exposed to hypoosmotic shock. Arch Microbiol 160: 424-431.
  264. Strauch, M. A. & J. A. Hoch, (1993) Transition-state regulators: sentinels of Bacillus subtilis post-exponential gene expression. Mol Microbiol 7: 337-342.
  265. Kandror, O., M. Sherman, R. Moerschell & A. L. Goldberg, (1997) Trigger factor associates with GroEL in vivo and promotes its binding to certain polypeptides. J Biol Chem 272: 1730-1734.
  266. Grundy, F. J. & T. M. Henkin, (1993) tRNA as a positive regulator of transcription antitermination in B. subtilis. Cell 74: 475-482.
  267. Hoch, J. A., (2000) Two-component and phosphorelay signal transduction. Curr Opin Holtje, J. V., (1995) From growth to autolysis: the murein hydrolases in Escherichia coli. Arch Microbiol 164: 243-254.
  268. Fabret, C., V. A. Feher & J. A. Hoch, (1999) Two-component signal transduction in Bacillus subtilis: how one organism sees its world. J Bacteriol 181: 1975-1983.
  269. Kappes, R. M., B. Kempf, S. Kneip, J. Boch, J. Gade, J. Meier-Wagner & E. Bremer, (1999) Two evolutionarily closely related ABC transporters mediate the uptake of choline for synthesis of the osmoprotectant glycine betaine in Bacillus subtilis. Mol Microbiol 32: 203-216.
  270. Schuster, C., B. Dobrinski & R. Hakenbeck, (1990) Unusual septum formation in Streptococcus pneumoniae mutants with an alteration in the D,D- carboxypeptidase penicillin-binding protein 3. J Bacteriol 172: 6499-6505.
  271. Kempf, B. & E. Bremer, (1998) Uptake and synthesis of compatible solutes as microbial stress responses to high-osmolality environments. Arch Microbiol 170: 319-330.
  272. Quintela, J. C., M. Caparros & M. A. de Pedro, (1995) Variability of peptidoglycan structural parameters in gram-negative bacteria. FEMS Microbiol Lett 125: 95- 100.
  273. Young, F. E., (1965) Variation in the chemical composition of the cell walls of Bacillus subtilis during growth in different media. Nature 207: 104-105.
  274. Lopez, C. S., H. Heras, S. M. Ruzal, C. Sanchez-Rivas & E. A. Rivas, (1998) Variations of the envelope composition of Bacillus subtilis during growth in hyperosmotic medium. Curr Microbiol 36: 55-61.
  275. Soveral, G., A. Veiga, M. C. Loureiro-Dias, A. Tanghe, P. Van Dijck & T. F. Moura, (2006) Water channels are important for osmotic adjustments of yeast cells at low temperature. Microbiology 152: 1515-1521.
  276. Tanghe, A., P. Van Dijck & J. M. Thevelein, (2006) Why do microorganisms have aquaporins? Trends Microbiol 14: 78-85.
  277. Moulder, J. W., (1993) Why is Chlamydia sensitive to penicillin in the absence of peptidoglycan? Infect Agents Dis 2: 87-99.
  278. Neuhaus, F. C. & J. Baddiley, (2003) A continuum of anionic charge: structures and functions of D-alanyl-teichoic acids in gram-positive bacteria. Microbiol Mol Biol Rev 67: 686-723.
  279. Vollmer, W., B. Joris, P. Charlier & S. Foster, (2008) Bacterial peptidoglycan (murein) hydrolases. FEMS Microbiol Rev 32: 259-286.
  280. Ghuysen, J. M., J. Lamotte-Brasseur, B. Joris & G. D. Shockman, (1994) Binding site-shaped repeated sequences of bacterial wall peptidoglycan hydrolases. FEBS Lett 342: 23-28.
  281. Joris, B., S. Englebert, C. P. Chu, R. Kariyama, L. Daneo-Moore, G. D. Shockman & J. M. Ghuysen, (1992) Modular design of the Enterococcus hirae muramidase- 2 and Streptococcus faecalis autolysin. FEMS Microbiol Lett 70: 257-264.
  282. Jiang & D. Qu, (2006) Structure-based discovery of inhibitors of the YycG histidine kinase: new chemical leads to combat Staphylococcus epidermidis infections. BMC Microbiol 6: 96.
  283. Anantharaman, V. & L. Aravind, (2003) Application of comparative genomics in the identification and analysis of novel families of membrane-associated receptors in bacteria. BMC Genomics 4: 34.
  284. Eckert, C., M. Lecerf, L. Dubost, M. Arthur & S. Mesnage, (2006) Functional analysis of AtlA, the major N-acetylglucosaminidase of Enterococcus faecalis. J Bacteriol 188: 8513-8519.
  285. Popham, D. L., M. E. Gilmore & P. Setlow, (1999) Roles of low-molecular-weight penicillin-binding proteins in Bacillus subtilis spore peptidoglycan synthesis and spore properties. J Bacteriol 181: 126-132.
  286. Popham, D. L., J. Meador-Parton, C. E. Costello & P. Setlow, (1999) Spore peptidoglycan structure in a cwlD dacB double mutant of Bacillus subtilis. J Bacteriol 181: 6205-6209.
  287. Mohedano, M. L., K. Overweg, A. de la Fuente, M. Reuter, S. Altabe, F. Mulholland, D. de Mendoza, P. Lopez & J. M. Wells, (2005) Evidence that the essential response regulator YycF in Streptococcus pneumoniae modulates expression of fatty acid biosynthesis genes and alters membrane composition. J Bacteriol 187: 2357-2367.
  288. Liu, W., S. Eder & F. M. Hulett, (1998) Analysis of Bacillus subtilis tagAB and tagDEF expression during phosphate starvation identifies a repressor role for PhoP-P.
  289. Ishikawa, S., K. Yamane & J. Sekiguchi, (1998) Regulation and characterization of a newly deduced cell wall hydrolase gene (cwlJ) which affects germination of Bacillus subtilis spores. J Bacteriol 180: 1375-1380.
  290. Hoper, D., U. Volker & M. Hecker, (2005) Comprehensive characterization of the contribution of individual SigB-dependent general stress genes to stress resistance of Bacillus subtilis. J Bacteriol 187: 2810-2826.
  291. Aguilar, P. S., J. E. Cronan, Jr. & D. de Mendoza, (1998) A Bacillus subtilis gene induced by cold shock encodes a membrane phospholipid desaturase. J Bacteriol 180: 2194-2200.
  292. Ishikawa, S., Y. Hara, R. Ohnishi & J. Sekiguchi, (1998) Regulation of a new cell wall hydrolase gene, cwlF, which affects cell separation in Bacillus subtilis. J Bacteriol 180: 2549-2555.
  293. Nakamura, T., R. Yuda, T. Unemoto & E. P. Bakker, (1998) KtrAB, a new type of bacterial K(+)-uptake system from Vibrio alginolyticus. J Bacteriol 180: 3491- 3494.
  294. Farewell, A. & F. C. Neidhardt, (1998) Effect of temperature on in vivo protein synthetic capacity in Escherichia coli. J Bacteriol 180: 4704-4710.
  295. Fabret, C. & J. A. Hoch, (1998) A two-component signal transduction system essential for growth of Bacillus subtilis: implications for anti-infective therapy. J Bacteriol 180: 6375-6383.
  296. Wright, J. & J. E. Heckels, (1975) The teichuronic acid of cell walls of Bacillus subtilis W23 grown in a chemostat under phosphate limitation. Biochem J 147: 187- 189.
  297. Baba, T. & O. Schneewind, (1998) Targeting of muralytic enzymes to the cell division site of Gram-positive bacteria: repeat domains direct autolysin to the equatorial surface ring of Staphylococcus aureus. EMBO J 17: 4639-4646.
  298. Lambert, P. A., I. C. Hancock & J. Baddiley, (1975) Influence of alanyl ester residues on the binding of magnesium ions to teichoic acids. Biochem J 151: 671-676.
  299. Hughes, R. C., (1971) Autolysis of Bacillus cereus cell walls and isolation of structural components. Biochem J 121: 791-802.
  300. Hughes, A. H., I. C. Hancock & J. Baddiley, (1973) The function of teichoic acids in cation control in bacterial membranes. Biochem J 132: 83-93.
  301. Ward, J. B., (1973) The chain length of the glycans in bacterial cell walls. Biochem J 133: 395-398.
  302. Baldwin, R. L., (1996) How Hofmeister ion interactions affect protein stability. Biophys J 71: 2056-2063.
  303. Timasheff, S. N., (2002) Protein-solvent preferential interactions, protein hydration, and the modulation of biochemical reactions by solvent components. Proc Natl Acad Sci U S A 99: 9721-9726.
  304. Kloda, A. & B. Martinac, (2001) Structural and functional differences between two homologous mechanosensitive channels of Methanococcus jannaschii. EMBO J 20: 1888-1896.
  305. van der Heide, T., M. C. Stuart & B. Poolman, (2001) On the osmotic signal and osmosensing mechanism of an ABC transport system for glycine betaine. EMBO J 20: 7022-7032.
  306. Ng, W. L., H. C. Tsui & M. E. Winkler, (2005) Regulation of the pspA virulence factor and essential pcsB murein biosynthetic genes by the phosphorylated VicR (YycF) response regulator in Streptococcus pneumoniae. J Bacteriol 187: 7444-7459.
  307. Beckering, C. L., L. Steil, M. H. Weber, U. Volker & M. A. Marahiel, (2002) Genomewide transcriptional analysis of the cold shock response in Bacillus subtilis. J Bacteriol 184: 6395-6402.
  308. Durell, S. R. & H. R. Guy, (1999) Structural models of the KtrB, TrkH, and Trk1,2 symporters based on the structure of the KcsA K(+) channel. Biophys J 77: 789-807.
  309. Minton, A. P., (2000) Effect of a concentrated "inert" macromolecular cosolute on the stability of a globular protein with respect to denaturation by heat and by chaotropes: a statistical-thermodynamic model. Biophys J 78: 101-109.
  310. Wagner, C., A. Saizieu Ad, H. J. Schonfeld, M. Kamber, R. Lange, C. J. Thompson & M. G. Page, (2002) Genetic analysis and functional characterization of the Streptococcus pneumoniae vic operon. Infect Immun 70: 6121-6128.
  311. Cioni, P., E. Bramanti & G. B. Strambini, (2005) Effects of sucrose on the internal dynamics of azurin. Biophys J 88: 4213-4222.
  312. Matias, V. R. & T. J. Beveridge, (2006) Native cell wall organization shown by cryo- electron microscopy confirms the existence of a periplasmic space in Staphylococcus aureus. J Bacteriol 188: 1011-1021.
  313. Losick & A. D. Grossman, (2002) Genome-wide analysis of the stationary- phase sigma factor (sigma-H) regulon of Bacillus subtilis. J Bacteriol 184: 4881-4890.
  314. Talibart, R., M. Jebbar, K. Gouffi, V. Pichereau, G. Gouesbet, C. Blanco, T. Bernard & J. Pocard, (1997) Transient Accumulation of Glycine Betaine and Dynamics of Endogenous Osmolytes in Salt-Stressed Cultures of Sinorhizobium meliloti.
  315. Hamon, M. A., N. R. Stanley, R. A. Britton, A. D. Grossman & B. A. Lazazzera, (2004) Identification of AbrB-regulated genes involved in biofilm formation by Bacillus subtilis. Mol Microbiol 52: 847-860.
  316. Holtmann, G., E. P. Bakker, N. Uozumi & E. Bremer, (2003) KtrAB and KtrCD: two K+ uptake systems in Bacillus subtilis and their role in adaptation to hypertonicity. J Bacteriol 185: 1289-1298.
  317. Aguilar, P. S., A. M. Hernandez-Arriaga, L. E. Cybulski, A. C. Erazo & D. de Mendoza, (2001) Molecular basis of thermosensing: a two-component signal transduction thermometer in Bacillus subtilis. EMBO J 20: 1681-1691.
  318. Machida, M., K. Takechi, H. Sato, S. J. Chung, H. Kuroiwa, S. Takio, M. Seki, K. Shinozaki, T. Fujita, M. Hasebe & H. Takano, (2006) Genes for the peptidoglycan synthesis pathway are essential for chloroplast division in moss.
  319. Friedman, L., J. D. Alder & J. A. Silverman, (2006) Genetic changes that correlate with reduced susceptibility to daptomycin in Staphylococcus aureus. Antimicrob Agents Chemother 50: 2137-2145.
  320. Heidrich, C., A. Ursinus, J. Berger, H. Schwarz & J. V. Holtje, (2002) Effects of multiple deletions of murein hydrolases on viability, septum cleavage, and sensitivity to large toxic molecules in Escherichia coli. J Bacteriol 184: 6093- 6099.
  321. Wang, W., R. Hollmann & W. D. Deckwer, (2006) Comparative proteomic analysis of high cell density cultivations with two recombinant Bacillus megaterium strains for the production of a heterologous dextransucrase. Proteome Sci 4: 19.
  322. Takio, E. Minami & N. Shibuya, (2006) Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor. Proc Natl Acad Sci U S A 103: 11086-11091.
  323. Brigulla, M., T. Hoffmann, A. Krisp, A. Volker, E. Bremer & U. Volker, (2003) Chill induction of the SigB-dependent general stress response in Bacillus subtilis and its contribution to low-temperature adaptation. J Bacteriol 185: 4305-4314.
  324. Lee, J. C. & G. C. Stewart, (2003) Essential nature of the mreC determinant of Bacillus subtilis. J Bacteriol 185: 4490-4498.
  325. D'Elia, M. A., K. E. Millar, T. J. Beveridge & E. D. Brown, (2006) Wall teichoic acid polymers are dispensable for cell viability in Bacillus subtilis. J Bacteriol 188: 8313-8316.
  326. Mascher, T., J. D. Helmann & G. Unden, (2006) Stimulus perception in bacterial signal-transducing histidine kinases. Microbiol Mol Biol Rev 70: 910-938.
  327. Vijaranakul, U., M. J. Nadakavukaren, B. L. de Jonge, B. J. Wilkinson & R. K. Jayaswal, (1995) Increased cell size and shortened peptidoglycan interpeptide bridge of NaCl-stressed Staphylococcus aureus and their reversal by glycine betaine. J Bacteriol 177: 5116-5121.
  328. Glaasker, E., W. N. Konings & B. Poolman, (1996) Osmotic regulation of intracellular solute pools in Lactobacillus plantarum. J Bacteriol 178: 575-582.
  329. Sotomayor, M., V. Vasquez, E. Perozo & K. Schulten, (2007) Ion conduction through MscS as determined by electrophysiology and simulation. Biophys J 92: 886- 902.
  330. Graumann, P., K. Schroder, R. Schmid & M. A. Marahiel, (1996) Cold shock stress- induced proteins in Bacillus subtilis. J Bacteriol 178: 4611-4619.
  331. Kappes, R. M., B. Kempf & E. Bremer, (1996) Three transport systems for the osmoprotectant glycine betaine operate in Bacillus subtilis: characterization of OpuD. J Bacteriol 178: 5071-5079.
  332. Boch, J., B. Kempf, R. Schmid & E. Bremer, (1996) Synthesis of the osmoprotectant glycine betaine in Bacillus subtilis: characterization of the gbsAB genes. J Bacteriol 178: 5121-5129.
  333. Dijkstra, A. J. & W. Keck, (1996) Peptidoglycan as a barrier to transenvelope transport. J Bacteriol 178: 5555-5562.
  334. Rashid, M. H. & J. Sekiguchi, (1996) flaD (sinR) mutations affect SigD-dependent functions at multiple points in Bacillus subtilis. J Bacteriol 178: 6640-6643.
  335. Kempf, B., J. Gade & E. Bremer, (1997) Lipoprotein from the osmoregulated ABC transport system OpuA of Bacillus subtilis: purification of the glycine betaine binding protein and characterization of a functional lipidless mutant. J Bacteriol 179: 6213-6220.
  336. Jiang, W., Y. Hou & M. Inouye, (1997) CspA, the major cold-shock protein of Escherichia coli, is an RNA chaperone. J Biol Chem 272: 196-202.
  337. Carballido-Lopez, R., (2006) The bacterial actin-like cytoskeleton. Microbiol Mol Biol Rev 70: 888-909.
  338. Szurmant, H., M. A. Mohan, P. M. Imus & J. A. Hoch, (2007) YycH and YycI interact to regulate the essential YycFG two-component system in Bacillus subtilis. J Bacteriol 189: 3280-3289.
  339. Ahn, S. J. & R. A. Burne, (2007) Effects of oxygen on biofilm formation and the AtlA autolysin of Streptococcus mutans. J Bacteriol 189: 6293-6302.
  340. Klein, C., C. Kaletta, N. Schnell & K. D. Entian, (1992) Analysis of genes involved in biosynthesis of the lantibiotic subtilin. Appl Environ Microbiol 58: 132-142.
  341. Boch, J., B. Kempf & E. Bremer, (1994) Osmoregulation in Bacillus subtilis: synthesis of the osmoprotectant glycine betaine from exogenously provided choline. J Bacteriol 176: 5364-5371.
  342. Radutoiu, S., L. H. Madsen, E. B. Madsen, A. Jurkiewicz, E. Fukai, E. M. Quistgaard, A. S. Albrektsen, E. K. James, S. Thirup & J. Stougaard, (2007) LysM domains mediate lipochitin-oligosaccharide recognition and Nfr genes extend the symbiotic host range. EMBO J 26: 3923-3935.
  343. Benson, A. K. & W. G. Haldenwang, (1993) The sigma B-dependent promoter of the Bacillus subtilis sigB operon is induced by heat shock. J Bacteriol 175: 1929- 1935.
  344. Wuenscher, M. D., S. Kohler, A. Bubert, U. Gerike & W. Goebel, (1993) The iap gene of Listeria monocytogenes is essential for cell viability, and its gene product, p60, has bacteriolytic activity. J Bacteriol 175: 3491-3501.
  345. Graham, L. L. & T. J. Beveridge, (1994) Structural differentiation of the Bacillus subtilis 168 cell wall. J Bacteriol 176: 1413-1421.
  346. Graham, J. E. & B. J. Wilkinson, (1992) Staphylococcus aureus osmoregulation: roles for choline, glycine betaine, proline, and taurine. J Bacteriol 174: 2711- 2716.
  347. Predich, M., G. Nair & I. Smith, (1992) Bacillus subtilis early sporulation genes kinA, spo0F, and spo0A are transcribed by the RNA polymerase containing sigma H. J Bacteriol 174: 2771-2778.
  348. Koch, A. L. & S. Woeste, (1992) Elasticity of the sacculus of Escherichia coli. J Bacteriol 174: 4811-4819.
  349. Kemper, M. A., M. M. Urrutia, T. J. Beveridge, A. L. Koch & R. J. Doyle, (1993) Proton motive force may regulate cell wall-associated enzymes of Bacillus subtilis. J Bacteriol 175: 5690-5696.
  350. Kuroda, A., Y. Asami & J. Sekiguchi, (1993) Molecular cloning of a sporulation- specific cell wall hydrolase gene of Bacillus subtilis. J Bacteriol 175: 6260- 6268.
  351. Yanouri, A., R. A. Daniel, J. Errington & C. E. Buchanan, (1993) Cloning and sequencing of the cell division gene pbpB, which encodes penicillin-binding protein 2B in Bacillus subtilis. J Bacteriol 175: 7604-7616.
  352. Jones, P. G., R. Krah, S. R. Tafuri & A. P. Wolffe, (1992) DNA gyrase, CS7.4, and the cold shock response in Escherichia coli. J Bacteriol 174: 5798-5802.
  353. Baldwin, W. W., M. J. Sheu, P. W. Bankston & C. L. Woldringh, (1988) Changes in buoyant density and cell size of Escherichia coli in response to osmotic shocks. J Bacteriol 170: 452-455.
  354. Jones, P. G., R. A. VanBogelen & F. C. Neidhardt, (1987) Induction of proteins in response to low temperature in Escherichia coli. J Bacteriol 169: 2092-2095.
  355. Poolman, B., K. J. Hellingwerf & W. N. Konings, (1987) Regulation of the glutamate- glutamine transport system by intracellular pH in Streptococcus lactis. J Bacteriol 169: 2272-2276.
  356. Miya, A., P. Albert, T. Shinya, Y. Desaki, K. Ichimura, K. Shirasu, Y. Narusaka, N. Kawakami, H. Kaku & N. Shibuya, (2007) CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis. Proc Natl Acad Sci U S A 104: 19613-19618.
  357. Cheung, H. Y. & E. Freese, (1985) Monovalent cations enable cell wall turnover of the turnover-deficient lyt-15 mutant of Bacillus subtilis. J Bacteriol 161: 1222- 1225.
  358. Mobley, H. L., A. L. Koch, R. J. Doyle & U. N. Streips, (1984) Insertion and fate of the cell wall in Bacillus subtilis. J Bacteriol 158: 169-179.
  359. Koch, A. L., (1984) Shrinkage of growing Escherichia coli cells by osmotic challenge. J Bacteriol 159: 919-924.
  360. Pooley, H. M. & D. Karamata, (1984) Genetic analysis of autolysin-deficient and flagellaless mutants of Bacillus subtilis. J Bacteriol 160: 1123-1129.
  361. de Boer, W. R., P. D. Meyer, C. G. Jordens, F. J. Kruyssen & J. T. Wouters, (1982) Cell wall turnover in growing and nongrowing cultures of Bacillus subtilis. J Bacteriol 149: 977-984.
  362. Dubrac, S., I. G. Boneca, O. Poupel & T. Msadek, (2007) New insights into the WalK/WalR (YycG/YycF) essential signal transduction pathway reveal a major role in controlling cell wall metabolism and biofilm formation in Staphylococcus aureus. J Bacteriol 189: 8257-8269.
  363. Strauch, M. A., B. G. Bobay, J. Cavanagh, F. Yao, A. Wilson & Y. Le Breton, (2007) Abh and AbrB control of Bacillus subtilis antimicrobial gene expression. J Bacteriol 189: 7720-7732.
  364. Fischer, W., P. Rosel & H. U. Koch, (1981) Effect of alanine ester substitution and other structural features of lipoteichoic acids on their inhibitory activity against autolysins of Staphylococcus aureus. J Bacteriol 146: 467-475.
  365. De Boer, W. R., F. J. Kruyssen & J. T. Wouters, (1981) Cell wall turnover in batch and chemostat cultures of Bacillus subtilis. J Bacteriol 145: 50-60.
  366. Cheung, H. Y., L. Vitkovic & E. Freese, (1983) Rates of peptidoglycan turnover and cell growth of Bacillus subtilis are correlated. J Bacteriol 156: 1099-1106.
  367. Grant, W. D., (1979) Cell wall teichoic acid as a reserve phosphate source in Bacillus subtilis. J Bacteriol 137: 35-43.
  368. Shiflett, M. A., D. Brooks & F. E. Young, (1977) Cell wall and morphological changes induced by temperature shift in Bacillus subtilis cell wall mutants. J Bacteriol 132: 681-690.
  369. Broeze, R. J., C. J. Solomon & D. H. Pope, (1978) Effects of low temperature on in vivo and in vitro protein synthesis in Escherichia coli and Pseudomonas fluorescens. J Bacteriol 134: 861-874.
  370. Perozo, E., A. Kloda, D. M. Cortes & B. Martinac, (2001) Site-directed spin-labeling analysis of reconstituted Mscl in the closed state. J Gen Physiol 118: 193-206.
  371. Szurmant, H., H. Zhao, M. A. Mohan, J. A. Hoch & K. I. Varughese, (2006) The crystal structure of YycH involved in the regulation of the essential YycFG two- component system in Bacillus subtilis reveals a novel tertiary structure. Protein Sci 15: 929-934.
  372. Li, C., M. D. Edwards, H. Jeong, J. Roth & I. R. Booth, (2007) Identification of mutations that alter the gating of the Escherichia coli mechanosensitive channel protein, MscK. Mol Microbiol 64: 560-574.
  373. Formstone, A., R. Carballido-Lopez, P. Noirot, J. Errington & D. J. Scheffers, (2008) Localization and interactions of teichoic acid synthetic enzymes in Bacillus subtilis. J Bacteriol 190: 1812-1821.
  374. Rodrigues, D. F. & J. M. Tiedje, (2008) Coping with our cold planet. Appl Environ Microbiol 74: 1677-1686.
  375. Wan, J., X. C. Zhang, D. Neece, K. M. Ramonell, S. Clough, S. Y. Kim, M. G. Stacey & G. Stacey, (2008) A LysM receptor-like kinase plays a critical role in chitin signaling and fungal resistance in Arabidopsis. Plant Cell 20: 471-481.
  376. Winkler, M. E. & J. A. Hoch, (2008) Essentiality, bypass, and targeting of the YycFG (VicRK) two-component regulatory system in gram-positive bacteria. J Bacteriol 190: 2645-2648.
  377. Holtje, J. V., D. Mirelman, N. Sharon & U. Schwarz, (1975) Novel type of murein transglycosylase in Escherichia coli. J Bacteriol 124: 1067-1076.
  378. Pooley, H. M., (1976) Turnover and spreading of old wall during surface growth of Bacillus subtilis. J Bacteriol 125: 1127-1138.
  379. Wu, J., N. Ohta, J. L. Zhao & A. Newton, (1999) A novel bacterial tyrosine kinase essential for cell division and differentiation. Proc Natl Acad Sci U S A 96: 13068-13073.
  380. Bodman, S. B. und J. M. Willey (2008) Cell-cell communication in bacteria: united we stand. J Bacteriol 190: 4377-4391
  381. Trinh, C. H., Y. Liu, S. E. Phillips & M. K. Phillips-Jones, (2007) Structure of the response regulator VicR DNA-binding domain. Acta Crystallogr D Biol Crystallogr 63: 266-269.
  382. Fan, D. P. & M. M. Beckman, (1971) Mutant of Bacillus subtilis demonstrating the requirement of lysis for growth. J Bacteriol 105: 629-636.
  383. Hayhurst, E. J., L. Kailas, J. K. Hobbs & S. J. Foster, (2008) Cell wall peptidoglycan architecture in Bacillus subtilis. Proc Natl Acad Sci U S A 105: 14603-14608.
  384. Sullivan, D. M., B. G. Bobay, D. J. Kojetin, R. J. Thompson, M. Rance, M. A. Strauch & J. Cavanagh, (2008) Insights into the nature of DNA binding of AbrB-like transcription factors. Structure 16: 1702-1713.
  385. Popham, D. L., J. Helin, C. E. Costello & P. Setlow, (1996) Muramic lactam in peptidoglycan of Bacillus subtilis spores is required for spore outgrowth but not for spore dehydration or heat resistance. Proc Natl Acad Sci U S A 93: 15405-15410.
  386. Gong, W., B. Hao, S. S. Mansy, G. Gonzalez, M. A. Gilles-Gonzalez & M. K. Chan, (1998) Structure of a biological oxygen sensor: a new mechanism for heme- driven signal transduction. Proc Natl Acad Sci U S A 95: 15177-15182.
  387. Hughes, R. C. & E. Stokes, (1971) Cell wall growth in Bacillus licheniformis followed by immunofluorescence with mucopeptide-specific antiserum. J Bacteriol 106: 694-696.
  388. Friedman, H., P. Lu & A. Rich, (1971) Temperature control of initiation of protein synthesis in Escherichia coli. J Mol Biol 61: 105-121.
  389. Gabrielsen, O. S., E. Hornes, L. Korsnes, A. Ruet & T. B. Oyen, (1989) Magnetic DNA affinity purification of yeast transcription factor tau--a new purification principle for the ultrarapid isolation of near homogeneous factor. Nucleic Acids Res 17: 6253-6267.
  390. Garvey, K. J., M. S. Saedi & J. Ito, (1986) Nucleotide sequence of Bacillus phage phi 29 genes 14 and 15: homology of gene 15 with other phage lysozymes. Nucleic Acids Res 14: 10001-10008.
  391. Dubrac, S. & T. Msadek, (2004) Identification of genes controlled by the essential YycG/YycF two-component system of Staphylococcus aureus. J Bacteriol 186: 1175-1181.
  392. Wulff, D. L., M. Mahoney, A. Shatzman & M. Rosenberg, (1984) Mutational analysis of a regulatory region in bacteriophage lambda that has overlapping signals for the initiation of transcription and translation. Proc Natl Acad Sci U S A 81: 555-559.
  393. Holtmann, G. & E. Bremer, (2004) Thermoprotection of Bacillus subtilis by exogenously provided glycine betaine and structurally related compatible solutes: involvement of Opu transporters. J Bacteriol 186: 1683-1693.
  394. Csonka, L. N., (1989) Physiological and genetic responses of bacteria to osmotic stress. Microbiol Rev 53: 121-147.
  395. Stock, J. B., A. J. Ninfa & A. M. Stock, (1989) Protein phosphorylation and regulation of adaptive responses in bacteria. Microbiol Rev 53: 450-490.
  396. Sinensky, M., (1974) Homeoviscous adaptation--a homeostatic process that regulates the viscosity of membrane lipids in Escherichia coli. Proc Natl Acad Sci U S A 71: 522-525.
  397. Jacobs, C., L. J. Huang, E. Bartowsky, S. Normark & J. T. Park, (1994) Bacterial cell wall recycling provides cytosolic muropeptides as effectors for beta-lactamase induction. EMBO J 13: 4684-4694.
  398. Jones, P. G., M. Mitta, Y. Kim, W. Jiang & M. Inouye, (1996) Cold shock induces a major ribosomal-associated protein that unwinds double-stranded RNA in Escherichia coli. Proc Natl Acad Sci U S A 93: 76-80.
  399. Lanyi, J. K., (1974) Salt-dependent properties of proteins from extremely halophilic bacteria. Bacteriol Rev 38: 272-290.
  400. Blumberg, P. M. & J. L. Strominger, (1974) Interaction of penicillin with the bacterial cell: penicillin-binding proteins and penicillin-sensitive enzymes. Bacteriol Rev 38: 291-335.
  401. Brown, A. D., (1976) Microbial water stress. Bacteriol Rev 40: 803-846.
  402. Hecker & J. M. van Dijl, (2004) Proteomics of protein secretion by Bacillus subtilis: separating the "secrets" of the secretome. Microbiol Mol Biol Rev 68: 207-233.
  403. Goodell, E. W., R. Lopez & A. Tomasz, (1976) Suppression of lytic effect of beta lactams on Escherichia coli and other bacteria. Proc Natl Acad Sci U S A 73: 3293-3297.
  404. Eichenberger, P., M. Fujita, S. T. Jensen, E. M. Conlon, D. Z. Rudner, S. T. Wang, C. Ferguson, K. Haga, T. Sato, J. S. Liu & R. Losick, (2004) The program of gene transcription for a single differentiating cell type during sporulation in Bacillus subtilis. PLoS Biol 2: e328.
  405. Mansilla, M. C., L. E. Cybulski, D. Albanesi & D. de Mendoza, (2004) Control of membrane lipid fluidity by molecular thermosensors. J Bacteriol 186: 6681- 6688.
  406. Hancock, L. E. & M. Perego, (2004) Systematic inactivation and phenotypic characterization of two-component signal transduction systems of Enterococcus faecalis V583. J Bacteriol 186: 7951-7958.
  407. Bhavsar, A. P., L. K. Erdman, J. W. Schertzer & E. D. Brown, (2004) Teichoic acid is an essential polymer in Bacillus subtilis that is functionally distinct from teichuronic acid. J Bacteriol 186: 7865-7873.
  408. Nagai, H., H. Yuzawa & T. Yura, (1991) Interplay of two cis-acting mRNA regions in translational control of sigma 32 synthesis during the heat shock response of Escherichia coli. Proc Natl Acad Sci U S A 88: 10515-10519.
  409. Strauch, M., V. Webb, G. Spiegelman & J. A. Hoch, (1990) The SpoOA protein of Bacillus subtilis is a repressor of the abrB gene. Proc Natl Acad Sci U S A 87: 1801-1805.
  410. Jouffre, M. A. Huynen & P. Bork, (2005) STRING: known and predicted protein-protein associations, integrated and transferred across organisms. Nucleic Acids Res 33: D433-437.
  411. VanBogelen, R. A. & F. C. Neidhardt, (1990) Ribosomes as sensors of heat and cold shock in Escherichia coli. Proc Natl Acad Sci U S A 87: 5589-5593.
  412. Calamita, H. G., W. D. Ehringer, A. L. Koch & R. J. Doyle, (2001) Evidence that the cell wall of Bacillus subtilis is protonated during respiration. Proc Natl Acad Sci U S A 98: 15260-15263.
  413. Ghuysen, J. M. & C. Goffin, (1999) Lack of cell wall peptidoglycan versus penicillin sensitivity: new insights into the chlamydial anomaly. Antimicrob Agents Chemother 43: 2339-2344.
  414. Martin, P. K., T. Li, D. Sun, D. P. Biek & M. B. Schmid, (1999) Role in cell permeability of an essential two-component system in Staphylococcus aureus. J Bacteriol 181: 3666-3673.
  415. Klein, W., M. H. Weber & M. A. Marahiel, (1999) Cold shock response of Bacillus subtilis: isoleucine-dependent switch in the fatty acid branching pattern for membrane adaptation to low temperatures. J Bacteriol 181: 5341-5349.
  416. Neuhaus, K., S. Rapposch, K. P. Francis & S. Scherer, (2000) Restart of exponential growth of cold-shocked Yersinia enterocolitica occurs after down-regulation of cspA1/A2 mRNA. J Bacteriol 182: 3285-3288.
  417. Nelson, D. E. & K. D. Young, (2001) Contributions of PBP 5 and DD- carboxypeptidase penicillin binding proteins to maintenance of cell shape in Escherichia coli. J Bacteriol 183: 3055-3064.
  418. Ventosa, A., J. J. Nieto & A. Oren, (1998) Biology of moderately halophilic aerobic bacteria. Microbiol Mol Biol Rev 62: 504-544.
  419. Taylor, B. L. & I. B. Zhulin, (1999) PAS domains: internal sensors of oxygen, redox potential, and light. Microbiol Mol Biol Rev 63: 479-506.
  420. Davey, M. E. & A. O'Toole G, (2000) Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev 64: 847-867.
  421. Roberts, M. F., (2005) Organic compatible solutes of halotolerant and halophilic microorganisms. Saline Systems 1: 5.
  422. Kurz, M., (2008) Compatible solute influence on nucleic acids: Many questions but few answers. Saline Systems 4: 6.
  423. Hanahan, D., (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166: 557-580.
  424. Wendrich, T. M., G. Blaha, D. N. Wilson, M. A. Marahiel & K. H. Nierhaus, (2002) Dissection of the mechanism for the stringent factor RelA. Mol Cell 10: 779- 788.
  425. Doyle, D. A., J. Morais Cabral, R. A. Pfuetzner, A. Kuo, J. M. Gulbis, S. L. Cohen, B. T. Chait & R. MacKinnon, (1998) The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280: 69-77.
  426. Gonzalez-Pastor, J. E., E. C. Hobbs & R. Losick, (2003) Cannibalism by sporulating bacteria. Science 301: 510-513.
  427. Yamamoto, K., T. Kitayama, S. Minagawa, T. Watanabe, S. Sawada, T. Okamoto & R. Utsumi, (2001) Antibacterial agents that inhibit histidine protein kinase YycG of Bacillus subtilis. Biosci Biotechnol Biochem 65: 2306-2310.
  428. von Mering, C., L. J. Jensen, M. Kuhn, S. Chaffron, T. Doerks, B. Kruger, B. Snel & P. Bork, (2007) STRING 7--recent developments in the integration and prediction of protein interactions. Nucleic Acids Res 35: D358-362.
  429. Kallipolitis, B. H. & H. Ingmer, (2001) Listeria monocytogenes response regulators important for stress tolerance and pathogenesis. FEMS Microbiol Lett 204: 111-115.
  430. Kanemasa, Y., K. Takai, T. Takatsu, H. Hayashi & T. Katayama, (1974) Ultrastructural alteration of the cell surface of Staphylococcus aureus cultured in a different salt condition. Acta Med Okayama 28: 311-320.
  431. Howell, A., S. Dubrac, D. Noone, K. I. Varughese & K. Devine, (2006) Interactions between the YycFG and PhoPR two-component systems in Bacillus subtilis: the PhoR kinase phosphorylates the non-cognate YycF response regulator upon phosphate limitation. Mol Microbiol 59: 1199-1215.
  432. Dubrac, S. & T. Msadek, (2008) Tearing down the wall: peptidoglycan metabolism and the WalK/WalR (YycG/YycF) essential two-component system. Adv Exp Med Biol 631: 214-228.
  433. Dubrac, S., P. Bisicchia, K. M. Devine & T. Msadek, (2008) A matter of life and death: cell wall homeostasis and the WalKR (YycGF) essential signal transduction pathway. Mol Microbiol 70: 1307-1322.
  434. Layec, S., B. Decaris & N. Leblond-Bourget, (2008) Diversity of Firmicutes peptidoglycan hydrolases and specificities of those involved in daughter cell separation. Res Microbiol 159: 507-515.
  435. Soldo, B., V. Lazarevic & D. Karamata, (2002) tagO is involved in the synthesis of all anionic cell-wall polymers in Bacillus subtilis 168. Microbiology 148: 2079- 2087.
  436. Fukushima, T., Y. Yao, T. Kitajima, H. Yamamoto & J. Sekiguchi, (2007) Characterization of new L,D-endopeptidase gene product CwlK (previous YcdD) that hydrolyzes peptidoglycan in Bacillus subtilis. Mol Genet Genomics 278: 371-383.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten