Regulation der Transkription und Translation von \textit{Mst77F} und der \textit{Protamine} und die Funktion der Protamine während der Spermiogenese von \textit{Drosophila}

Dissertation
zur Erlangung des Doktorgrades
der Naturwissenschaften
(Dr. rer. nat.)

dem
Fachbereich Biologie
der Philipps-Universität Marburg
vorgelegt von

Bridlin Barckmann
aus Büdingen

Marburg/Lahn 2009
Vom Fachbereich Biologie der
Philipps-Universität Marburg als Dissertation am _________________ angenommen.

Erstgutachter: Prof. Dr. Renate Renkawitz-Pohl
Zweitgutachter: Prof. Dr. Michael Bölker

Tag der mündlichen Prüfung am: _________________
1 ZUSAMMENFASSUNG ... - 1 -

2 EINLEITUNG .. - 2 -

2.1 Drosophila Spermatogenese als Modellsystem - 2 -

2.2 Die Spermatogenese in Drosophila melanogaster - 2 -

2.3 Die transkriptionelle und translationale Genregulation während der Spermatogenese von Drosophila ... - 4 -

2.3.1 Die transkriptionelle Regulierung translational reprimierter mRNAs durch tTAFs ... - 7 -

2.3.1.1 Gewebespezifische TAFs in anderen Geweben und Modellorganismen - 9 -

2.4 Chromatinreorganisation während der Spermiogenese von Drosophila ... - 10 -

2.5 Verschiedene Hypothesen für die Notwendigkeit der Protamine ... - 12 -

2.6 Nachweis von mRNA Lokalisation in vivo .. - 14 -

2.6.1 Das MS2/MS2cp-System ... - 17 -

2.6.2 Das λN-System .. - 18 -

3 ERGEBNISSE .. - 19 -

3.1 Transkriptionale Regulation der Protamine und Mst77F - 19 -

3.1.1 Der Promotor von Mst77F ist kurz, wie es für Promotoren in der Drosophila Spermatogenese typischen ist ... - 19 -

3.1.2 Der Transkriptionsstart von Mst77F .. - 20 -

3.1.3 Translationale Repression der Mst77F mRNA ist abhängig von der 5´UTR .. - 20 -

3.1.3.1 Die mRNA des Y-Box Protein Yps ist während der Spermatogenese von Drosophila nachweisbar ... - 23 -

3.1.4 Die Transkription von Mst77F und den Protaminen ist von tTAFs abhängig - 24 -

3.1.5 Chromatin Immunprezipitationen (ChIPs) identifiziert protamin B und Mst77F Gene als direkte Targets der tTAFs .. - 25 -

3.2 Erzeugung einer Protamin Null-Mutante in Drosophila - 28 -

3.2.1 Analyse der genomischen Region der Protamin Deletion - 29 -

3.2.2 Trotz der Protamin-Deletion protΔ sind Drosophila-Männchen fertil - 30 -

3.2.3 Die meisten Spermatidenkerne homozygoter protΔ-Männchen sind korrekt geformt und schlank ... - 33 -

3.2.4 Alle untersuchten Spermatogenese-Charakteristika sind von der Protaminsynthese unabhängig ... - 35 -

3.2.5 Protamin-eGFP, aber nicht Mst77F-eGFP oder Mst99C-eGFP, rettet die missförmigen Spermatidenkerne von protΔ Männchen ... - 38 -
3.2.6 Protamin A- und Protamin B-defiziente Spermien sind sensitiver gegenüber Röntgenstrahlung als Wildtyp-Spermien.

3.3 Etablierung zweier Systeme zur in vivo Lokalisation translational reprimierter mRNAs in der Spermatogenese von Drosophila.

3.3.1 Die Komponenten des MS2cp/MS2sl-Systems in der Fliege

3.3.1.1 MS2cp-mCherry unter der Kontrolle des β2tubulin-Promotors zeigt eine zeitlich korrekte Expression in Testis.

3.3.1.2 Die Expression eGFP-Fusionsproteine mittels MS2-Stemloop-markierter mRNA entspricht der der eGFP-Fusionsproteine ohne MS2-Stemloops.

3.3.2 Die Komponenten des λN/BoxB-Systems in der Fliege

3.3.2.1 Das λN-Peptid-mCherry unter Kontrolle des β2tubulin-Promotors zeigt eine zeitlich korrekte Expression im Testis.

3.3.2.2 Die Expression eGFP-Fusionsproteinen mittels BoxB-markierter mRNA entspricht der normalen eGFP-Fusionsproteinen.

3.3.3 Etablierung der doppelttransgenen Fliegenlinien für das MS2cp/MS2sl-System und das λN/BoxB-System.

4 DISKUSSION

4.1 Die transkriptionelle Regulation der Expression von Mst77F während des Spermatozyten-Stadiums

4.1.1 Die Transkription von Mst77F wird durch eine kurze cis-regulatorische Regionen gesteuert.

4.1.2 Der Transkriptionsstart von Mst77F liegt einige Basen unterhalb des vorhergesagten Transkriptionsstarts.

4.1.3 Translationale Repression der Mst77F mRNA wird über die 5’UTR vermittelt.

4.2 Die Transkription von Mst35Bb und Mst77F ist abhängig von testisspezifischen TAFs.

4.3 Im Gegensatz zu Protaminmutanten in Säugern sind Drosophila Protamin-Null-Mutanten fertil.

4.3.1 Die missgeformten späten Spermatidenkerne der protA Mutante weisen auf eine verminderte strukturelle Integrität der Kerne hin.

4.3.2 Mst77F und Mst99C haben wahrscheinlich keine redundante Funktion zu ProtA und ProtB.

4.3.3 Protamine schützen das paternale Genom gegenüber Röntgenstrahlung.

4.3.4 Ausblick: mögliche nächste Schritte um mehr über den Chromatinwechsel während der Spermatogenese zu erfahren.
4.4 Das MS2cp/MS2sl-System und das λN/BoxB-System zur \textit{in vivo} mRNA-Lokalisation in der Spermatogenese von \textit{Drosophila}..- 72 -

4.4.1 Die einzelnen Komponenten des \textit{λN}/BoxB-Systems und des MS2cp/MS2sl-Systems
werden in der Fliege exprimiert...- 73 -

4.4.2 Eine mögliche Lokalisation von mRNA an den Spermatidenkernen zum Zeitpunkt der
Translation der markierten mRNA..- 75 -

4.4.3 Probleme und mögliche Verbesserungen bei der Auswertung der doppelttransgenen
Fliegen des \textit{λN}/BoxB-Systems und des MS2cp/MS2sl-Systems...............................- 76 -

4.4.4 Ausblick: mögliche Fragestellungen und Experimente mit dem \textit{λN}/BoxB-System und dem
MS2cp/MS2sl-System in Zukunft..- 78 -

5 MATERIAL UND METHODEN... - 80 -

5.1 Material ..- 80 -

5.1.1 Oligonukleotide ..- 80 -

5.1.2 Geräte ...- 81 -

5.1.3 Chemikalien...- 82 -

5.1.4 Enzyme ..- 84 -

5.1.5 Fertige Reagenssatzeprofesse ...- 85 -

5.1.6 Sonstiges Material..- 85 -

5.1.7 Lösungen, Medien und Puffer ..- 85 -

5.1.8 \textit{Drosophila melanogaster} Fliegenstämmé ..- 87 -

5.1.9 Antikörper...- 89 -

5.1.10 Bakterienstamm...- 89 -

5.1.11 Computer-Software...- 89 -

5.2 Methoden..- 90 -

5.2.1 Allgemeine Fliegenarbeiten...- 90 -

5.2.1.1 Haltung von Drosophila melanogaster..- 90 -

5.2.1.2 Kreuzungen von Drosophila melanogaster..- 90 -

5.2.1.3 P-Element vermittelte Keimbahntransformation in \textit{Drosophila melanogaster}....- 91 -

5.2.1.4 Sammeln und Entchorionisierung von Fliegenembryonen.................................- 91 -

5.2.1.5 Mikroinjektion der Embryonen...- 92 -

5.2.1.6 Selektion der transgenen Fliegen..- 93 -

5.2.2 Erzeugung einer präzisen Deletion des Protamin Lokuses.....................................- 93 -

5.2.3 Muller5-Test zur Bestimmung der Mutationsrate auf dem X-Chromosom- 94 -

5.2.4 Präparation und Analyse von DNA und RNA...- 96 -

5.2.4.1 Erzeugung chemisch kompetenter \textit{Escherichia coli}...- 96 -

5.2.4.2 Transformation chemisch kompetenter Escherichia coli.....................................- 97 -

5.2.4.3 Plasmid-Mini-Präparation (analytischer Maßstab)..- 97 -

5.2.4.4 Plasmid-Midi-Präparation (präparativer Maßstab)..- 98 -

5.2.4.5 Präparation von genomischer DNA aus \textit{Drosophila melanogaster}...............- 98 -
5.2.4.6 „Single Fly“ DNA Präparation ... - 98 -
5.2.4.7 Isolation von Gesamt-RNA und mRNA aus *Drosophila melanogaster* Testes - 99 -
5.2.4.8 Agarosegelelektrophorese ... - 99 -
5.2.4.9 Isolation von DNA aus Agarosegel ... - 100 -
5.2.4.10 Bestimmung der Nukleinsäure-Konzentration - 100 -
5.2.4.11 Ethanolfällung von DNA .. - 100 -

5.2.5 Southern Blot Analyse ... - 100 -

5.2.6 Enzymatische Manipulationen von DNA-Molekülen - 103 -
5.2.6.1 Verdau von DNA mittels Restriktionsendonukleasen - 103 -
5.2.6.2 Dephosphorylierung von 5´Enden zur Prävention der Religation des Vektors - 103 -
5.2.6.3 Ligation von DNA-Fragmenten .. - 104 -
5.2.6.4 Polymerase Kettenreaktion (PCR) ... - 104 -
5.2.6.5 Klonieren mit dem TOPO™-TA-Vektor-Kit .. - 105 -

5.2.7 Histologische Methoden ... - 105 -
5.2.7.1 Immunfluoreszenzfärbungen an Testesquetschpräparaten - 105 -
5.2.7.2 Terminal transferase dUTP nick end labeling (TUNEL) zur Detektion von DNA Brüchen ... - 106 -
5.2.7.3 X-Gal-Färbung an *Drosophila melanogaster* Testes - 107 -
5.2.7.4 RNA *in situ* Hybridisierung an *Drosophila melanogaster* Testes - 107 -
5.2.7.5 Chromatin Immunoprezipitation (ChIPs) an *Drosophila melanogaster* Testes - 110 -

6 ANHANG .. - 112 -

6.1 Liste der im Rahmen dieser Arbeit generierten Klone - 112 -

6.2 Liste von Genen für RNA-binde-Proteine mit vorhergesagter Expression in der männlichen Keinmbahn ... - 114 -

7 LITERATUR .. - 117 -

8 ABKÜRZUNGEN .. - 126 -

9 CV BRIDLIN BARCKMANN ... - 128 -

10 DANKSAGUNG .. - 133 -

11 ERKLÄRUNG ... - 134 -
Zusammenfassung

1 Zusammenfassung

Wo die translational reprimierten mRNAs in der Zelle gespeichert werden, ist in Drosophila noch völlig unbekannt, deshalb wurden im Rahmen dieser Arbeit zwei Systeme, das MS2cp/MS2sl-System und das λN/BoxB-System, zur in vivo Lokalisation von mRNAs etabliert.

Einleitung

2.1 *Drosophila* Spermatogenese als Modellsystem

2.2 Die Spermatogenese in *Drosophila melanogaster*

2 Einleitung

2 Einleitung

2.3 Die transkriptionelle und translationale Genregulation während der Spermatogenese von *Drosophila*

Die tiefgreifenden morphologischen Umformungsprozesse der Zellen während der Spermatogenese erfordern eine präzise räumliche und zeitliche Regulierung der benötigten Proteine. Mit Eintritt ins Spermatozyten-Stadium starten die Zellen ein enormes, im Leben der Fliege einzigartiges, Genexpressionsprogramm. Es werden große Mengen testisspezifisch exprimierter Gene transkribiert. Microarray Daten, die verschiedene adulte Gewebe vergleichen (Andrews et al., 2000; Parisi et al., 2004; Chintapalli et al., 2007) zeigen, dass etwa 50 % aller Gene des Genoms im Testis
Einleitung

exprimiert sind, rund 8 % aller Gene sind testisspezifisch und etwa 5 % im Testis erhöht exprimiert (Übersichtsartikel: White-Cooper, 2009). Das vermittelt einen Eindruck welche regulatorische Leistung im Spermatozyten-Stadium während der Spermatogenese stattfinden muss. Viele Gene, die in der Spermatogenese exprimiert werden, sind entweder testisspezifisch exprimiert, mit Testis typischen Promotoren, oder die Expression im Testis wird über alternative Promotoren gesteuert. Dabei zeichnen sich Promotoren die Expression während der Spermatogenese vermitteln sich durch sehr kurze regulatorische Sequenzen aus (Übersichtsartikel: Renkawitz-Pohl et al., 2005). Einer der ersten analysierten Testis Promotoren war der Promotor des \(\beta_2 \) Tubulin Gens. Für die zeitliche und räumliche korrekte Expression sind hier nur 53 bp der Promotorregion in Verbindung mit 71 bp der 5´UTR notwendig. In der Promotorregion konnte ein 14 bp großes Motiv identifiziert werden, \(\beta_2 \) UE1, das kritisch für die testisspezifische Transkription ist (Michiels et al., 1989). Sequenzen die mit dem \(\beta_2 \) UE1-Motiv verwandt sind konnten in einigen weiteren Testis Promotoren gefunden werden, aber in zu wenigen um es als generelles testisspezifisches Promotormotiv anzusehen (Yang et al., 1995; Nurminsky et al., 1998). Ein weiteres Beispiel für ein Gen das durch einen kurzen testisspezifischen Promotoren reguliert wird ist don juan like (djl). Hier sind für die zeitlich und räumlich korrekte Expression nur 106 bp nötig, von denen nur 11 bp vor den Transkriptionsstart liegen (Hempel et al., 2006).

In Mäusen reichen 113 bp aus um eine gewebespezifische Expression von protamin 1 zu treiben, für ein hohes Transkriptionslevel sind allerdings noch Regionen weiter 5´, insgesamt etwa 200 bp, nötig (Zambrowicz et al., 1993).

Anders als bei Säugern, bei denen Transkription bis ins runde Spermatiden-Stadium stattfindet (Kierszenbaum und Tres, 1975), findet man in Drosophila nahezu keine postmeiotische Transkription. Das bedeutet das die Gene aller Proteine die während der Spermiogenese aktiv sind, im Spermatozyten-Stadium transkribiert werden, und die mRNAs translational reprimiert werden müssen, bis der korrekte Zeitpunkt für die Proteinexpression gekommen ist (Abb. 2). Ähnliches findet man auch in Vertebraten, obwohl dort postmeiotische Transkription stattfindet, wird diese mit der Kompaktierung der Chromosomen beendet, und alle Proteine die später gebraucht werden, werden auch von translational reprimierten mRNAs gebildet (Übersichtsartikel: Steger, 2001). Elemente die die translationale Reprimierung von mRNAs in der Drosophila Spermatogenese vermitteln sind bis jetzt nur in der 5´UTR
2 Einleitung

gefunden worden (z.B. *don juan like (djl)* und *don juan (dj)* (Hempel et al., 2006), β2-Tubulin (Michiels et al., 1989), *Mst87F* (Kempe et al., 1993). Das steht im Kontrast zu translational reprimierten mRNAs in der Spermatogenese von Mammaliern, wo translationale Repression über die 3´UTR vermittelt wird, beschrieben für die Protamin Gene *protamine 1* und *protamine 2* (Hecht, 1998; Steger, 1999), und zur Regulierung translationaler Repression in Keimplasma in der Oogenese von *Drosophila* wo die translationale Repression auch über die 3´UTR vermittelt wird (Rangan et al., 2009).

Obwohl es eine große Menge translational reprimierter mRNAs während der Spermatogenese von *Drosophila* gibt, konnten erst für sehr wenige mRNAs Mechanismen gefunden werden, die für die translationale Repression verantwortlich sind. Es wurden testisexpressierte RNA-bindende Proteine gefunden; die RNA-bindenden Proteine Boule, Rb97D, Tsr und Arrest und Mutationen in den zugehörigen Genen führen zu männlicher Sterilität. Es konnten aber noch keine ZielmRNAs für diese Proteine gefunden werden.

Es konnte auch noch nicht geklärt werden wie diese Menge an translational reprimierten mRNAs in den Zellen gespeichert und stabilisiert wird. Diese Fragen näher zu beleuchten wird Teil dieser Arbeit sein.
2 Einleitung

2.3.1 Die transkriptionelle Regulierung translational reprimierter mRNAs durch tTAFs

Genexpression ist ein stark regulierter komplexer Prozess, der durch das Zusammenspiel verschiedener Multikomplexe an einem gegebenen Promotor erreicht wird. Der Transkriptionsfaktor TFIIID ist zentraler Bestandteil der Maschinerie, die die mRNA Produktion durch die RNA-Polymerase II reguliert. Dieser große
Einleitung

Multiproteinkomplex setzt sich aus dem TATA box Bindeprotein (TBP) und verschiedenen TBP-assozierten Faktoren (TAFs) zusammen. In der Spermatogenese von *Drosophila* gibt es testisspezifische TBP-assozierte Faktoren (TAF), die tTAFs, die durch die can-Klasse der meiotic-arrest Gene kodiert werden (Hiller et al., 2004; Chen et al., 2005). Diese tTAFs sind can (cannonball), mia (meiotic I arrest), sa (spermatocyte arrest), nht (no hitter) und rye (ryan express). Bei Mutationen dieser Gene stoppt die Spermatogenese vor dem Eintritt in die Meiose (deshalb der Name meiotic-arrest Gene). Das bedeutet, dass die Testes gefüllt sind mit prämeiotischen Stadien (Übersichtsartikel: White-Cooper, 2009). Bei der Untersuchung der Expressionsprofile einiger bekannter Spermatogeneserelevanter Gene in tTAF Mutanten konnte gezeigt werden, dass die Mutanten keinen generellen Defekt in der Transkription während Spermatogenese aufweisen, sondern nur einen Defekt in der Expression von Genen, die in der Spermiogenese eine Rolle spielen und deren mRNAs deshalb translational reprimiert sind (White-Cooper et al., 1998). Dies führte zur Hypothese, dass es in der Spermatogenese von *Drosophila* eine testisspezifische Version des ubiquitären TFIID Komplexes gibt, der wichtig für die Transkription der translational reprimierten mRNA ist. Dieser Testis-TFIID Komplex beinhaltet wahrscheinlich ein Set aus testisspezifischen TBP-assozierten Faktoren (TAF) den tTAFs (Hiller et al., 2004; Chen et al., 2005) und einer Splicßvariante des TAF1, dem TAF1-2 (Metcalf und Wassarman, 2007). Die Existenz eines solchen Komplexes würde bedeuten, dass translational reprimierte mRNAs schon durch die Verwendung eines distinkten Transkriptionsinitiationskomplexes von den direkt translatierten mRNAs unterschieden werden.

Die Existenz eines solchen Testis-TFIID Komplexes wird von den existierenden Daten gestützt (Chen et al., 2005; Metcalf und Wassarman, 2007), aber es ist auch wichtig zu überdenken, dass manche der TAFs nicht nur Komponenten eines solchen TFIID Komplexes sind, sondern auch mit HAT- (Histon Acetyltransferasen) oder PcG- (Polycomb Gruppe) (Struhl et al., 1998; Saurin et al., 2001) Komplexen assoziiieren, was eine funktionelle Interpretation komplizierter macht (Übersichtsartikel: White-Cooper, 2009).
2 Einleitung

2.3.1.1 Gewebespezifische TAFs in anderen Geweben und Modellorganismen

Gewebespezifische TAFs sind nicht nur in der Spermatogenese von *Drosophila* bekannt, sondern in einer ganzen Reihe anderer Modellorganismen und anderen Geweben.

2 Einleitung

2.4 Chromatinreorganisation während der Spermiogenese von *Drosophila*

Protamine und SNBPs (sperm nuclear basic proteins) sind sehr schnell evolvierenden Proteine (Übersichtsartikel: Lewis et al., 2003), und man findet in verschiedenen Tierarten höchst unterschiedliche Arten von Protaminen und anderen SNBPs, die die Chromatin-Neuorganisation in Spermien bewirken. In Mäusen und Menschen findet man zwei Protamingene, *protamine 1* und *protamine 2*, während in den meisten anderen Säugern nur ein Protamingen zu finden ist (Cho et al., 2001). In Fischen und Vögeln finden sich nur Protamine, die die Histone direkt ersetzten, in Anneliden und Echinodermaten bleibt die auf Histonen basierende nukleosomale Konfiguration des Chromatins auch in den Spermien erhalten (Wouters-Tyrou et al., 1998).
Einleitung

Bei Säugern findet man in reifen Spermien immer noch einen relativ hohen Anteil an Histonen am Chromatin, der sehr variabel ist und je nach Spezies zwischen 5% und 20% liegt. In Menschen verbleiben etwa 10-20% der Histone am Chromatin; die Protamine bilden aber mit etwa 70% den größten Anteil an basischen Proteinen im Kern (Wouters-Tyrou et al., 1998). In *Drosophila* konnte bis jetzt noch nicht gezeigt werden, ob im Kern reifer Spermien noch Histone vorhanden sind. Mit Immunfluoreszenz konnten sie nicht nachgewiesen werden (Rathke et al., 2007), sie wurden allerdings in Proteomics-Analysen von reifen Spermien in *Drosophila* gefunden (Dorus et al., 2006).

Das Stadium in dem es zum Wechsel von Histonen- zu Protamin-basierender Chromatinorganisation kommt nennt sich in *Drosophila* das Kanu-Stadium (benannt

protamine 1 und *protamine 2* aus Mäusen sind haploinsuffizient, das heißt der Verlust einer Genkopie führt zu männlicher Sterilität (Braun, 2001; Cho et al., 2001; Kimmins und Sassone-Corsi, 2005; Sassone-Corsi, 2005). Und auch in Menschen korreliert die Reduktion in der Protaminmenge zu männlicher Unfruchtbarkeit (Aoki et al., 2005; Carrell et al., 2007; Iguchi et al., 2006; Oliva, 2006; Torregrosa et al., 2006). Säuger sind also nur bedingt dazu geeignet, die Rolle der Protamine näher zu untersuchen, deshalb wurde im Rahmen dieser Arbeit eine Nullmutante für beide Protamine in *Drosophila* erzeugt.

2.5 Verschiedene Hypothesen für die Notwendigkeit der Protamine

2 Einleitung

Zweitens wird spekuliert, dass die protamin-basiere nde Chromatinstruktur notwendig ist, um die Histone mit all ihren Modifikationen vom Chromatin zu entfernen. Während der Spermatogenese ist das Genom auf die Expression von Spermatogenesegenen programmiert. Diese Programmierung des Genoms muss aufgehoben werden, um dem Embryo die Möglichkeit zu geben die Entwicklung mit einem unmodifizieren paternalen Chromatin, ohne epigenetische Informationen, zu starten (Rathke et al., 2007; Übersichtsartikel: Oliva, 2006; Balhorn, 2007).

- 13 -
2 Einleitung

Abb. 3: Der Wechsel von Histonen zu Protaminen während der Spermiogenes in *Drosophila*.
Die Bilder zeigen eine Hoeschtfärbung, zur Visualisierung der DNA, an wildtyp Spermatiden Kernen
an Testis-Quetschpräparaten. Von links nach rechts kann man die Umformung der Kerne verfolgen,
von den runden Spermatidenkernen ganz links, bis zu den völlig elongierten individualisierten
Spermatidenkernen ganz rechts. Die beiden Stadien in der Mitte zeigen das frühe und späte Kanu-
Stadium in dem der Wechsel in der Chromatinorganisation von Histonen zu Protaminen stattfindet.
Dargestellt als schwarze Blockpfeile über den Spermatidenkernen ist die Expression von Histonen,
Tpl\(^{94D}\) und ProtA, ProtB und Mst77F während dieser Stadien. Die Histone sind in frühen Spermatiden
exprimiert, und werden mit dem Eintritt ins Kanu-Stadium abgebaut. Mit dem Abbau der Histone
startet die Expression von Tpl\(^{94D}\) und ProtA, ProtB und Mst77F. Die Expression von Tpl\(^{94D}\) endet im
Unterhalb der Bilder ist als schwarze Ellipse der Zeitraum markiert, nämlich frühes und spätes Kanu-
Stadium, in dem es während des Wechsels von Histonen zu Protaminen am Chromatin zu DNA
Brüchen kommt. (Die Hoechst Färbungen der Wildtyp Spermatidenkerne sind Rathke und Barckmann
et al. 2010 in Druck entnommen)

2.6 Nachweis von mRNA Lokalisation *in vivo*

In der Spermatogenese von *Drosophila* ist, wie in Abschnitt 3 bereits erwähnt, die
translationale Repression einer großen Menge von verschiedenen mRNA Molekülen
von essentieller Bedeutung. Da die Transkription mit Eintritt in die meiotischen
Teilungen beinahe vollständig stoppt, müssen alle Gene deren Proteine während der
Spermiogenese benötigt werden im Spermatozyten-Stadium transkribiert werden,
und dann zum Teil über mehrere Tage hinweg translational reprimiert werden (Abb.
2). Um eine Vorstellung für die Mengen an mRNAs zu erhalten, die in Spermatozyten
und in den sich differenzierenden Spermatiden stabilisiert und gespeichert werden
müssen, muss man sich vor Augen führen, dass etwa 8 % aller Gene testisspezifisch
transkribiert sind und nochmal etwa 5 % alle Gene im Testis erhöht exprimiert sind
(White-Cooper, 2009). Es wurden außerdem etwa 350 verschiedene Proteine im
Spermien-Proteom gefunden (Dorus et al., 2006), die ja nur die Gene repräsentieren,
die nicht nur transient während der Spermiogenese exprimiert werden. Wo und wie
Diese Mengen an mRNAs in der Zelle gespeichert werden, ist noch nicht bekannt.
Auch über die Mechanismen der translationalen Repression in Säugern ist noch nicht
viel bekannt (Kleene, 2003). In Mäusen konnte gezeigt werden, dass die mRNA von
Tnp1 mit den sogenannten „chromatoid bodies“ lokalisiert (Morales et al., 1991),
jedoch konnte die mRNA von Tnp2 oder Prm1 in den „chromatoid bodies“ nicht nachgewiesen werden (Morales und Hecht, 1994).

Um mehr über die translational reprimierten mRNAs zu erfahren, wurde in dieser Arbeit versucht ausgewählte mRNAs in vivo zu verfolgen. Dazu wurde das MS2/MS2cp-System und das λN/BoxB-System genutzt. Beide Systeme funktionieren nach dem gleichen Prinzip. Man benötigt zwei Komponenten, RNA-Haarnadelstrukturen (ab hier Stemloops genannt) und spezifisch an diese Stemloops bindende Proteine. Die RNA-Stemloops werden mit der zu untersuchenden RNA fusioniert. Die Bindeproteine werden mit einem Reporter fusioniert (z.B. mCherry), beide Elemente müssen dann in derselben Zelle exprimiert werden. Wenn die markierten Bindeproteine dann spezifisch an die in die mRNA integrierten Stemloops binden, machen sie so die mRNA in der lebenden Zelle sichtbar (Abb 4). Das MS2cp/MS2sl-System wird schon länger erfolgreich für die in vivo Verfolgung von mRNA genutzt z.B. für die Verfolgung der Ash1 mRNA während der Knospung bei Hefe (Bertrand et al., 1998). Es ist auch schon erfolgreich in Drosophila genutzt worden um z.B. die Lokalisation der nanos mRNA in der Oogenese zu klären (Forrest und Gavis, 2003).

Das λN/BoxB-System wurde erstmals von Daigle et al. zur in vivo Verfolgung von mRNA beschrieben (Daigle und Ellenberg, 2007). In Drosophila wurde es noch nicht zur Verfolgung von mRNAs genutzt, es wurde aber erfolgreich in Embryoextrakten aus Drosophila genutzt um die translationalrepressorische Wirkung von dSXL auf die msl2 mRNA zu untersuchen (Grskovic et al., 2003). Es wurde bis jetzt aber noch nicht in vivo in Drosophila Geweben genutzt.

Im Folgenden wird genauer auf die einzelnen Systeme eingegangen.
Abb 4: Prinzip der *in vivo* mRNA-Verfolgung mit Hilfe des MS2/MS2cp-Systems oder des λN/BoxB-Systems während der Spermatogenese von *Drosophila*. Gezeigt ist eine schematische Darstellung der Komponenten und des Prinzips der mRNA-Verfolgung mit Hilfe des MS2cp/MS2sl-Systems und des λN/BoxB-Systems. In der obersten Reihe sind die zu klonierenden Konstrukte der beiden nötigen Komponenten dargestellt. Links ist das Konstrukt des zu untersuchenden Gen (Gen of interest, Gen OI) dargestellt, unter Kontrolle des eigenen Promoters und der 5´UTR, fusioniert mit dem Reportergen eGFP und den Stemloops des jeweiligen Systems. Rechts ist das Konstrukt des jeweilige RNA-Bindeprotein dargestellt, unter Kontrolle eines Testis-Promoters und versehen mit einer NLS fusioniert mit dem Reportergen mCherry. Werden beide Konstrukte in derselben Zelle exprimiert, dann bindet das Bindeprotein an die Stemloops in der zu untersuchenden RNA (RNA of interest, RNA OI) und markiert die mRNA so indirekt mittels des mCherry. Wird die RNA OI translatiert kann man in derselben Zelle die Lokalisation des Proteins mittels des eGFP beobachten.
2 Einleitung

2.6.1 Das MS2/MS2cp-System

Der MS2-Bakteriophag ist ein RNA-Bakteriophag der *E.coli* befällt. Während der letzten Phase der Infektion von *E.coli* durch diesen Bakteriophagen wird die Translation der mRNA des *replicase* Gens durch die Bindung des MS2 coat proteins (MS2cp) an MS2-Stemloops in der mRNA blockiert. Das MS2cp und die MS2-Stemloops werden für *in vivo* Assays z.B. zur Verfolgung von mRNAs genutzt (Forrest und Gavis, 2003; Bertrand et al., 1998) (Abb. 5). Das MS2cp ist 129 AS groß (13,7 kDa) und bindet als Dimer. Wenn es in Konzentrationen höher als 1µM vorliegt, fängt es an zu Capsiden zu aggregieren. Es ist dann nicht mehr in der Lage an RNA zu binden. Um dies im experimentellen Hintergrund zu verhindern, wurde eine Mutante generiert, die zwar noch in der Lage ist Dimere zu bilden, aber keine Aggregate mehr bilden kann. In dieser Mutante, der *d1FG*-Mutante, ist die FG-Schleife deletiert (LeCuyer et al., 1995) (Abb. 5 B)

Die MS2-Stemloops bestehen aus 21 Nukleotiden und existieren in einer Wildtyp-Variante und einer high-affinity-Mutante, bei der ein Nukleotid (A→C) im Kopfbereich des Stemloops ausgetauscht ist (Übersichtsartikel: Keryer-Bibens et al., 2008), (Abb. 5 A), in den mRNA-Verfolgungs-Assays wird die high-affinity-Mutante eingesetzt. An die high-affinity Mutante der MS2-Stemloops bindet das MS2cp mit einer Affinität von $K_d = 1-3 \times 10^{-9}$ M.

Abb. 5: Komponenten des MS2/MS2cp-Systems. (A) Wildtyp und high affinity Mutante des MS2-Stemloops. (B) MS2cp Dimer. Mit roten Kreisen markiert sind die FG-Schleifen, die in der *d1FG*-Mutante deletiert sind. Abbildung übernommen aus ((2008))
2 Einleitung

2.6.2 Das λN-System

Der λN-Bakteriophage ist ein DNA Virus der Klasse „Lamdoid Phagen“. Das N-Protein ist ein Antiterminator und bindet in dieser Funktion an bestimmte Sequenzen in der RNA, die nut\textsubscript{L} und nut\textsubscript{R} Elemente. Diese Elemente enthalten eine konservierte Sequenz, das BoxB-Element, ein 15 bp großer Stemloop, an den das N-Protein spezifisch bindet (Abb. 6 A). Für die Bindung des N-Proteins an die BoxB-Elemente sind 22 Nukleotide nötig, das N-Peptid (Tan und Frankel, 1995), (Abb. 6 B). Diese 22 Nukleotide werden in in vivo Assays, z. B. zur mRNA Verfolgung, zusammen mit den BoxB-Stemloops genutzt. Das N-Peptid bindet als Monomer mit einer Affinität von $K_d = 1,3 \pm 0,4 \times 10^{-9}$ M an die BoxB-Stemloops (Übersichtsartikel: Keryer-Bibens et al., 2008).

3 Ergebnisse

3.1 Transkriptionale Regulation der Protamine und Mst77F

Die in früheren Arbeiten begonnene Analyse der regulatorischen Elemente von Mst77F (Diplomarbeit Barckmann, 2005) soll in dieser Arbeit vervollständigt werden. Es wurde die cis regulatorische Region identifiziert, die für die translationale Repression nötig ist. Außerdem wurde die Abhängigkeit der Transkription von Mst77F und Protamin B von einem der tTAF, can12, geprüft.

3.1.1 Der Promotor von Mst77F ist kurz, wie es für Promotoren in der Drosophila Spermatogenese typischen ist

Mit Promotor-LacZ-Konstrukten konnte in Vorarbeiten gezeigt werden, dass für Mst77F 89 bp vor dem vorhergesagten Transkriptionsstart, bzw. 261 bp vor dem ATG ausreichend sind, um eine hohe Menge an β-Galaktosidase in räumlich und zeitlich korrekter Weise zu exprimieren (Abb. 7 B b). Die Menge an β-Galaktosidase nimmt deutlich ab, wenn das Promotor-LacZ-Konstrukte mit der gleichen Promotorlänge aber ohne die 5´UTR nutzt (Abb. 7 B b+c). Die für die translationale Repression von Mst77F verantwortlichen Elemente konnten noch nicht bestimmt werden (Diplomarbeit Barckmann, 2005).

Der Promotor von Mst77F besitzt keine TATA-Box oder andere konservierten klassischen Promotorelemente und auch keine bekannten
3 Ergebnisse

3.1.2 Der Transkriptionsstart von *Mst77F*

Der Transkriptionsstart für *Mst77F* konnte noch nicht genau bestimmt werden, sowohl, die Versuche den Transkriptionsstart für *Mst77F* mittels Primer Extention Experimente zu bestimmen, führten noch nicht zum Erfolg. Der vorhergesagte Transkriptionsstart ist in der Schemazeichnung von Abb. 7 eingezeichnet. Wahrscheinlich liegt er aber etwas weiter unterhalb, zwischen den Reverse-Primern, die für die Erzeugung der Konstrukte *pc77F3Δ5´UTR* und *pc77F3Δ5´UTR-29bp* genutzt wurden, da Konstrukt *pc77F3Δ5´UTR* noch Transkription vermittelt (Abb. 7 B c) das Konstrukt *pc77F3Δ5´UTR-29bp* aber gar keine Expression mehr zeigt. Zwischen diesen beiden Konstrukten liegen 29 bp, innerhalb dieser Sequenz startet eine Testis-cDNA und liegt ein Initiator Sequenzmotiv. Es ist also wahrscheinlich, dass der Transkriptionsstart von *Mst77F* innerhalb dieser 29 bp liegt.

3.1.3 Translationale Repression der *Mst77F* mRNA ist abhängig von der 5´UTR

Die mRNA von *Mst77F* ist vom Spermatozyten-Stadium bis ins Kanu-Stadium translational reprimiert (Abb. 9). Um die für die translationale Repression nötigen Elemente zu identifizieren, wurden *Promotor-LacZ*-Konstrukte etabliert, die Deletionen der 5´UTR tragen (Abb. 7 A), (Diplomarbeit Barckmann, 2005). Es konnte gezeigt werden, dass die 5´UTR von *Mst77F* für die translationale Repression der mRNA nötig ist (anders als in meiner Diplomarbeit Barckmann, 2005 postuliert). In *Promotor-LacZ*-Konstrukten, denen 134 bp der 5´UTR fehlt, *pc77F2-Δ5´UTR* und *pc77F3-Δ5´UTR*, startet die Expression des Reporterproteins β-Glaktosidase bereits in Spermatozyten (Abb. 7 Pfeilkopf exemplarisch gezeigt für
3 Ergebnisse

Die translationale Repression von Mst77F liegt also wie bei protamin B (Barckmann et al., in Vorbereitung), dj (Blumer et al., 2002) und djl (Hempel et al., 2006) in der 5‘UTR der mRNA und nicht wie bei den Protaminen der Säuger in der 3‘UTR (Übersichtsarikel: Hecht, 1998; Steger, 1999).

Überraschenderweise zeigte die LacZ-Färbung an larvalen Testes β-Galaktosidaseaktivität in Spermatozyten für alle Mst77F Promotor-LacZ-Konstrukte außer pc77F3-Δ5’UTR-29bp, das aber auch in adulten Testes keine β-Galaktosidaseaktivität mehr zeigt. Larvale Testes beherbergen nur prämeiotische Stadien und keine Spermatiden-Stadien, bei translationaler Repression der mRNA würde man also keine Färbung erwarten. Die LacZ-Färbung an Promotor-LacZ-Konstrukten ohne 5’UTR zeigt aber auch eine wesentlich stärkere Expression im larvalen Testis (Abb. 7 B c und c’) als Promotor-LacZ-Konstrukte mit 5’UTR (Abb. 7 B a, b und a´, b´), wenn man sie mit dem genrenlen Expressionsniveau des jeweiligen Konstrukts vergleicht.

3 Ergebnisse

Abb. 7: Cis regulatorische Elemente für Mst77F. In (A) schematische Darstellung der genomischen Region und der Promotor-LacZ-Konstrukte für Mst77F. Dargestellt sind Exons als graue Blockpfeile, die 5’UTR als hellgrauer Bereich und Primer als schwarze Dreiecke. Der Transkriptionsstart ist als Pfeil markiert und das Startcodon mit ATG markiert. In hellblau ist der minimale Promoter eingezeichnet und in rosa der Bereich der translati onale Repression der mRNA vermittelt. Darunter sind die getesteten Promotor-LacZ-Konstrukte schematisch eingezeichnet. Als schwarze Linie sind die Konstrukte enthaltenen Bereiche und als dünner Linie dazwischen deletierte Bereiche gekennzeichnet, das Reporteren LacZ ist als blaues Rechteck dargestellt. In (B) sind β-Galaktosidase-Färbungen adulter und lavaler Testes der Promotor-LacZ-Konstrukte pc77F1 (a, a’), pc77F3 (b, b’) und pc77F3.5’UTR (c, c’) gezeigt. Die Pfeile in (a) und (b) markieren Spermatiden ohne β-Galaktosidase-Färbung und der Peilkopf in (c) markiert Spermatozyten mit β-Galaktosidase-Färbung. Die Doppelpfeilköpfe in (a) und (b) markieren elongierte Spermatiden mit starker β-Galaktosidase-Färbung. Die Pfeilköpfe in (a’) (b’) und (c’) markieren Spermatozyten mit β-Galaktosidase-Färbung.
3 Ergebnisse

3.1.3.1 Die mRNA des Y-Box Protein Yps ist während der Spermatogenese von *Drosophila* nachweisbar

Es ist wahrscheinlich, dass für die translationale Repression RNA-bindende-Proteine an die für die translationale Repression identifizierten Bereiche in der mRNA binden. Es gibt eine ganze Reihe von RNA-bindenden Proteinen, die während der Spermatogenese von *Drosophila* exprimiert sind (siehe Anhang Kap.6.2). Eines davon ist das RNA-Bindeprotein Ypsilon Schachtel (yps). Yps ist ein Y-Box-Protein, dass eine Untereinheit des RNA-Protein-Komplexes ist, der in der Oogenese von *Drosophila* eine wichtige Rolle in der Lokalisation und Translationsregulation der *oskar* mRNA spielt (Wilhelm et al., 2000). Yps wirkt wahrscheinlich antagonistisch zu Orb, einem positiven Regulator der *oskar* mRNA Translation. Das Modell schlägt vor, dass Yps und Orb kompetitiv an die *oskar* mRNA binden und mit antagonistischen Effekten die Lokalisation und Translation der *oskar* mRNA regulieren (Mansfield et al., 2002). Mit *in situ* Hybridisierungen konnte gezeigt werden, dass *yps* mRNA auch in der Spermatogenese von *Drosophila* exprimiert wird (Abb. 8). Y-Box-Proteine werden häufig genutzt, um mRNAs translational zu reprimieren, z.B. sind die Y-Box-Proteine FRGY2 in *Xenopus* (Kwon et al., 1993) und MSY2 uns MSY4 in Mäusen für die translationale Repression von mRNA in der Oogenese und der Spermatogenese nötig (Yang et al., 2006).

![Abb. 8: Die mRNA des RNA-bindenden Proteins Yps ist im Testis exprimiert. RNA in situ Hybridisierungen an Wildtyp Testes mit einer antisense (A) und sense (B) Sonde gegen *yps*. Yps mRNA ist in allen Stadien der Spermatogenese mit der antisense Sonde zu detektieren, wohingegen mit der sense Sonde keine Signal zu detektieren war.](image-url)
3 Ergebnisse

3.1.4 Die Transkription von *Mst77F* und den *Protaminen* ist von tTAFs abhängig

3 Ergebnisse

Abb. 9 Die mRNA von Mst77F und ProtB unterliegt einer translationalen Repression. Gezeigt sind in der ersten Spalte RNA in situ Hybridisierungen an Wildtyp Testes mit einer Sonde gegen Mst77F (A) und ProtB (B) und in der zweiten Spalte Frischpräparate von Testes die Mst77F-eGFP (A) oder ProtB-eGFP (B) exprimieren. Die mRNA von Mst77F und ProtB ist ab dem frühen Spermatozyten-Stadium zu detektieren und bleibt in allen späteren Stadien erhalten. Die eGFP-Fusionsproteine für Mst77F und ProtB werden erst im späten Spermatiden-Stadium translatiert. Der Pfeil in (A) und (B) markieren jeweils ein Bündel von 64 elongierten Spermatidenkernen in Zystverband, die Mst77F-eGFP bzw. ProtB-eGFP exprimieren. Die mRNA von Mst77F und ProtB unterliegt also vom frühen Spermatozyten-Stadium bis ins späte Spermatiden-Stadium einer translationalen Repression. Der Maßstabsbalken im oberen Bild der rechten Spalte markiert 100 µm und gilt für alle Abbildungen.

3.1.5 Chromatin Immunprezipitationen (ChIPs) identifiziert protamin B und Mst77F Gene als direkte Targets der tTAFs

Mit in situ Hybridisierungen an Testes von Wildtyp und can12 Mutanten konnte klar gezeigt werden, dass die Transkription der mRNA der Protamine und Mst77F von
3 Ergebnisse
den tTAFs abhängig ist (Abb. 10 A). In situ Hybridisierungen erlauben es aber nicht, zwischen direkter oder indirekter Kontrolle zu unterscheiden. Deshalb wurde Chromatin Immunoprezipitationen (ChIPs) mit anti-Sa Antikörpern (Sa ist einer der tTAFs) an Testesextrakten durchgeführt. Die Analysen wurden an Wildtyp und can^12 Testesextrakten als negativ Kontrolle durchgeführt, da in allen tTAF Mutanten der gesamte tTAF-Komplex nicht mehr gebildet wird, und die Transkripte der untersuchten Gene drastisch reduziert sind. Das präzipitierte Chromatin wurde mit quantitativer real-time PCR auf die Anreicherung des Mst77F Promotors und der Protamin Promotoren getestet. Außerdem wurde auf die Anreicherung von Sa an einer Positivkontrolle, Mst87F einem bekannten Target der tTAFs, und einer Negativkontrolle, Cyclin A (CycA) das nicht durch die tTAFs transkribiert wird, getestet (Hiller et al., 2004; Chen et al., 2005).
Mst35Bb und Mst77F sind in Anti-Sa ChIPs an Wildtyp DNA angereichert im Vergleich zu ChIPs an can^12 DNA, CycA ist nicht angereichert. Die Anreicherung von Mst35Bb (2,5fach) ist deutlich, auch wenn sie ein wenig geringer ist als die Anreicherung der Positivkontrolle Mst87F (3,5fach). Mst77F ist jedoch weniger stark angereichert (1,8fach). Die Negativkontrolle CycA zeigt keinerlei Anreicherung und zeigt damit, dass das Experiment verlässlich funktioniert hat (Abb. 10 B). Es konnte also gezeigt werden, dass die Protamingene und Mst77F direkt von den tTAFs reguliert werden.
Ergebnisse

Abb. 10: Protamin B und Mst77F sind direkte Targets der tTAFs. In A sind in situ Hybridisierungen von protamin B- und Mst77F-Sonden an adulten Wildtyp Testes (a+c) und der tTAF Mutante can^{12} (b+d) gezeigt. Protamin B mRNA ist im Wildtyp (a) ab den frühen Spermatozyten bis zu späten, voll elongierten Spermatiden detektierbar, in can^{12} Mutanten (b) ist kein Transkript detektierbar. Mst77F mRNA ist im Wildtyp von frühen Spermatozyten-Stadium bis ins späte Spermatiden-Stadium detektierbar, in can^{12} mutanten Testes ist anders als für protamin B ein Rest Transkript nachweisbar (d Pfeilkopf). Der Hub ist jeweils mit einem Stern markiert. In (B) sind Anti-Sa Chromatin Immunprezipitationen (ChIPs) an Chromatinextrakten aus Wildtyp Testes (blaue Balken) und can^{12} Testes (rote Balken) gezeigt. Die X-Achse zeigt die Anreicherung von Wildtyp DNA im Vergleich zur Anreicherung in can^{12} Mutanten, die auf 1 normalisiert wurde. Analysiert wurde die Anreicherung von Sa an den Promotoren von Mst87F (pos. Kontrolle), Cyclin A (neg. Kontrolle) und protamin B und Mst77F. Mst87F zeigt eine 3,5fache Anreicherung im Wildtyp im Gegensatz zur can^{12} Mutante, cycA zeigt keine Anreicherung, protamin B zeigt eine 2,5fache Anreicherung und Mst77F zeigt eine 1,8fache Anreicherung. Die ChIPs wurden in dreifacher Wiederholung ausgeführt.
3 Ergebnisse

3.2 Erzeugung einer Protamin Null-Mutante in Drosophila

3 Ergebnisse

3.2.1 Analyse der genomischen Region der Protamin Deletion

Ergebnisse

<table>
<thead>
<tr>
<th>ORF</th>
<th>in situ</th>
<th>Verteilung des Transkripts</th>
<th>Vorhergesagte Protein Eigenschaften</th>
<th>erw. subzell. Lokalisation</th>
</tr>
</thead>
<tbody>
<tr>
<td>CG33309</td>
<td>früh Sperratozyten, später Sperratozyten frühe Spermatiden</td>
<td>PA 572as molekülare Funktion unbekannt biologischer Prozess unbekannt (FlyBase)</td>
<td>26.1% Cytoplasma 21.7% Nukleus 13.0% ER (PSORTII Nakai et al., 1990)</td>
<td></td>
</tr>
<tr>
<td>CG15279</td>
<td>keine</td>
<td>PA 639as, PB 639as, PD 633as Natrium Symporter Aktivität Liganden-Signaling (Ashburner et al., 1999; FlyBase)</td>
<td>82.6% Plas. memb. 17.4% ER for PA, PB, and PD (PSORTII)</td>
<td></td>
</tr>
<tr>
<td>CG4480</td>
<td>frühe Sperratozyten, später Sperratozyten frühe Spermatiden</td>
<td>PA 219as molekülare Funktion unbekannt biologischer Prozess unbekannt (FlyBase) 5 transmembran Domänen (Ensembl)</td>
<td>44.4% ER 11.1% Vakuole (PSORTII)</td>
<td></td>
</tr>
<tr>
<td>CG15278</td>
<td>frühe Sperratozyten, später Sperratozyten frühe elongierende Spermatiden</td>
<td>PA 157as molekülare Funktion unbekannt biologischer Prozess unbekannt (FlyBase) 3 transmembran Domänen (Ensembl)</td>
<td>44.4% ER 11.1% Vakuole (PSORTII)</td>
<td></td>
</tr>
<tr>
<td>Mst35Ba, Mst35Bb</td>
<td>frühe Sperratozyten, später Sperratozyten frühe Spermatiden</td>
<td>PA 144as / PA 146as DNA-bindendes Protein (Jayaramaiah Raja and Renkawitz-Pohl, 2005)</td>
<td>82.6% Nukleus (PSORTII) Nukleus (Jayaramaiah Raja and Renkawitz-Pohl, 2005)</td>
<td></td>
</tr>
</tbody>
</table>

3.2.2 Trotz der Protamin-Deletion *protΔ* sind *Drosophila*-Männchen fertil

3 Ergebnisse

Deletioen können über den Verlust der Augenfarbe erkannt werden. Die Erzeugung der Protamin-Deletion konnte nicht über den Verlust der roten Augenfarbe verfolgt werden, deshalb wurden die 144 potentiell deletiontragenden Fliegenstämme mit der two-sided PCR Methode (Parks et al., 2004) überprüft und 13 Deletionen positiv getestet (Daten nicht gezeigt).

Diese 13 Deletionen wurden prot\textDelta{1-13} genannt. Eine Linie, prot\textDelta{38.1}, stammt aus einem früheren Versuch, bei dem die potentiellen Deletionen über Fertilität gescreent wurden (zur Verfügung gestellt von Sunil Raja Jayaramaiah). Genetische Tests zeigten das 12 dieser Linien männlich und weiblich fertil sind. Eine Linie prot\textDelta{35} ist embyonal letal und eine Linie prot\textDelta{38.1} ist männlich deutlich vermindert steril. Um sicher zu gehen, dass die Flip-Rekombination präzise funktioniert hat und um die two-sided PCR Ergebnisse zu verifizieren wurden die prot\textDelta-Linien zusätzlich per Southern Blot Analyse getestet. In den Test wurden zusätzlich zwei Defizienzen in trans zur Linie prot\textDelta{38.1} eingeschlossen, und zwar \textit{Df(2L)TE35D-5 / prot\textDelta{38.1}} und \textit{Df(2L)TE35B-9 / prot\textDelta{38.1}} (Sawamura et al., 2004). Aus dem Southern Blot wird klar, dass die Protamingene im Wildtyp vorhanden sind, aber in allen prot\textDelta-Deletionslinien fehlen. Das Gleiche gilt auch für die Gene \textit{CG15279}, \textit{CG4480} und \textit{CG15278}. Das zeigt, dass keines der fünf deletierten Gene für Lebensfähigkeit oder Fertilität in \textit{Drosophila} benötigt wird. Prot\textDelta mutante Männchen sind fertil, zeigen aber in wiederholten Fertilitätstest von jeweils 50 ausgezählten Kreuzungen, eine sehr variable Nachkommenzahl von 50% bis 100% der Wildtyp Nachkommenzahlen. Mit zwei, die genomische Region der Protamingene überspannenden Defizienzen (Sawamura et al., 2004), konnte gezeigt werden, dass die Sterilität der Linie prot\textDelta{38.1} auf eine zweite Läsion außerhalb der Protamin-Region zurückzuführen ist. Denn prot\textDelta{38.1} ist steril in trans zur Defizienz \textit{Df(2L)TE35D-5}, aber nicht in trans zur Defizienz \textit{Df(2L)TE35B-9} (in Zusammenarbeit mit Sunil Raja Jayaramaiah). Daraus lässt sich schließen, dass die Protamingene \textit{Mst35Bb} und \textit{Mst35Ba} in \textit{Drosophila}, im Gegensatz zu \textit{protamine 1} und \textit{protamine 2} aus Mäusen und Menschen, nicht für die männliche Fertilität essentiell sind.
3 Ergebnisse

3 Ergebnisse

3.2.3 Die meisten Spermatidenkerne homozygoter prot-∆-Männchen sind korrekt geformt und schlank

Diese Beobachtungen zeigen, dass die prot-∆ Männchen fertil sind, aber die Chromatinorganisation scheint in einem bestimmten Anteil der Spermatiden fehlerhaft zu sein. In den seminalen Vesikeln, den Speicherorganen der Männchen für reife Spermien, sind die Spermien abundant und beweglich und es sind nur die wildtypisch aussehenden Spermien zu beobachten (Abb. 13 G+H).
Abb. 13: Phänotypische Analyse der prot∆ Mutante. (A) zeigt ein Frischpräparat eines prot∆/prot∆; Mst77F-eGFP/+ Testis. Der Pfeil markiert ein Bündel Spermatidenkerne, die Mst77F-eGFP exprimieren. (B) zeigt ein Frischpräparat eines prot∆/+; Mst77F-eGFP/+ Testis. Der Pfeil markiert ein Bündel elongierter Spermatidenkerne, das Mst77F-eGFP exprimiert. In (C+D) sind Testesquetschpräparate in höherer Auflösung gezeigt. Sie sind mit Hoechst gefärbt, um das Chromatin im Wildtyp (C) und in der prot∆ Mutante (D) zu visualisieren. Von rechts nach links sind
3 Ergebnisse

Spermatidenkerne während der Kernformung von runden bis zu nadelförmigen Kernen gezeigt. (E) zeigt ein Testisquetschpräparat der protΔ Mutante mit Spermatidenkerne mit verkrumpelter Form. (F) zeigt Quetschpräparate von Tripelmutanten (homozygote protΔ mit dem mutanten Mst77F-Allel nc3 über einer entsprechenden Defizienz) gefärbt mit Hoechst. In (G+H) sind unfixierte seminale Vesikel von eGFP/+ und Mst77F-eGFP/+ Fliegen gezeigt. Der Maßstabsbalken markiert 5 µm in (C-E), 20 µm in (F-H) und 100 µm in (A, B). Bild F aus dieser Abbildung wurde freundlicherweise von Sunil Jayaramaiah Raja, zu Verfügung gestellt.

3.2.4 Alle untersuchten Spermatogenese-Charakteristika sind von der Protaminsynthese unabhängig

3 Ergebnisse

Stadium bestehen (Abb. 15 C). In reifen Spermien ist Tpl^{84D}-eGFP nicht zu finden. Das entspricht dem Expressionsmuster im Wildtyp und zeigt, dass auch die Expression von Tpl^{84D}-eGFP von den Protaminen unabhängig ist. Des Weiteren wurde die Expression von Mst99C–eGFP in der prot^Δ Mutante untersucht. Mst99C-eGFP wird im späten Spermatiden–Stadium exprimiert und bleibt bis in die individualisierten Spermien mit dem Chromatin assoziiert (Abb. 14). Damit unterscheidet sich das Expressionsmuster nicht von dem im Wildtyp (Dissertation Rathke, 2007). Um das Entstehen und die Reparatur der im Kanu-Stadium typischerweise auftretenden DNA-Brüche zu testen wurden TUNEL-Färbungen an prot^Δ/prot^Δ; Mst77F-eGFP/Mst77F-eGFP Testes durchgeführt. Die DNA-Brüche traten im frühen Kanu-Stadium auf, verstärkten sich bis ins späte Kanu-Stadium und waren in individualisierten Kernen vollständig verschwunden (Abb. 15 E). Es konnte kein Unterschied zwischen den normal geformten (Daten nicht gezeigt) und den verkrumpelten Kernen gefunden werden, in beiden Fällen entstanden und verschwanden die Brüche wie im Wildtyp, die verkrumpeltem Spermatidenkerne der prot^Δ Mutante besitzen also intaktes Chromatin. Es konnte gezeigt werden, dass auch die Reparatur der Doppelstrangbrüche von der Expression der Protamine unabhängig ist.

Abb. 14: Die Expression von Mst99C-eGFP ist unabhängig von der Synthese der Protamine. (A) zeigt eine Hoechstfärbung, zur Visualisierung der DNA, an prot^Δ/prot^Δ; Mst99C-eGFP/Mst99C-eGFP Testesquetschpräparaten. Von links nach rechts sind Entwicklungsstufen von frühen elongierenden Spermatiden bis zu individualisierten Spermien zu sehen. In (B) sind die
3 Ergebnisse

korrespondierenden eGFP-Signale gezeigt. Mst99C-eGFP wird im späten Kanu-Stadium exprimiert und verbleibt bis in die reifen Spermien am Chromatin.

Abb. 15: Tpl⁹⁴D-eGFP Expression und Abbau, Mst77F-eGFP Expression und das Einführen von DNA-Brüche und deren Reparatur sind von der Synthese von Protamin A und B unabhängig. (A-C) Anti-Core-Histon Antikörperfärbung an Tpl⁹⁴D-eGFP exprimierenden Fliegen. (A) Hoechst

- 37 -
3 Ergebnisse

Färbung zur Visualisierung der DNA. (B) Core Histone sind bis ins frühe Kanu-Stadium detektierbar (Pfeilkopf), aber nicht mehr in späteren Stadien. (C) Tpl^{94D}-eGFP ist ab dem frühen Kanu-Stadium (Pfeilkopf) detektierbar und bis ins späte Kanu-Stadium exprimiert (Pfeil). (D-F) TUNEL Färbung an protΔ/protΔ; Mst77F-eGFP Fliegen. (D) zeigt die Hoechst Färbung. Die in (E) gezeigte TUNEL Färbung zeigt viele DNA Brüche im frühen Kanu-Stadium (Pfeilkopf), die sich bis ins späte Kanu-Stadium (Pfeil) noch verstärken. Mst77F-eGFP ist ab dem späten Kanu-Stadium exprimiert (Pfeil) und bleibt in den späten Spermatiden bestehen. Hier verkrumpelte Spermatiden der protΔ/protΔ Form gezeigt. Maßstabsbalken in 5 µm.

3.2.5 Protamin-eGFP, aber nicht Mst77F-eGFP oder Mst99C-eGFP, rettet die missförmigen Spermatidenkerne von protΔ Männchen

Wie im Abschnitt 3.2.3 erwähnt zeigen etwa 20 % der späten Spermatidenkerne in homozygoten protΔ Testes einen verkrumpelten oder verbogenen Phänotyp. Um zu testen, ob die HMG-Box-Proteine Protamin A, Protamin B, Mst77F und Mst99C (siehe Einleitung Kap 2.4) sich gegenseitig ersetzen können wurden Rettungsexperimente durchgeführt. Das Einbringen einer Kopie von ProtA-eGFP oder ProtB-eGFP in die protΔ Mutante ergab schon eine deutliche Reduktion der Anzahl missförmigen Spermatidenkerne (Daten nicht gezeigt), wohingegen das Einbringen von zwei Kopien ein komplette Rettung des Spermatidenkern-Phänotyps zeigte (Abb. 16 A+B, gezeigt für ProtB-eGFP). Es wurden jeweils eine (Daten nicht gezeigt) oder zwei Kopien von Mst77F-eGFP oder Mst99C-eGFP in homozygote protΔ Fliegen eingekreuzt. Aber weder Mst77F-eGFP noch Mst99C-eGFP zeigten sowohl heterozygot als auch homozygot eine Rettung des Phänotyps in späten Spermatidenkernen (Abb. 16 C+D) Dieses Ergebnis deutet darauf hin, dass die Protamine, Mst77F und Mst99C unterschiedliche Funktionen im Spermienchromatin haben.
3 Ergebnisse

Abb. 16: ProtB-eGFP rettet die missgeformten Spermatidenkerne der prot\(\Delta\) Mutanten, Mst77F-eGFP und Mst99C-eGFP aber nicht. Testesquetschpräparate mit Hoechst gefärbt. (A) Ein Bündel elongierter Spermatidenkerne, die missgeformt sind. (B) Ein Bündel prot\(\Delta\)/prot\(\Delta\); ProtB-eGFP/ProtB-eGFP widtypisch aussehender Spermatidenkerne. In prot\(\Delta\)/prot\(\Delta\) Testes, die ProtB-eGFP homozygot exprimieren sind keine missgeformten Spermatidenkerne zu finden. (C) Ein Bündel prot\(\Delta\)/prot\(\Delta\); Mst77F-eGFP/Mst77F-eGFP-Spermatidenkerne, die keine Reduktion des Verformungs-Phänotyps der prot\(\Delta\) Mutante zeigen. (D) Ein Bündel prot\(\Delta\)/prot\(\Delta\); Mst99C-eGFP/Mst99C-eGFP-Spermatidenkerne die auch keine Reduktion des Verformungs-Phänotyps der prot\(\Delta\)-Mutante zeigen. Der Maßstabsbalken in (A) markiert 20 µm und gilt für (A-D).

3.2.6 Protamin A- und Protamin B-defiziente Spermien sind sensitiver gegenüber Röntgenstrahlung als Wildtyp-Spermien

Es sollte der Frage nachgegangen werden, ob Protamine eine Funktion im Schutz des paternalen Genoms im Spermium übernehmen könnten, wie es für Säuger postuliert wurde (Übersichtsartikel: Braun, 2001; Oliva, 2006). Die Fertilität der prot\(\Delta\)-Mutante war sehr überraschend im Vergleich zur haploinsuffizienten Situation in Säugern. Es wurde spekuliert, dass prot\(\Delta\)-mutante Spermien sensitiver gegenüber mutagenen Einflüssen sein könnten als Spermien des Wildtyps. Die Fertilität der prot\(\Delta\)-Mutante ergab die Möglichkeit dies hinsichtlich der Sensitivität gegenüber Röntgenstrahlung direkt zu testen. Da beide FRT-Insertions-Linien fertil sind, und die drei zusätzlichen Gene der prot\(\Delta\)-Deletion mutmaßlich keine chromatingebundenen Proteine kodieren, kann die prot\(\Delta\)-Deletion genutzt werden, um Sensitivität gegenüber Mutagenen zu testen. Es wurde ein Muller5-Test (Muller und Altenburg, 1919) in Kooperation mit Silja Burkhard (Bachelorarbeit Burkhard, 2008) durchgeführt, um die Rate rezessiver lethaler Mutationen auf dem X-Chromosom nach
3 Ergebnisse

einer Röntgenbestrahlung zu ermitteln (Tab. 1) (Bachelorarbeit Burkhard, 2008). Für das Verständnis des Experiments ist es von Bedeutung zu wissen, dass in späten Stadien der Spermatogenese keine oder nur sehr wenig DNA-Reparatur stattfindet (Vogel und Natarajan, 1995). Die Reparatur der DNA findet nach der Fertilisation im Weibchen statt, und hängt von maternal bereitgestellten Reparaturproteinen und damit von der Fitness der Weibchen ab (Agrawal und Wang, 2008). Es wurden Wildtyp und prot∆ Männchen mit Röntgenstrahlung (45 Gray) behandelt und für acht Stunden mit Muller5 Weibchen verpaart. Die Kreuzungsdauer wurde limitiert, um sicher zu gehen, dass zur Befruchtung nur Spermien kamen, die im Protamin-Stadium bzw. dem entsprechendem Stadium in der prot∆-Mutante bestrahlt wurden. Das bestrahlte X-Chromosom konnte durch die runde, wildtypische Augenform verfolgt werden, das Muller5 X-Chromosom durch die Marker Bar (B¹) und whiteapricot (wa,) die zu schmalen gelben Augen führen. Die Männchen in der F2-Generation wurden ausgewertet, sie konnten entweder ein bestrahltes X-Chromosom über dem Y-Chromosom tragen, oder ein Muller5 X-Chromosom. Wenn keine Männchen mit runden Augen in der Einzelpaarkreuzung vorhanden waren, dann trug das korrespondierende bestrahlte X-Chromosom eine rezessive letale Mutation (Kreuzungsschema in Material und Methoden Kap. 5.2.3). Es wurden zwei unabhängige Tests durchgeführt und es wurden im Wildtyp eine Mutationsrate von 12,55% ermittelt und für die prot∆-Mutante ein signifikanter (p-Wert = 0,0125) Anstieg dieser Mutationsrate auf 15,18% (Tab. 1). Das entspricht einem Anstieg von 20,9% wenn die Wildtyprate als 100% betrachtet wird. Der Verlust von protamin A und protamin B führt also zu einem signifikanten Anstieg der Sensitivität der Spermien gegenüber Röntgenstahlen.
3 Ergebnisse

Tab. 1: Sensitivität der protΔ Mutante gegenüber Röntgenstrahlen im Vergleich zum Wildtyp. Der Muller5 Mutagenesetest (Muller und Altenburg, 1919) ermöglicht es reressive letale Mutationen durch Röntgenstrahlen auf dem X-Chromosom der Männchen zu erfassen. Der Test wurde in zwei unabhängigen Experimenten durchgeführt (Experiment 1 und Experiment 2). Das Balkendiagramm zeigt die letale Mutationsrate des X-Chromosoms im Wildtyp und in der protΔ Mutante, für beide Experimente einzeln und zusammengefasst, die Standartabweichung ist eingezeichnet. Die Stichprobenmenge ist für jedes Experiment jeweils am unteren Ende der Balken verzeichnet. Der p-Wert für die zusammengefassten Daten wurde mit einem χ^2-Test ermittelt.

3.3 Etablierung zweier Systeme zur in vivo Lokalisation translational reprimierter mRNAs in der Spermatogenese von Drosophila

Wie in der Einleitung (Kap. 2.3 und 2.6) erwähnt, spielen sowohl in der Entwicklung der Spermien in Drosophila, als auch bei der Entwicklung der Spermien in Menschen und Mäusen translational reprimierte mRNAs eine entscheidende Rolle. Da in
3 Ergebnisse

Um heraus zu finden wo in der Zelle diese mRNAs gespeichert werden, wurde in dieser Arbeit erstmals in der Spermatogenese von *Drosophila* das MS2cp/MS2sl- und das λN/BoxB-System (siehe Einleitung Kap. 2.6) etabliert um translational reprimierte mRNA zu lokalisieren. In beiden Fällen nutzt man jeweils eine Kombination aus RNA-Stemloops und für diese Stemloops spezifische Bindeproteine. Die Stemloops werden in die zu untersuchende mRNA integriert, und die Bindeproteine mit einem Reporterprotein, in diesem Fall mCherry (Shaner et al., 2004), fusioniert. Werden beide Komponenten in einer Zelle exprimiert, kann man durch die Bindung des markierten Bindeproteins an die Stemloops die mRNA *in vivo* verfolgen. In die Untersuchungen eingeschlossen wurden dabei die mRNAs von ProtA, Mst77F und Tpl94D.

Es wurden beide Systeme etabliert, da noch keines der Systeme für die Spermatogenese in *Drosophila* getestet war und somit die Möglichkeit eines Erfolgs erhöht wurde. Außerdem haben beide Systeme Vor- und Nachteile. So ist der Vorteil des λN/BoxB-Systems, die geringe Größe des λN-Peptids, dass damit weniger störend bei der Bindung an die mRNA sein sollte. Andererseits ist das MS2cp/MS2sl-System schon wesentlich häufiger genutzt und auch für die *in vivo* Verfolgung von mRNA in *Drosophila* etabliert.
3 Ergebnisse

3.3.1 Die Komponenten des MS2cp/MS2sl-Systems in der Fliege

3.3.1.1 MS2cp-mCherry unter der Kontrolle des β2tubulin-Promotors zeigt eine zeitlich korrekte Expression in Testis

Um das MS2cp/MS2sl-System zur mRNA Lokalisation während der Spermatogenese von Drosophila zu nutzen, wurde das MS2cp (MS2coat protein, bindet spez. an MS2-Stemloops (MS2sl)) unter die Kontrolle verschiedener testisspezifischer Promotoren gebracht. Es wurde der β2Tubulin-Promotor (β2pro) genutzt, der in allen Keimzell-Stadien der Spermatogenese Expression vermittelt, außer in den Keimzellstammzellen und den Spermatogonien (Michiels et al., 1989). Zusätzlich wurde der Promotor von CG3473 genutzt. CG3473 kodiert für eine im Testis exprimierte E2-Ubiquitin-Ligase. Der CG3473-Promotor vermittelt ab den frühen Spermatozyten bis in späte Spermatiden-Stadien Expression, aber mit einer geringeren Expressionshöhe als der β2tubulin-Promotor. Als Reportergen, zur Visualisierung des MS2cp, wurde mCherry verwendet (Shaner et al., 2004). Um das Fusionsprotein MS2cp-mCherry im Kern zu lokalisieren, wenn es keine Ziel-mRNA zum binden hat wurde eine SV40-NLS (NLS nuclear localization sequence) an das N-terminale Ende des Fusionsproteins kloniert. Auf diese Weise soll das ungebundene MS2cp-mCherry in der Zelle im Kern gehalten werden, um so den Hintergrund im Zytoplasma zu verringern, und nur aus dem Kern gezogen werden, wenn es an eine Ziel-mRNA bindet (Forrest und Gavis, 2003). Die SV40-NLS ist eine klassische wurde schon in der Spermatogenese von Drosophila eingesetzt (Vazquez et al., 2001).

Es wurden im Rahmen dieser Arbeit transgene Fliegenlinien für das Konstrukt β2pro-SV40-NLS-MS2cp-mCherry etabliert und dessen Expression von MS2cp-mCherry überprüft. Das Fusionskonstrukt unter Kontrolle des CG3473-Promotors konnte zwar noch fertig kloniert und in Fliegen injiziert werden, im Rahmen dieser Arbeit aber nicht mehr analysiert werden.

Für MS2cp-mCherry unter Kontrolle des β2t-Promotors konnte eine zeitlich korrekte Expression festgestellt werde. Das Fusionsprotein wurde ab den frühen Spermatozyten in allen Stadien der Spermatogenese exprimiert, das entspricht dem erwarteten Expressionsmuster eines vom β2t-Promotor gesteuerten Gens. Allerdings
3 Ergebnisse

war das Protein, trotz der SV40-NLS, in keinem der verschiedenen Entwicklungsstadien im Kern lokalisiert (Abb. 17 A+B).

Abb. 17: Die Expression von MS2cp-mCherry unter Kontrolle des β2tubulin-Promotors im Testis von Drosophila. Testes Frischpräparate von Fliegen, die das MS2cp-mCherry-Konstrukt unter Kontrolle des β2tubulin-Promotors tragen. In (A) ist das mCherry-Signal zu sehen und in (B) das mCherry-Signal unterlegt mit der Durchlichtaufnahme. Der Stern markiert den Hub. Die MS2cp-mCherry-Expression startet in frühen Spermatozyten (roter Pfeilkopf) und ist in allen späteren Stadien zu detektieren, in frühen Spermatiden (weißer Pfeilkopf) bis in vollständig elongierte Spermatiden (doppelter Pfeilkopf). Es ist auch in den Waste bags zu detektieren, die bei der Individualisierung das überschüssige Zytoplasma aufnehmen (Pfeil).

3.3.1.2 Die Expression eGFP-Fusionsproteine mittels MS2-Stemloop-markierter mRNA entspricht der der eGFP-Fusionsproteine ohne MS2-Stemloops

Die MS2-Stemloops (MS2sl) wurden in Kassetten mit je sechs Stemloops kloniert. Je eine dieser Kassetten wurden jeweils 3´ an die ProtA-eGFP, tpl⁶⁴⁰-eGFP und Mst77F-eGFP Fusionskonstrukte kloniert, so dass sie in der mRNA, aber nicht im Protein enthalten sind. Das Polyadenylierungssignal wird vom Transformationsvektor pChabΔsal geliefert. Es wurden transgene Fliegenlinien etabliert. Die Expression der eGFP-Fusionsproteine mittels der MS2-Stemloop-Konstrukte, die dadurch in ihrer mRNA die MS2-Stemloops tragen, wurde analysiert. Die Expression unterscheidet sich nicht von der der eGFP-Fusionsproteine mittels eGFP-Konstrukte ohne MS2-Stemloops. Die Expression von Tpl⁶⁴⁰-eGFP des MS2sl-Konstruktts startet im frühen Kanu-Stadium und bleibt bis ins späte Kanu-Stadium bestehen (Abb. 20 C), genau
3 Ergebnisse

wie mit dem T_{pl}^{94D}-eGFP-Konstrukt zu beobachten (Dissertation Rathke, 2007). Die Expression von ProtA-eGFP und Mst77F-eGFP der MS2sl-Konstrukte startet im späten Kanu-Stadium und bleibt bis in die reifen Spermien am Chromatin (Abb. 18 A+B), auch wie für die Fusionproteine der ProtA-eGFP- und Mst77F-eGFP-Konstrukt ohne MS2-Stemloops zu beobachten (Jayaramaiah Raja und Renkawitz-Pohl, 2005). Die mRNA der Stemloop-Konstrukte wird also trotz der integrierten MS2-Stemloops völlig normal prozessiert und bleibt stabil, die MS2-Stemloops stören auch die translationale Repression der mRNA nicht.
3 Ergebnisse

Abb. 18: Lokalisation der eGFP-Fusionsproteine der MS2sl-markierten mRNAs für ProtA, Mst77F und Tpl⁸⁴D. Gezeigt sind Testesquetschpräparate mit Hoechstfärbungen zur Visualisierung der DNA, an Fliegen, die transgen für ProtA-, Mst77F-, oder Tpl⁸⁴D-6xMS2-Stemloop-Konstrukt sind. Für jedes Konstrukt ist jeweils in der oberen Reihe die Hoechstfärbung gezeigt und darunter das korrespondierende eGFP-Signal. Von rechts nach links sind die Stadien der Kernformung von runden Spermatiden bis zu individualisierten Spermatiden zu sehen. In (A) ist die Expression von ProtA-eGFP mittels des ProtA-eGFP-6xMS2sl Konstrukts zu sehen. Die Expression startet im späten Kanu-Stadium, und bleibt bis in individualisierte Spermen bestehen. In (B) ist die Expression von Mst77F-eGFP mittels des Mst77F-eGFP-6xMS2sl-Konstruks gezeigt. Die Expression startet im späten Kanu-Stadium und bleibt bis in individualisierte Spermen bestehen. (C) zeigt die Expression von Tpl⁸⁴D-eGFP mittels des Tpl⁸⁴D-eGFP-6xMS2sl-Konstrukts. Tpl⁸⁴D-eGFP wird im frühen Kanu-Stadium schwach exprimiert und verstärkt sich in seiner Expression bis ins späte Kanu-Stadium. In späteren Stadien ist keine Expression mehr zu detektieren. Die Maßstabsbalken, jeweils im letzten Bild einer Reihe, markieren 10 µm.

3.3.2 Die Komponenten des λN/BoxB-Systems in der Fliege

3.3.2.1 Das λN-Peptid-mCherry unter Kontrolle des β2t-Promoters zeigt eine zeitlich korrekte Expression im Testis

Mit der Klonierung des λN-Peptids (das Peptid, das die BoxB-Elemente bindet) wurde genauso verfahren wie für die Konstrukte des MS2cp (Kap. 3.3.1.1). Es wurden Fusionskonstrukte mit mCherry unter Kontrolle des β2tubulin-Promotors (β2tpro) und CG3473-Promotors kloniert. Die Konstrukte wurden mit einer N-Terminalen SV40-NLS versehen.

Im Rahmen dieser Arbeit wurden transgene Fliegenlinien für das Konstrukt β2tpro-SV40-NLS-λN-Cherry etabliert und dessen Expression von λN-mCherry überprüft. Das Fusionskonstrukt unter der Kontrolle des CG3473-Promotors konnte zwar noch fertig kloniert und in Fliegen injiziert werden, im Rahmen dieser Arbeit aber nicht mehr analysiert werden.

3 Ergebnisse

Abb. 19: Expression des Fusionsproteins NLS_{SV40}λN-mCherry unter Kontrolle des β2t-Promotors. Frischpräparate von Testes die das β2tpro-λN-mCherry Konstrukt tragen. (A) zeigt frühe Spermatozyten direkt nach den Mitosen, sie exprimieren λN-mCherry im Kern (Pfeil) und dort angereichert im Nukleolus (Pfeilkopf), und in geringeren Mengen im Zytoplasma. Der Hub ist mit einem Stern markiert. Für späte Spermatozyten kann man in (B) die gleiche Verteilung sehen. In runden Spermatiden (C) ist λN-mCherry nur noch im Zytoplasma zu beobachten (Doppelpfeil). Der Kern ist frei von λN-mCherry (Pfeil) und auch in elongierten Spermatiden (D) ist λN-mCherry nur noch im Zytoplasma zu finden (Doppelpfeil).

3.3.2.2 Die Expression eGFP-Fusionsproteinen mittels BoxB-markierter mRNA entspricht der der normalen eGFP-Fusionsproteinen

Mit den BoxB-Elementen (RNA-Stemloops, die von λN-Peptid gebunden werden) wurde verfahren wie mit den MS2-Stemloop-Kassetten (Kap. 3.3.1.2). Es wurden Kassetten mit 8facher und 12facher Wiederholung der BoxB-Elemente eingesetzt, die wie im Falle der MS2sl hinter den Leserahmen der eGFP-Fusionsproteine von Tp^{β4D}, ProtA und Mst77F kloniert wurden, so dass die Stemloops in der mRNA enthalten sind, nicht aber im translatierten Protein. Das Polyadenylierungssignal ist
3 Ergebnisse

im Transformationsvektor pChabΔsal enthalten. Es wurden transgene Fliegenlinien etabliert und das Expressionsmuster der eGFP-Fusionsproteine analysiert. Für das Mst77F-eGFP-16xBoxB- und das Tpl94D-eGFP-16xBoxB-Konstrukt konnten bis jetzt jeweils nur eine transgene Fliegenlinie erzeugt werden. Wie bei den MS2sl-Konstrukten konnte auch bei den BoxB-Element-Konstrukten kein Unterschied in der Expression zwischen eGFP-Fusionskonstrukten mit und ohne BoxB-Elementen in der mRNA festgestellt werden. Tpl94D-eGFP des BoxB-Konstrukts wird im frühen und späten Kanu-Stadium zum Zeitpunkt des Histon zu Protamin Wechsels exprimiert (Abb. 20 C). Mst77F-eGFP und ProtA-eGFP der BoxB-Konstrukte werden ab dem späten Kanu-Stadium und in allen folgenden Stadien bis in die reifen Spermien exprimiert (Abb. 20 A+B). Die Prozessierung und Lagerung der translational reprimierten mRNA wird also auch nicht durch die in der mRNA enthaltenen BoxB-Elemente gestört.
3 Ergebnisse

Abb. 20: Lokalisation der eGFP-Fusionsproteine der BoxB-markierten mRNAs für ProtA, Mst77F und Tpl^{84D}. Gezeigt sind Hoechstfärbungen, zur Visualisierung der DNA, an Testesquetschpräparaten von Fliegen transgen für ProtA-, Mst77F-, und Tpl^{84D}-BoxB-Konstrukte. Die Hoechstfärbungen sind jeweils in der oberen Reihe jedes Abschnittes (A, B und C) gezeigt und darunter das korrespondierende eGFP-Signal. In (A) ist die Expression von ProtA-eGFP des ProtA-eGFP-8xBoxB-Konstrukts zu sehen. Die Expression von ProtA-eGFP des ProtA-eGFP-8xBoxB-Konstrukts startet im frühen Kanu-Stadium, verstärkt sich bis ins späte Kanu-Stadium und bleibt bis in individualisierte Spermatiden bestehen. Die Mst77F-eGFP-Expression des Mst77F-eGFP-16xBoxB-Konstrukts ist in (B) gezeigt. Wie für ProtA-eGFP startet die Expression schwach im frühen Kanu-Stadium und verstärkt sich bis ins späte Kanu-Stadium und bleibt bis in die individualisierten Spermatiden bestehen. In (C) ist die Expression von Tpl^{84D}-eGFP des Tpl^{84D}-eGFP-16xBoxB-Konstrukts gezeigt. Die Expression startet im frühen Kanu-Stadium, verstärkt sich bis ins späte Kanu-
3 Ergebnisse

Stadium und ist in allen späteren Stadien nicht mehr zu detektieren. Die Maßstabsbalken, jeweils im letzten Bild einer Reihe, markieren 10 µm.

3.3.3 Etablierung der doppelttransgenen Fliegenlinien für das MS2cp/MS2sl-System und das λN/BoxB-System

Um die Bindeproteine und die mit Stemloops markierten mRNAs in einer Fliege zu exprimieren und eine mögliche Lokalisation der markierten mRNA untersuchen zu können, müssen die Fliegen, die die jeweiligen entsprechenden Konstrukte tragen, d.h. Bindenprotein bzw. markierte mRNA eines System, zusammen gekreuzt werden. Integrationen auf dem zweiten Chromosom konnten mit Integrationen auf dem dritten Chromosom kombiniert werden. Es konnten noch nicht alle möglichen Kombinationen an doppelttransgenen Fliegen erzeugt werden. Die ersten Auswertungen der erzeugten doppelttransgenen Fliegen anhand von Frischpräparaten zeigten einige Probleme auf, auf die in den folgenden Abschnitten genauer eingegangen wird.

3.3.3.1 Doppelttransgene Fliegen für das MS2cp/MS2sl-Sytem

Es konnten doppelttransgene Linien für die Konstrukte der MS2sl-markierten mRNAs von Mst77F-eGFP, ProtA-eGFP und Tpβ4D-eGFP mit dem Konstrukt für MS2cp-mCherry unter Kontrolle des β2tubulin-Promotors erzeugt werden. Die entstandenen Fliegenlinien wurden in Frischpräparaten untersucht. Dabei trat eine Reihe von Problemen auf, die die Auswertung der erzeugten Fliegenlinien sehr erschweren. Zum einen ist die zytoplasmatische Expression von MS2cp-mCherry, trotz des ins Konstrukt integrierten NLS sehr störend. Dieses Hintergrundsignal ist so stark, dass es eine mögliche Verstärkung des mCherry-Signals durch Bindung an stemloopmarkierte mRNA im Zytoplasma überdeckt.

Es wurde ein neues Konstrukt kloniert, das ein weiteres SV40-NLS im C-terminalen Teil des MS2cp-mCherry-Proteins trägt, das durch eine möglicherweise exponierter Lage im gefalteten Protein vielleicht besser erkannt wird. Die Erzeugung transgenen
3 Ergebnisse

Fliegen mit diesem Konstrukt ist noch in Arbeit. Die transgenen Fliegenlinien können im Rahmen dieser Arbeit nicht mehr ausgewertet werden.

Dieses Phänomen zeigte sich bei den eGFP-Stemloop Fliegen beider Systeme, aber auch bei anderen eGFP-tragenden Fliegenlinien, z.B. bei Mst77F-eGFP und ProtB-eGFP tragenden Fliegen (Abb. 15, gezeigt für Mst77F-eGFP und ProtB-eGFP).

Es konnten in den doppelttransgenen Fliegen des MS2cp/MS2sl-System keine mCherry-Signale beobachtet werden, die in den einzeltransgenen MS2cp-mCherry Fliegen nicht zu sehen waren.

3.3.3.2 Doppelttransgene Fliegen für das λN/BoxB-System

Es konnten doppelttransgene Fliegenlinien für die Konstrukte der BoxB-markierten mRNA für Mst77F-eGFP und ProtA-eGFP mit dem Konstrukt des λN-mCherry unter der Kontrolle des β2tubulin-Promotors erzeugt werden. Die erzeugten doppelttransgenen Fliegen wurden bislang in Frischpräparaten untersucht.

Bei der Auswertung der doppelttransgenen Fliegen des λN/BoxB-Systems traten die gleichen Probleme auf, wie schon bei der Auswertung der doppelttransgenen Fliegen des MS2cp/MS2sl-Systems.

Erstens, war auch hier durch das ungebundene λN-mCherry ein starker Hintergrund im Zytoplasma, wo man ein Signal gespeicherter mRNAs erwarten würde. Zwar ist das freie MS2cp-mCherry in den prämeiotischen Stadien zum Teil im Kern lokalisiert (Abb. 19 A+B), aber der im Zytoplasma verbleibende Anteil des freien λN-mCherrys reicht aus um einen starken Hintergrund im Zytoplasma zu erzeugen, der die Auswertungen erschwert. Wie für das MS2cp/MS2sl-System konnte auch hier in den doppelttransgenen Fliegen im Zytoplasma von Spermatozyten und Spermatiden kein mCherry-Signal gesehen werden, das sich von denen der nur λN-mCherry exprimierenden Fliegen unterschied.
3 Ergebnisse

Auch für das λN-mCherry wurde ein neues Konstrukt kloniert, das die SV40-NLS C-terminal trägt. Das Konstrukt konnte fertig kloniert werden und zurzeit werden transgene Fliegenlinien erzeugt. Die Auswertung dieser Linien konnte im Rahmen dieser Arbeit nicht mehr stattfinden.

Im Gegensatz zu den doppelttransgenen Fliegen des MS2cp/MS2sl-Systems konnte in doppelttransgenen Fliegen des λN/BoxB-Systems ein Unterschied im mCherry-Signal zum mCherry-Signal der einzeltransgenen λN-mCherry Fliegen gesehen werden.

Das Signal ist an den elongierenden Spermatidenkernen zu sehen, wenn die Expression der Proteine der BoxB-markierten mRNAs, also Mst77F-eGFP (Abb. 22) bzw. ProtA-eGFP (Abb. 23) startet. Schaut man sich die doppelttransgenen Fliegen des λN/BoxB-System an, dann kann man ein Signal im Rotkanal im frühen Kanustadium detektieren, wenn das eGFP-Signal noch kaum zu detektieren ist (Abb. 22 A Zyste 1 und C Zyste 1; Abb. 23 B Zyste 1). Wenn sich das eGFP-Signal verstärkt in elongierenden Spermatidenkernen verstärkt sich auch des Signal im Rotkanal (Abb. 22 B, Zyste 2; Abb. 23 D, Zyste 2 + 3). Und man sieht ein nur noch schwaches Signal im Rotkanal, wenn die eGFP-Fusionsproteine in späten Spermatiden stark exprimiert sind (Abb. 22 A Zyste 4, C Zyste 4, D; Abb. 23 C Zyste 4). Frühe Stadien mit wenig eGFP-Signal zeigen ein starkes Signal im Rotkanal, und späte Stadien mit starkem eGFP-Signal zeigen ein schwaches mCherry-Signal. Man sieht ein starkes Signal im Rotkanal (jedenfalls im Fall von Mst77F-BoxB) in Vesikeln um die vollständig elongierte Spermatidenkerne (Abb. 22 B Zyste 3, C Zyste 4, D). Dies sind wahrscheinlich Vesikel in denen das überschüssige Kernplasma, das im Rahmen der Kernumformung abgeschütt wird, abtransportiert wird.

Schaut man sich das Signal im Rotkanal in Fliegenlinien mit eGFP-Fusionsproteinen alleine an, hier gezeigt für ProtB-, Mst77F-eGFP (Abb. 15), kann man z.t. ähnliche Muster erkennen. Dieses detektierbare Signal im Rotkanal bei Fliegenlinien mit ProtB-, Mst77F-eGFP-Fusionsproteinen zeigt Unterschiede in der Intensität des Rotsignals im Vergleich zu eGFP-Signal wenn vielleicht auch weniger stark als bei den doppelttransgenen Fliegen des λN/BoxB-Systems (Abb. 22 B). Das bedeutet auch in Testes mit den ProtB-, Mst77F-eGFP-Konstrukten ist das Signal im Rotkanal in den späten Stadien mit starkem eGFP-Signal, weniger intensiv als in den frühen Stadien, wenn das eGFP-Signal schwächer ist (Abb. 15 B gefüllter und ungefüllter Pfeil). Die Vesikel, die bei der Kernumformung abgeschnürt werden, sind in Fliegen...
3 Ergebnisse

die eGFP-Fusionsproteine exprimieren auch zu sehen, im Grün-Kanal als auch im Rot-Kanal (Abb. 15 B), aber in einer wesentlich schwächeren Intensität als im Rotkanal der doppelttransgenen Fliegen des Mst77F-Boxb-Konstrukts (Abb. 22 D Zyste 4).

Man sieht in den doppeltransgenen Fliegen beider Systeme keine Akkumulation der Bindeproteine im Zytoplasmata von Spermatozyten und Spermatiden, was wahrscheinlich am hohen mCherry-Hintergrund liegt. Für das λN/BoxB-System lässt sich in den späten Spermtiden eine Akkumulation des mCherry-Signal beobachten wenn die BoxB-markierten mRNAs translatiert werden.

Es ist sehr schwierig zu beurteilen, ob das Signal eine echte Lokalisation der mRNA ist, oder ein Artefakt, das durch das „Durchbluten“ des eGFP-Signal in den Rotkanal zustande kommt, beides wäre möglich. Auf dieses Problem wird in der Diskussion genauer eingegangen.

Abb. 21: Problem bei der Auswertung der doppeltransgenen Fliegen: eGFP-Signale zeigen ein starkes Signal im Rotfilter. Testisfrischpräparate von ProtB-eGFP (A), bzw. Mst77F-eGFP (B) tragenden Fliegen. In der ersten Spalte ist jeweils das eGFP-Signal zu sehen (etwa 10 ms Belichtungszeit), daneben das Signal, das im Kanal mit Rotfilter zu detektieren war (etwa 200 ms Belichtungszeit), ohne dass ein rotes Fluorophor zugegen gewesen wäre. In der dritten Spalte ist die Überlagerung beider Bilder zu sehen. Der Pfeilkopf in (A) markiert Vesikel in denen überschüssiges
3 Ergebnisse

Zytoplasma abgestreift wird. Der gefüllte Pfeil in (B) markiert Spermatiden im Kanu-Stadium, die ein starkes Signal im Rot-Kanal haben und ein schwächeres Mst77F-eGFP-Signal, und der ungefüllte Pfeil in (B) markiert elongierte Spermatidenkerne, die ein starkes Mst77F-eGFP-Signal zeigen und ein schwaches Signal im Rot-Kanal. Die Maßstabsbalken in den äußeren Bildern entsprechen jeweils 20 µm.
3 Ergebnisse

Abb. 22: mCherry-Signal an den Mst77F-eGFP-16xBoxB exprimierenden Spermatidenkernen. Testisfrischpräparate von doppeltransgenen Fliegen, die ein $\beta^{2}t$:pro-λN-mCherry-Konstrukt und ein Mst77F-eGFP-16xBoxB-Konstrukt tragen. In der ersten Spalte ist das eGFP-Signal zu sehen, in der zweiten Spalte das korrespondierende mCherry-Signal und in der dritten Spalte die Überlagerung der jeweiligen Bilder. Zysten die mit (1) markiert sind Zysten im frühen Kanu-Stadium. Hier ist wenig eGFP-Signal zu detektieren, aber ein relativ starkes Signal im Rotkanal. Mit (2) markierte Zysten sind im späten Kanu-Stadium. Es ist ein eGFP-Signal und ein Signal im Rotkanal zu sehen. Die mit (3) markierte Zyste zeigt elongierte Spermatidenkerne, die gerade anfangen Vesikel abzuschnüren, und die mit (4) markierten Zysten sind fertig elongierte Spermatiden. Hier ist das eGFP-Signal stark zu detektieren, das Signal im Rotkanal ist aber weniger an den Kernen zu sehen, als vielmehr in den sich abschürenden Vesikeln. Der Maßstabsbalken jeweils im Bild der dritten Spalte markiert 20 µm.
Ergebnisse

<table>
<thead>
<tr>
<th></th>
<th>ProtA-eGFP-16BoxB</th>
<th>λN-mCherry</th>
<th>Überlagerung</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abb. 23: mCherry-Signal an den ProtA-eGFP-8xBoxB exprimierenden Spermatidenkernen. Testisfrischpräparate von doppeltransgenen Fliegen, die ein β2pro-λN-mCherry-Konstrukt und ein ProtA-eGFP-16BoxB-Konstrukt tragen. In der ersten Spalte ist das eGFP-Signal zu sehen, in der zweiten Spalte das korrespondierende mCherry-Signal und in der dritten Spalte die Überlagerung der jeweiligen Bilder. Mit (1) markierte Zysten sind Spermatidenkerne im frühen Kanu-Stadium mit schwachem eGFP-Signal und mehr oder weniger starken Signal im Rotkanal. Zysten die mit (2) markiert sind, sind im späten Kanu-Stadium mit eGFP-Signal und Signal im Rotkanal. Mit (3) markierte
3 Ergebnisse

Zysten sind fast fertig elongierte Spermatiden, auch mit eGFP-Signal und Signal im Rotkanal. Und mit (4) markierte Zysten sind vollständig elongiert mit starken eGFP-Signal und schwachen Signal im Rotkanal. Im Gegensatz zu den doppelttransgenen Fliegen mit BoxB-markierter Mst77F mRNA (Abb. 16) sind hier die sich abschnürenden Vesikel nicht so stark zu sehen. Der Maßstabsbalken jeweils im Bild der dritten Spalte markiert 20 µm.
4 Diskussion

4.1 Die transkriptionelle Regulation der Expression von *Mst77F* während des Spermatozyten-Stadiums

Kurze Promotoren von 20 bp - 100 bp sind typisch für die transkriptionelle Kontrolle während der Spermatogenese von *Drosophila* (Übersichtsartikel: Renkawitz-Pohl et al., 2005).

Die Promotoren von *ProtA* und *ProtB*, die nahezu identisch sind, umfassen 109 bp vor dem vorhergesagten Transkriptionsstart, und sind zusammen mit 90 bp der 5´UTR für eine zeitlich und räumlich korrekte Transkription der Protamingene ausreichend (Dissertation Jayaramaiah Raja, 2005; Barckmann et al., in Vorbereitung).

Ähnlich kurze Promotoren haben auch *don juan* und *don juan like*, zwei Gene die für potentielle Linker-Histon-Varianten kodieren, die zusammen mit den Histonen vom Chromatin entfernt werden (Blumer et al., 2002; Hempel et al., 2006).

4.1.1 Die Transkription von *Mst77F* wird durch eine kurze cis-regulatorische Regionen gesteuert

Für die korrekte zeitliche und räumliche Expression von *Mst77F* sind 89 bp vor dem vorhergesagten Transkriptionsstart, bzw. 261 bp vor dem ATG ausreichend. Das Expressionslevel nimmt aber deutlich ab, wenn die 5´UTR deletiert ist, was dafür spricht, dass es Promotorelemente nach dem Transkriptionsstart gibt (Diplomarbeit Barckmann, 2005). Der Promotor besitzt keine bekannten klassischen Promotorelemente oder Transkriptionsfaktor-Bindestellen. Auch das ist typisch für testisspezifische Promotoren, sie besitzen keine klassischen Promotorelemente. Und obwohl z. B. das β2UE1-Element aus dem *β2tubulin*-Promotor (Michiels et al., 1989) in ähnlicher Form noch in anderen testisspezifischen Promotoren gefunden wurde,
Diskussion

konnte noch kein generelles Testispromotormotiv gefunden werden (Nurminsky et al., 1998).

Testisspezifische Promotoren sind nur vor und während der meiotischen Prophase in der männlichen Keimbahn aktiv und in allen anderen Geweben inaktiv. Es ist erstaunlich, dass alle bisher gefundenen Promotoren, die diese Gewebespezifität gewähren, so klein sind. Diese kurzen Promotoren und das Fehlen klassischer Promotorelemente deuten auf eine spezielle Form der Genregulation hin, die von der in anderen Geweben abweicht, z. B. durch den tTAF-enthaltenden paralogen TFIID-Komplex, der wahrscheinlich die Transkription der translational reprimierten mRNAs im Spermatozyten-Stadium initiiert (siehe Einleitung Kap. 2.3.1; Übersichtsartikel: White-Cooper, 2009).

Um das Protamincluster in Drosophila findet man zwar eine Reihe potentieller CTCF-Bindestellen (persönliche Kommunikation Marek Bartkuhn, Justus-Liebig-Universität Gießen), ob sie aber wirklich funktionell sind, und was für eine Funktion sie haben könnten, wurde noch nicht erforscht. Es ist aber vorstellbar, dass durch sie die Genregion um die Protamingene ähnlich wie bei Mäusen organisiert wird, da sich hier testisexprimierte Gene häufen, die in allen anderen Geweben ausgeschaltet sein müssen (Tweedie et al., 2009).

Durch die deutlichen Unterschiede der typischen Testispromotoren, d. h. ihre Kürze und das Fehlen bekannter Promotorelemente oder Transkriptionsfaktorbindestellen, zu anderen Promotoren in Drosophila ist ein gewebespezifischer Regulierungsmechanismus der Transkription sehr wahrscheinlich. In wie weit es
4 Diskussion

außerdem eine Regulierung der testisspezifischen Gengruppen auf Ebene der Chromatinstruktur gibt z. B. durch die vorhandenen CTCF-Bindestellen bleibt zu erforschen.

4.1.2 Der Transkriptionsstart von *Mst77F* liegt einige Basen unterhalb des vorhergesagten Transkriptionsstarts

Der Transkriptionsstart von *Mst77F* war bisher unbekannt, es gab nur Computervorhersagen. In dieser Arbeit konnte der Transkriptionsstart von *Mst77F* mit Hilfe des *Promotor-LacZ*-Konstrukts *pc77F3-Δ5´UTR-29bp* auf 29 bp eingegrenzt werden (Kap. 3.1.2). Dieses *Promotor-LacZ*-Konstrukt hat im Vergleich zu *pc77F3-Δ5´UTR* am vorderen Ende der 5´UTR 29 bp zusätzlich deletiert. Dadurch endet das *Promotor-LacZ*-Konstrukt sehr kurz hinter dem vorhergesagten Transkriptionsstart (Tweedie et al., 2009).

Da das *Promotor-LacZ*-Konstrukt *pc77F3-Δ5´UTR-29bp* gar keine Expression mehr aufweist, das 29 bp längere *Promotor-LacZ*-Konstrukt *pc77F3-Δ5´UTR* aber eine starke Expression vermittelt, deutet dies stark darauf hin, dass der Transkriptionsstart bei diesem Konstrukt deletiert wurde (Kap. 3.1.2). Es könnte natürlich auch ein essentielles Promotorelement in der 5´UTR entfernt worden sein, da aber die Expression durch die Deletion der 29 bp komplett unterbunden wird, und nicht nur vermindert, und eine testisspezifische cDNA innerhalb dieser Sequenz startet und auch eine Initiator-Sequenz zu finden ist, ist es wahrscheinlicher, dass der Transkriptionsstart entfernt wurde.

Es ist dabei nicht auszuschließen, dass *Mst77F* mehrere Transkriptionsstarts besitzt. Die Daten der 'Machibase' (Ahsan et al., 2009), einer Datenbank für Transkriptionsstarts in *Drosophila*, als auch die sehr unterschiedlichen Starts der vollständigen cDNAs (Tweedie et al., 2009), legen diese Vermutung nahe.

Der Transkriptionsstart von *Mst77F* wurden auf einen Bereich von 29 bp eingeschränkt, der konkrete Start und den Beweis von möglichen anderen Transkriptionsstarts steht aber noch aus. Dazu durchgeführte Primer Extention Experimente führten bis jetzt nicht zum Erfolg.
4 Diskussion

4.1.3 Translationale Repression der Mst77F mRNA wird über die 5´UTR vermittelt

Der Morphogeneseprozess während der Spermiogenese ist im großen Maße von translational reprimierten mRNAs abhängig, da in der Spermatogenese von Drosophila keine fast keine postmeiotische Transkription stattfindet (Barreau et al., 2008a).

Innerhalb einer translational reprimierten mRNA muss die Information enthalten sein, dass die mRNA nicht direkt translatiert werden soll, sondern translational reprimiert wird und gespeichert werden muss. Meist übernehmen diese Aufgabe Sequenzmotive oder Stemloop-Elemente (Hempel et al., 2006) in der RNA an die dann möglicherweise RNA-Bindeproteine binden, die diese Aufgaben vermitteln.

In Drosophila liegen die Elemente, die für die translationale Repression der mRNA während der Spermatogenese verantwortlich sind, in allen bis jetzt gefunden Fällen in der 5´UTR. Für die Protamine ist das der Fall (Jayaramaiah Raja, 2005; Barckmann et al., in Vorbereitung), genauso wie für dj, djl und Mst87F (Übersichtsartikel: Renkawitz-Pohl et al., 2005). Bei der Analyse von Promotor-LacZ-Konstrukten mit und ohne 5´UTR konnte in dieser Arbeit auch für Mst77F die 5´UTR für die translationale Repression verantwortlich gemacht werden (Kap. 3.1.3). Das steht im Kontrast zu der translationalen Repression der Protamin mRNA in Säugern, die dort über die 3´UTR reguliert wird (Hecht, 1998; Steger, 1999), und zur translationalen Repression der mRNAs in der Drosophila Oogenese, wo die Repression der mRNAs auch über die 3´UTR erfolgt (Rangan et al., 2008).

Ein Beispiel für ein Translations-Repressionselement in der 5´UTR ist das ‘iron-response-element’ (IRE), das in der 5´UTR der ferritin mRNA liegt. Das ‘iron-response-protein’ (IRP) bindet an das IRE und verhindert so wahrscheinlich die Anlagerung der Ribosomen an die mRNA. Für eine Stabilisierung der translational reprimierten ferritin mRNA ist es aber zusätzlich noch notwendig, dass IR-Proteine
an IR-Elemente in der 3´UTR binden (Rouault et al., 1988; Dickey et al., 1988; Übersichtsartikel: Hentze et al., 2004).

Bei der translationalen Repression über die 5´UTR ist es denkbar, dass die Zugänglichkeit der mRNA für die Ribosomen blockiert wird, die Ribosomen an der mRNA am Weiterlaufen gehindert werden, oder dass das Startcodon verdeckt wird. Mit in vitro Translationsexperimenten wurde in Mäusen gezeigt, dass sich Protamine 1 mRNA aus runden Spermatiden, also eigentlich translationsreprimierte mRNA, wenn sie deproteiniert wird, genauso effektiv translätieren lässt, wie Protamine 1 mRNA aus elongierten Spermatiden. Das unterstützt die Theorie, dass für die translationale Repression dieser mRNAs die Bindung von Proteinen an die mRNA wichtig ist (Fajardo et al., 1994).

Für protamine 1 in Mäusen wurden sechs RNA-Bindeproteine gefunden, die in der 3´UTR binden und wahrscheinlich für die translationale Repression nötig sind. Für vier von ihnen konnte auch eine Bindung an die 3´UTR von protamine 2 gezeigt werden (Übersichtsartikel: Steger, 2001).

Für transition protein 1 in Mäusen konnte zudem gezeigt werden, dass die Kontrolle der Translation der mRNA über die Länge des PolyA-Schwanzes reguliert wird (Übersichtsartikel: Hennig, 2003).

Es gibt zwar in Drosophila eine Reihe an RNA-Bindeproteinen, die im Testis exprimiert sind, aber es konnte noch für keine mRNA ein passendes RNA-Bindeprotein gefunden werden, dass für die translationale Repression verantwortlich ist.

Auch Y-Box Proteine spielen auch bei der translationalen Repression von mRNA in der Spermatogenese der Maus eine wichtige Rolle. Der Verlust des MSY2-Protein in Mäusen führt zur Instabilität translational reprimierter mRNAs in der Spermatogenese, u.a. auch der mRNAs der Protamine protamine 1 und 2 und des Transitionsproteins transition protein 1 (Yang et al., 2007). Ein passender Kandidat für translational Repression an mRNAs in der Drosophila Spermatogenese könnte Yps sein. Yps ist ein Y-Box Protein, das während der Oogenese von Drosophila für die Lokalisation und translational Repression von oskar mRNA notwendig ist. Es konnte hier gezeigt werden, dass Yps mRNA im Testis von Drosophila exprimiert ist (Kap. 3.1.3.1). Es wäre also interessant zu untersuchen, ob Yps eine Rolle in der translationalen Repression der mRNAs in der Spermatogenese von Drosophila spielt.
Diskussion

4.2 Die Transkription von Mst35Bb und Mst77F ist abhängig von testisspezifischen TAFs

In den Spermatozyten-Stadien werden eine große Menge an Genen transkribiert, um das enorme Wachstum der Zellen, die meiotischen Teilungen und die folgende Spermien-Morphogenese zu ermöglichen (siehe auch Kap. 2.3 Einleitung). Die Präinitiationskomplexe (PIC, preinitiation complex) an PolII-Core-Promotoren scheinen an unterschiedlichen Promotoren aus unterschiedlichen Kombinationen von Faktoren zusammengesetzt zu sein, abhängig vom gewebespezifischen und zeitlichen Profil der Expression des jeweiligen Gens (Übersichtsartikel: Muller und Tora, 2004). Dies bietet eine zusätzliche Ebene zur Regulation der Transkription. In den unterschiedlichsten Spezies sind neben den generellen TAFs gewebespezifisch exprimierte TAFs bekannt, die gewebespezifische Expressionsprogramme etablieren (Übersichtsartikel: Muller und Tora, 2004) (siehe Einleitung Kap. 2.3.1.1).

In Spermatozyten von Drosophila gibt es neben den generellen TAFs testisspezifische TAFs, die auf der Ebene der Transkriptionsinitiation zwischen direkt translatierten mRNAs und translational reprimierten mRNA zu unterscheiden scheinen, wahrscheinlich durch die Bildung eines alternativen TFIID-Komplexes, der die tTAFs (Chen et al., 2005) und TAF1-2 enthält (Metcalf und Wassarman, 2007). Dies ist notwendig, da abgesehen von einigen wenigen Ausnahmen (Barreau et al., 2008b), die Transkription mit dem Eintritt in die meiotischen Teilungen stoppt, so dass die Spermienmorphogenese allein von gespeicherten mRNAs abhängt. Alle bisher analysierten, translational reprimierten mRNAs stehen unter Kontrolle der tTAFs, wie Expressionsanalysen in tTAF-Mutanten zeigen (White-Cooper et al., 1998). Für einige dieser mRNAs (dj, fzo und Mst87F) konnte eine direkte Regulation durch die tTAFs gezeigt werden (Chen et al., 2005).

In dieser Arbeit konnte mit Anti-Sa-ChIPs gezeigt werden, dass ProtB und Mst77F direkte Zielgene der tTAFs sind (Kap. 3.1.4).

Die tTAFs scheinen an den Promotoren ihrer Zielgene die repressiven Polycompgroup Proteine zu verdrängen und sie dann im Nukleolus zu halten, was
4 Diskussion

der Sinn dieser Lagerung im Nukleolus konnte noch nicht geklärt werden (Chen et al., 2005).
Die Transkription durch die tTAFs scheint die entstehenden mRNAs als translations-reprimiert von den direkt translatierten mRNAs zu trennen. Wie ein solcher Mechanismus funktionieren könnte ist noch völlig unklar.
Die bisher bekannten direkten Zielgene der tTAFs sind allesamt Gene, die direkt am Morphogeneseprozess der Spermatogenese beteiligt sind und zu unterschiedlichen Zeitpunkten aus der translationalen Repression entlassen werden müssen. Fzo (fuzzy onion) ist an der Bildung des mitochondrialen Derivats des Nebenkerns beteiligt und ist somit schon im Nebenkernstadium, in relativ frühen Spermatiden exprimiert (Übersichtsartikel: Fuller, 1993). Dj ist von runden Spermatidenkernen bis ins Kanu-Stadium mit dem Chromatin assoziiert und wird dann vom Chromatin mit den Histonen entfernt und ist später im Flagellum exprimiert (Hempel et al., 2006).
Mst87F kodiert für ein Strukturprotein des Flagellums, und ist in den elongierenden Spermatiden exprimiert (Kempe et al., 1993). ProtB und Mst77F sind chromatinorganisierende Proteine und werden ab dem späten Kanu-Stadium exprimiert (Jayaramaiah Raja und Renkawitz-Pohl, 2005) und sind damit, zusammen mit Mst87F die am spätesten exprimierten Zielgene die bis jetzt gefunden wurden.
Die drei neuen gefundenen direkten Zielgene der tTAFs bestärken die Hypothese, dass Spermatozyten einen Mechanismus haben, die im Spermatozyten-Stadium exprimierten Gene in zwei Klassen einzuteilen, die direkt translatierten mRNAs und mRNAs bei denen Transkription und Translation entkoppelt sind. Wie die Entlassung aus der Repression und die Rekrutierung der Ribosomen an die mRNA zum richtigen Zeitpunkt in der Spermiogenese reguliert werden, ist noch völlig ungeklärt. Sekundäre Polyadenylierung könnte einer Rolle beim Prozess spielen, da für Mst87F mRNA gezeigt werden konnte, dass sie zum Zeitpunkt der Translation einen längeren PolyA-Schwanz hat. (Kuhn et al., 1991).
Mst77F scheint eine duale Regulation während der Spermatogenese zu haben. Wenn man sich die Ergebnisse der in situ Hybridisierung an tTAF Mutanten und der Promotor-LacZ-Konstrukte für Mst77F ansieht, ist es anzunehmen, dass ein geringer Teil der Mst77F mRNA unabhängig von den tTAFs exprimiert wird.
Die in situ Hybridisierungen an can^{12}-mutanten Testes zeigten tatsächlich, dass ein kleiner Teil der mRNA unabhängig von den tTAFs transkribiert wird (Kap. 3.1.5). In den Promotor-LacZ-Konstrukten konnte immer eine basale Transkription in
4 Diskussion

Spermatozyten beobachtet werden, deren mRNA nicht unter translationaler Kontrolle zu steht (Kap. 3.1.3). Es könnte sein, dass diese schwache Expression, die mit den Promotor-LacZ-Konstrukten in Spermatozyten beobachtet wurde, von mRNA translatiert wird, die von den tTAFs unabhängig transkribiert wird. So wäre mit Mst77F zum ersten Mal ein Gen gefunden, das unter einer dualen Regulation während der Spermatogenese steht. Wenn Mst77F über eine weitere, von den tTAFs unabhängige Regulation verfügt, könnte das auch erklären, warum Mst77F bei den Anti-Sa-ChIPs (Kap. 3.1.5) eine etwas weniger deutliche Anreicherung zeigte als protamin B oder Mst87F.

4.3 Im Gegensatz zu Protaminmutanten in Säugern sind Drosophila Protamin-Null-Mutanten fertil

Mit der Erzeugung der Protaminmutante protA für Drosophila in dieser Arbeit (Kap. 3.2.2) konnte gezeigt werden, dass die Protaminegene überraschenderweise nicht für die Fertilität essentiell sind. Wohingegen die Protamingene in Menschen und Mäusen haploinsuffizient sind (Übersichtsartikel: Oliva, 2006; Carrell et al., 2007). Die Protamine in Drosophila sind weniger argininhaltig als Protamine in Säugern, aber sie tragen die für Protamine typischen Cysteinreste, mit denen Protamine Disulfid-Brücken ausbilden, um das Chromatin noch dichter zu packen (Jayaramaiiah Raja und Renkawitz-Pohl, 2005). Nach der Degradation der Histone und Tpl94D bilden Protamin A und Protamin B neben Mst77F die bisher bekannten chromatinorganisierenden Komponenten in Drosophila Spermien (Rathke et al., 2007).

4 Diskussion

4.3.1 Die missgeformten späten Spermatidenkerne der prot Mutante weisen auf eine verminderte strukturelle Integrität der Kerne hin

Ein relativ großer Anteil, etwa ein Viertel der elongierten Spermatidenkerne in der prot-Mutante ist abnorm geformt; die Kerne sind zwar vollständig elongiert, aber sie wirken verkrumelt oder verbogen (Kap. 3.2.3). Bei Mäusen konnte etwas Ähnliches beobachtet werden. Da die Protamingene in Mäusen haploinsuffizient sind, konnten nur chimäre Mäuse untersucht werden. Hier wurden in chimären Mäusen mit 70 % - 90 % protamine 2 defizienten Spermien ein Anteil von etwa 30 % deformierten Spermien beobachtet (Cho et al., 2003).
Diskussion

Disulfidbrücken, die zwischen den Protaminen gebildet werden, sollen das Chromatin stabilisieren. Cho et al. (2001) postulieren, dass bei einer Reduktion des Protamingehalts im Spermienkern die Chromatinanordnung verändert würde und damit auch die strukturelle Integrität des Kerns. Das Gleiche ist auch für die Protaminen in Drosophila anzunehmen. Es ist erkennbar, dass die Kernformung in der protΔ-Mutante an sich nicht gestört ist, aber ein Teil der Spermatidenkerne scheinen fragiler als Wildtyp Spermatidenkerne zu sein. Auch die Protamine in Drosophila haben die typischen Cysteinreste und bilden deshalb wahrscheinlich auch Disulfidbrücken aus.

Der Defekt der verkrumpelten Spermatidenkerne betrifft immer entweder alle oder keine Spermatiden einer Zyste. In den seminalen Vesikeln, dem männlichen Speicherorganen für reife Spermien, sind immer nur normal aussehende Spermien zu beobachten. Das ist verständlich, da abnormale Spermatiden es gewöhnlich nicht schaffen zu individualisieren (Tokuyasu et al., 1972 zitiert in Übersichtsartikel: Fuller, 1993). Aber es könnte erklären, warum die protΔ-Mutanten generell eine geringere Anzahl an Nachkommen haben (Kap. 3.2.2). Es werden einfach weniger funktionstüchtige Spermien gebildet, da ein Teil der Spermatiden nicht individualisiert. Es konnten in der protΔ-Mutante etwa 20-25 % missgeformte Spermatidenkerne beobachtet werden, aber eine sehr varierender Anteil von und 0 bis 50 % weniger Nachkommen. Es könnte aber zusätzlich sein, dass nicht alle defekten Spermatidenkerne eindeutig durch ihre Morphologie als gestört zu erkennen sind. Es könnte sein das Spermatidenkernen mit leichtem Defekt individualisieren und so zu einer verringerten Nachkommenzahl führen.

Diskussion

4.3.2 Mst77F und Mst99C haben wahrscheinlich keine redundante Funktion zu ProtA und ProtB

Eine interessante Beobachtung ist, dass ein relativ großer Anteil der elongierten Spermatiden zwar einen völlig elongierten Kern hat, dieser aber verkrumpelt oder verbogen ist. Um zu testen, ob die HMG-Box tragenden Proteine ProtA, ProtB, Mst77F und Mst99C sich gegenseitig ersetzen können, wurden Rettungsversuche durchgeführt. Der Phänotyp der späten missgestalteten Spermatidenkerne kann durch das Einbringen von einer oder zwei Kopien ProtA-eGFP oder ProtB-eGFP gerettet werden, was zeigt dass die Protamine in der Tat redundant in ihrer Funktion sind. Der Phänotyp wird aber nicht durch das Einbringen von Mst77F-eGFP oder Mst99C-eGFP gerettet. Was zeigt, dass die Protamine und Mst77F und Mst99C nicht funktionell redundant sind (Kap. 3.2.5). Beide Proteine haben strukturell abgesehen von der HMG-Box auch nicht viel Ähnlichkeit mit den Protaminen. Mst77F (215 As) ist ein H1-ähnliches Protein, das entfernt verwandt mit Hils1 aus Mäusen ist. Mst99C ist mit seinen 240 As wesentlich größer als die Protamine (ProtA 146 As, ProtB 144 As). Mst99C ist zwar ebenfalls relativ argininreich, was ein Charakteristika für Protamine der Säugetiere ist (Übersichtsartikel: Balhorn, 2007), trägt aber nicht die konservierten Cysteine zum Ausbilden der Disulfidbrücken (Rathke und Renkawitz-Pohl unveröffentlicht). Es ist also anzunehmen, dass beide Proteine Funktionen übernehmen, die sich von der Funktion der Protamine unterscheidet.
4 Diskussion

Das Mst77F-eGFP in der protΔ-Mutante nicht rettet passt dazu, dass der Verlust von protamin A und protamin B in der protΔ-Mutante den ms(3)nc3 Phänotyp von Mst77F nicht verstärkt (Rathke und Barckmann et al., in Druck). Außerdem konnte kürzlich gezeigt werden, dass Mst77F neben seiner Assoziation mit dem Chromatin auch eine Funktion in der Mikrotubulin-basierenden Kernformung hat, also eine deutlich von den Protaminen abzugrenzende Funktion hat (Rathke und Barckmann et al. in Druck).

Auch dies bestärkt die Hypothese, dass es neben den Protaminen Mst77F und Mst99C noch weitere Proteine mit einer chromatinorganisierenden Funktion geben muss, die in dem anscheinend sehr fein aufeinander abgestimmten und abgesicherten Prozess mitwirken, und in der protΔ Mutante die Fertilität garantiert. Eine wichtige Funktion der Protamine besteht aber anscheinend darin das Chromatin vor mutagenen Einflüssen zu schützen, wie im nächsten Abschnitt diskutiert wird.

4.3.3 Protamine schützen das paternale Genom gegenüber Röntgenstrahlung

Eine weitere Hypothese ist, dass die Umorganisation des Chromatins notwendig ist, um alle Histone inklusive ihrer Modifikationen und eventuellen epigenetischen Informationen zu entfernen, um die embryonale Entwicklung mit einem
4 Diskussion

Außerdem gibt es die Hypothese, dass es die protaminbasierende Chromatinorganisation gibt, um das Genom in der relativ exponierten Situation im Spermium vor mutagenen Einflüssen zu schützen (Übersichtsartikel: Oliva, 2006; Carrell et al., 2007).

Die Fertilität der protΔ-Mutante gab die bisher einzigartige Möglichkeit, diese Hypothese genauer zu testen. Es wurde analysiert, ob Spermien der protΔ-Mutante sensitiver gegenüber Röntgenstrahlung sind als Wildtyp-Spermien. In der Tat zeigten die protamindefizienten Spermien eine um 21 % signifikant erhöhte Mutationsrate im Vergleich zur Mutationsrate von Wildtyp-Spermien (Kap. 3.2.6).

Zusammengenommen unterstützen diese Daten die alte Hypothese, dass der Wechsel zu einer protaminbasierenden Chromatinstruktur tatsächlich nötig ist, um das paternale Genom in Säugern und Drosophila vor Mutationen zu schützen.

Aber auch hier deutet die relativ milde Erhöhung der Mutationsrate darauf hin, dass es wahrscheinlich auch in der Protaminmutante noch weitere Proteine gibt, die das Chromatin organisieren und so der DNA Schutz gegenüber Röntgenstrahlung gewähren. Das könnte Mst77F oder Mst99C sein, und / oder aber noch nicht bekannte Proteine, die keine hohe strukturelle Ähnlichkeit zu den Protaminen aufweisen, da die SNBPs (sperm nuclear basic proteins) in den verschiedenen Spezies ein höchst diverse Mischung an Proteinen zeigen (Übersichtsartikel: Balhorn, 2007).
4 Diskussion

4.3.4 Ausblick: mögliche nächste Schritte um mehr über den Chromatinwechsel während der Spermatogenese zu erfahren

Es gibt interessante Ansatzpunkte für die weitere Forschung am Wechsel in der Chromatinorganisation während der Spermatogenese von Drosophila, bezüglich der späten chromatinorganisierenden Proteine.

Zum einen die funktionale Untersuchung der Proteine die schon als weitere chromatinorganisierende Proteine identifiziert wurden, wie z. B. Mst77F oder Mst99C und die funktionale Untersuchung der Proteine die nur transient während des Wechsels exprimiert werden, wie z. B. Tpi94D. Außerdem gibt es einige interessante Kandidatenproteine, für die eine Beteiligung am Chromatinwechsel aber noch verifiziert werden muss. Auf längere Sicht ist es natürlich wichtig für diese Gene Mutanten zu etablieren, diese könnten dann in Tripelmutanten zusammen mit den in dieser Arbeit generierten Protaminmutanten analysiert werden.

Für eine weitere Untersuchung der Protaminmutante und natürlich auch potentieller Tripelmutanten wäre die Etablierung des ‘comet assays’ (Einzelzell-DNA Elektrophorese (comet) Assay) sehr interessant, um die Integrität des Chromatins zu überprüfen wie es z.B. für Protaminmutanten in Mäusen schon getan wurde (Cho et al., 2003).

Um noch mehr über die missgeformten Spermatidenkerne der prot\textsubscript{\Delta}−Mutante zu erfahren, und zu testen ob die Kerne wirklich fragiler d. h. weicher sind, könnten Spermatidenkerne der Protaminmutane und möglicher Triplelmutanten mit einer AFM (atomic force microscopy, Rasterkraftmikroskopie) Nadel getestet werden. Dabei kann mit der Nadel des AFMs die Festigkeit von Oberflächen bestimmt werden. Hierfür könnte man sich die bereits etablierten markierten Stämme der an der Chromatinorganisation beteiligten Proteine wie z. B. tpi94D-eGFP Prot-eGFP; Mst77F-eGFP/mCherry, zunutze machen, um die Kerne richtig zeitlich einordnen zu können. Es wäre interessant zu sehen ob die scheinbare Fragilität der Spermatidenkerne in der prot\textsubscript{\Delta}-Mutante sich messen ließe.
4 Diskussion

4.4 Das MS2cp/MS2sl-System und das λN/BoxB-System zur in vivo mRNA-Lokalisation in der Spermatogenese von *Drosophila*

Wie bereits erwähnt, spielt in der Spermatogenese von *Drosophila* und von Säugetieren die Speicherung translational reprimierter mRNAs eine wichtige Rolle. Einerseits ist sie notwendig, da in *Drosophila* die Transkription mit Eintritt in die Meiose stoppt und bei Säugetieren im runden Spermatiden-Stadium, was es erfordert, dass mRNAs die während der Spermiogenese benötigt werden, über mehrere Tage hinweg gespeichert und translational reprimiert werden müssen. Andererseits gibt es zumindest für Säugetiere Hinweise dafür, dass die translationale Repression von mRNAs auch als Regulationsmechanismus genutzt wird, da hier auch einige mRNAs zu einer Zeit reprimiert und aus der Repression entlassen werden, zu der noch Transkription stattfindet. Welchen Sinn dies hat ist noch nicht verstanden (Schumacher et al., 1995; Gold et al., 1983).

Lecuyer (2007) zeigt bei in situ Hybridisierungen von mehr als 3000 Genen in der Embryonalentwicklung von *Drosophila*, dass mehr als 70 % aller mRNAs subzellulär lokalisiert sind. Es ist also zu einfach zu glauben, dass die Mehrheit aller mRNAs direkt nach der Transkription translatiert werden. mRNAs werden, nicht nur in der Spermatogenese, lokalisiert und gespeichert und die Zellen verfügen dadurch über eine weitere Ebene zur Regulation der Proteinexpression.

Bei Untersuchungen an 'P-Bodies' (processing bodies) in Hefen konnte gezeigt werden, dass hier nicht nur mRNA-Degradation stattfindet, sondern dass in 'P-Bodies' gespeicherte mRNAs dem Pool der aktiv translatierten mRNAs wieder
4 Diskussion

zugefügt werden können (Brengues et al., 2005). P-Body-ähnliche Strukturen könnten also ein Ort zur mRNA-Speicherung und -Repression sein.

Um zu untersuchen wie und wo die translational reprimierten mRNAs von Mst77F, protamin A und tp^{94D} im Zytoplasma der Spermatozyten und Spermatiden gespeichert werden und wie sich die mRNA in den sehr langen Spermatiden verhält, wenn die Proteine dieser drei Gene benötigt werden, sollten zwei System zur in vivo-Lokalisation der mRNA etabliert werden: das λN/BoxB-System und das MS2cp/MS2sl-System. Beide Systeme beruhen darauf, dass eine mRNA von Interesse mit RNA-Stemloops markiert wird, die von spezifischen Bindeproteinen gebunden werden kann. Diese Bindeproteine werden mit einem Reporter gen markiert und in den gleichen Zelle exprimiert wie die markierte RNA. Das Bindeprotein kann dann an die mit Stemloops fusionierte mRNA binden und diese dann indirekt sichtbar machen.

4.4.1 Die einzelnen Komponenten des λN/BoxB-Systems und des MS2cp/MS2sl-Systems werden in der Fliege exprimiert

Es wurden für beide Systeme Konstrukte etabliert, mit denen die mRNA der eGFP-Fusionsproteine von Mst77F, protamin A und tp^{94D} 3′ des Leserahmens mit Stemloopkassetten fusioniert wurde. Mit Ausnahme des tp^{94D}-eGFP-16xBoxB-Konstruks für das λN/BoxB-System, konnten für alle Konstrukte beider Systeme, transgene Fliegenlinien etabliert und untersucht werden. Alle eGFP-Fusionsproteine die von stemloopmarkierter mRNA exprimiert wurden, hatten exakt das gleiche Expressionsmuster wie die eGFP-Fusionproteine, der schon etablierten eGFP-Fusionskonstrukte ohne Stemloops. Weder die MS2-Stemloops, noch die BoxB-Elemente haben einen Einfluss auf die Expression der Proteine. Die mRNA scheint normal prozessiert und gespeichert zu werden, die translationale Repression wird nicht gestört. Die Konstrukte konnten also für die Erzeugung doppelttransgener Fliegen genutzt werden.

Für die Bindeproteine des λN/BoxB-System und des MS2cp/MS2sl-System, also das λN-Peptid und das MS2-coatprotein, wurden mCherry-Fusionskonstrukte kloniert jeweils, unter der Kontrolle des β2t-Promotors und des CG3473-Promotors. Dabei
wurden die Fusionsproteine mit einem N-terminalen SV40-NLS versehen um die ungebundenen Bindeproteine möglichst im Kern zu halten, was den mCherry-Hintergrund im Zytoplasma möglichst gering halten sollte. Für die Bindeprotein-Konstrukte beider Systeme unter der Kontrolle des CG3473-Promoters konnten zwar schon transgene Fliegenlinien etabliert werden, diese konnten aber noch nicht analysiert werden. Die Bindeprotein-Konstrukte beider Systeme unter Kontrolle des β2t-Promoters wurden transgene Fliegenlinien etabliert und analysiert.

MS2cp-mCherry und λN-mCherry werden im korrekten zeitlichen Rahmen exprimiert, d. h. ab den frühen Spermatozyten und in allen folgenden späteren Stadien. Allerdings verhalten sich die Fusionsproteine in puncto ihrer zellulären Lokalisation unterschiedlich. MS2cp-mCherry ist zu keiner Zeit im Kern lokalisiert und liegt homogen verteilt im Zytoplasma vor. λN-mCherry ist zwar prämeiotisch in den Spermatozyten zum Teil auch im Kern lokalisiert und dort angereichert im Nukleolus, allerdings verbleibt auch hier ein großer Teil des Proteins im Zytoplasma. In postmeiotischen Stadien ist λN-mCherry nur noch homogen im Zytoplasma lokalisiert. In beiden Fällen wird also das SV40-NLS entweder nicht erkannt oder kann nicht bearbeitet werden.

Von Vazquez et al. (2001) wurde das SV40-NLS schon zur Kernlokalisierung in der Spermatogenese von Drosophila genutzt, allerdings wurden hier nur prämeiotische Stadien also Spermatozyten analysiert. Das SV40-NLS ist ein klassisches Kernlokalisationsignal das α− und β−Importine benötigt um erkannt und lokalisiert zu werden. Im Testis von Drosophila werden drei verschiedene α-Importine exprimiert, Impα1, Impα2 und Impα3. Impα2 ist in Spermatozyten und während der Meiose exprimiert, Impα1 während der Meiose und in frühen Spermatiden und Impα3 in den postmeiotischen Stadien (Giarre et al., 2002). Es könnte also sein, dass die SV40-NLS nur von Impα2 erkannt wird und nicht von Impα1 sowie Impα3 und deshalb, im Fall von λN-mCherry, nur in Spermatozyten funktioniert. Da es aber bei λN-mCherry nur zum Teil zu einer Kernlokalisierung führt und bei MS2cp-mCherry gar nicht funktioniert, ist es auch wahrscheinlich, dass das SV40-NLS nicht zugänglich ist, vielleicht aufgrund einer ungünstigen Lage im Protein. Es wurden deshalb neue Konstrukte kloniert, die sich von den ursprünglichen dadurch unterscheiden, dass sie ein zusätzliches SV40-NLS C-terminal tragen. Es werden gerade transgene Linien für die Konstrukte etabliert, die aber im Rahmen dieser Arbeit nicht mehr analysiert werden können.
4 Diskussion

Die Lokalisation der Bindeproteine im Zytoplasma ist für die Analyse der späteren doppelttransgenen Fliegen ungünstig, da dadurch ein starker mCherry-Hintergrund im Zytoplasma verursacht wird, der es schwer machen wird, Akkumulationen oder Konzentrationsveränderungen des mCherry-Signals zu erkennen, die aufgrund der Bindung an stemloop-markierte mRNAs zustande kommt.

4.4.2 Eine mögliche Lokalisation von mRNA an den Spermatidenkernen zum Zeitpunkt der Translation der markierten mRNA

Für beide Systeme wurden doppelttransgene Fliegen etabliert. Für das MS2cp/MS2sl-System das Bindeprotein MS2cp-mCherry unter Kontrolle des β2t-Promotors in Kombination mit den MS2sl-markierten eGFP-Fusions-Konstrukten für Mst77F, protamin A und tpfβ4D und für das λN/BoxB-System das λN-mCherry unter Kontrolle des β2t-Promotors in Kombination mit BoxB-markierten eGFP-Fusions-Konstrukten für Mst77F und protamin A.

Für doppelttransgene Fliegen des λN/BoxB-Systems kann in späten Spermatiden ein mCherry-Signal beobachtet werden, dass in den λN-mCherry einzelntransgenen Fliegen nicht zu beobachten ist. Dabei handelt es sich um ein mCherry-Signal an den elongierten Spermatidenkernen ab dem frühen Kanu-Stadium, wenn die entsprechenden eGFP-Fusionsproteine d. h. Mst77F-eGFP und ProtA-eGFP, der stemloopmarkierten-mRNA translatiert werden. Die Schwierigkeit bei diesem Signal liegt darin zu beurteilen, ob es ein echtes Signal ist, das durch Akkumulation der mRNA hervorgerufen wird oder ob es lediglich ein „Durchbluten“ des eGFP-Signals ist.

Ein Argumente, dass es sich bei dem detektierten Signal um ein mikroskopisches Artefakt handelt ist, dass man ein ähnliches Signal im Rotkanal in Fliegenlinien mit eGFP-Fusionsproteinen alleine sieht, bei dem auch deutliche Unterschiede in der Intensität des Rotsignals im Vergleich zu eGFP-Signal zu beobachten sind.

Es gibt aber auch Argumente, die dafür sprechen, dass das Signal, das man sieht eine Akkumulation der mRNA wiederspiegelt.

Man kann ein Signal im Rotkanal im frühen Kanu-Stadium detektieren, wenn das eGFP-Signal noch kaum zu detektieren ist. Das eGFP-Signal ist hier so schwach,
4 Diskussion

dass es kaum vorstellbar ist, dass es das Signal im Rotkanal hervorrufit. Frühe Stadien mit wenig eGFP-Signal zeigen ein starkes Signal im Rotkanal und späte Stadien mit starkem eGFP-Signal zeigen ein schwaches Signal im Rotkanal. Das passt zu der Annahme, dass in frühen Stadien mehr mRNA benötigt wird als in späteren, wo die benötigte Menge an Protein schon gebildet wurde. Außerdem ist es sinnvoll anzunehmen, dass die mRNA in den extrem langen Spermatiden, mit einer Länge von bis zu 2 mm, die mRNA vor der Translation dort lokalisiert wird, wo das Protein benötigt wird, und das wäre in diesem Fall in Kern Nähe.

Endgültig entscheiden, ob es sich um ein echtes Signal oder ein Artefakt handelt, kann man zu diesem Zeitpunkt noch nicht. Eine endgültige Aussage darüber ob die Systeme zu in vivo mRNA-Verfolgung wirklich funktionieren, kann auch erst getroffen werden, wenn die Probleme bei der Analyse der doppelttransgenen Fliegen behoben sind, auf die im nächsten Abschnitt genauer eingegangen wird.

4.4.3 Probleme und mögliche Verbesserungen bei der Auswertung der doppelttransgenen Fliegen des λN/BoxB-Systems und des MS2cp/MS2sl-Systems

Bei der Auswertung der doppelttransgenen Fliegen kam es bei beiden Systemen zu Problemen die die Beurteilung der Ergebnisse bis jetzt sehr erschweren. Erstens der in beiden Systemen den bereits erwähnten starken zytoplasmatischen Hintergrund durch das ungebundene Bindeprotein-mCherry, das trotz NLS nicht im Kern lokalisiert (Kap.4.4.1).

In beiden Systemen konnte in den doppelttransgenen Fliegen im Zytoplasma von Spermatozyten und Spermatiden kein mCherry-Signal beobachtet werden, das nicht in den einzeltransgenen Fliegen für das Bindeprotein-mCherry zu sehen gewesen wäre. Das kann einerseits bedeuten, dass die Systeme zur mRNA in vivo-Verfolgung in der Spermatogenese von Drosophila nicht funktionieren. Andererseits wären durch den Hintergrund nur starke Akkumulationen von Bindeprotein-mCherry sichtbar. Solche Akkumulationen sind jedoch nicht zu beobachten. Das könnte bedeuten, vorausgesetzt das System funktionierte generell, dass die mRNA wahrscheinlich nicht in größeren Vesikeln oder Partikeln gespeichert wird. Eine mögliche homogene
4 Diskussion

Verteilung der mRNA im Zytoplasma oder eine Speicherung in kleineren Partikeln kann aber nicht ausgeschlossen werden, da diese bei dem starken mCherry-Hintergrund nicht zu sehen wären. Hier werden hoffentlich die neuen Bindeprotein-mCherry-Konstrukte mit der zusätzlichen C-terminalen SV40-NLS hilfreich sein.

Bisher wurden die doppelttransgenen Fliegen nur in frischen, ganzen Testispräparaten analysiert. Es würde vielleicht das Problem des starken Hintergrunds des ungebundenen Bindeprotein-mCherry im Zytoplasma verringern, wenn man Einzelzysten der doppelttransgenen Fliegen untersucht. Wie in der Einleitung erwähnt, entwickeln sich alle Tochterzellen eines Spermatogoniums in einem syncitinalen Zysteverband, genannt Zyste, hier sind die sich entwickelnden Keinzellen von zwei somatischen Zystzellen umschlossen. Diese Zysten lassen sich frei präparieren, dadurch könnte man die Einzelzysten klarer sehen, und die Fluoreszenz benachbarter Zysten würde weniger stören, als bei Analysen des kompletten Testis.

Wenn sich das Problem des starken mCherry-Hintergrunds mit den neuen Bindeprotein-mCherry-Konstrukten nicht lösen lässt, muss darüber nachgedacht werden, eine andere NLS zu nutzen, die in einem im Drosophila-Testis exprimierten Protein enthalten ist. Das Problem ist, dass noch keine NLS für testisexprimierte Proteine in Drosophila wirklich charakterisiert ist. Es gibt nur Computervorhersagen, aber noch keine in vivo getesteten Sequenzen.

Das zweite Problem, das die Auswertung der doppelttransgenen Fliegen erheblich erschwert, ist das Signal, das im Rotkanal zu beobachten ist, wenn Frischpräparate eGFP-transgener Fliegen analysiert werden. Dieses Signal entsteht wahrscheinlich durch ein „Durchbluten“ des eGFP-Signals in den Rotfilter und ist schwer zu erklären, da eGFP eine Emission von 507 nm (Shaner et al., 2005) hat und der genutzte Rotfilter ein Emissionsspektrum von 575-640 nm hat. Selbst wenn man eine Streuung der Emission von eGFP und der Bandbreite des Filters von etwa 20 nm annimmt, sollte der Rotfilter das eGFP-Signal nicht in der beobachteten Stärke durchlassen. Außerdem ist zu beobachten, dass das mutmaßliche eGFP-Signal im Rotfilter in seiner Intensität nicht proportional zum beobachteten eGFP-Signal ist. Eine Verunreinigung des Fliegenstocks mit einem mCherry-Transgen kann ausgeschlossen werden, da das Phänomen in sieben unterschiedlichen eGFP-transgenen Fliegenlinien unterschiedlichster Konstrukte und unterschiedlichster Verweildauer im Labor zu beobachten ist. Eine Autofluoreszenz kann auch

4.4.4 Ausblick: mögliche Fragestellungen und Experimente mit dem \(\lambda N/BoxB \)-System und dem MS2cp/MS2sl-System in Zukunft

Wenn die anstehenden Probleme mit der Auswertung der doppelttransgenen Fliegen der beiden mRNA in vivo-Verfolgungs-Systemen geklärt sind, könnten eine Reihe interessanter Experimente gemacht werden. Zum einen wäre es bei einer homogenen zytoplasmatischen Verteilung der mRNA interessant, Bleaching-Experimente kombiniert mit in vivo imaging mit den doppelttransgenen Fliegen im Vergleich zu den einzeltransgenen Bindeprotein-mCherry Fliegen zu machen. Mit Hilfe solcher Experimente und der beobachteten Regenerationsrate der Fluoreszenz könnte die Partikelgröße und die Diffusionsrate, d. h. die Bewegungsfreiheit der translational reprimierten mRNAs im Zytoplasma, ermittelt werden. Dabei muss aber beachtet werden, dass die Bindung des jeweiligen Bindeproteins an die Stemloop-markierte mRNA auch einer gewissen Dissoziationskonstante unterliegt.

Zur wirklichen in vivo-Verfolgung der mRNA und der Beobachtung, ob sich die gespeicherte mRNA zu unterschiedlichen Zeitpunkten der Spermatozyten- und Spermatidenentwicklung unterschiedlich verhält, wäre es interessant die
4 Diskussion
doppelttransgenen Fliegen des λN/BoxB-Systems und des MS2cp/MS2sl-Systems in Einzelzystkulturen zu beobachten. Damit ist es möglich einzelne, individuelle Zysten über eine bestimmte Entwicklungsphase hin zu beobachten (Awe und Renkawitz-Pohl, 2010, in Druck).
Wenn beide Systeme einwandfrei funktionieren würden, könnte man sie kombinieren, um die Speicherung translational reprimierter mRNAs zu vergleichen, die zu unterschiedlichen Zeiten aus der translationalen Repression entlassen werden. So könnte man z.B. die mRNA von protamin A mit dem MS2sl/MS1cp-System in RNA-rot/Protein-grün verfolgen und gleichzeitig die mRNA von \(tpf^{64D} \) mit dem λN/BoxB-System in RNA-grün/Protein-rot. Das würde vielleicht interessante Einsichten in die unterschiedliche Aufhebung der translationalen Repression verschiedener mRNAs bringen. Über den Mechanismus dieser differenzierten Entlassung aus der translationalen Repression ist bis heute noch nichts bekannt.
5 Material und Methoden

5.1 Material

5.1.1 Oligonukleotide

((# XY) → Laborinterne Nummerierung)

Für two-sided PCR
1.) WH+gen-rev (# 6) CCGCATTGATCGCCAATGACAACC
2.) WH+gen-forw (# 7) TTCCACCCGAAACCACACCGCACCTA

Für RT-PCR und Sonden
3.) Fw-ATG-CG4480 (# 20) ATGTTTCGTTTGGTGCCCGG
4.) Rev-CG4480-Ncol (# S61) GCGGCCATGGATGGTGACCCAGG
 GCATAG
5.) FW-ATG-CG15278 (# 19) ATGCTGCTTATTTTGCAAC
6.) Rev-CG15278-Xbal (# 3) GGCNTCTGAAACAAGATCCCAGCT
 GAC
7.) F-35Bb,Ba-ATG (# S24) GGCGGATCCATGAGTTCAAATAATGTAAAT
8.) Ba-rev-Ncol (# S48) GCCGCCATGGATGGTGAAATCCCGG
9.) Bebe-Rev-Ncol (# S51) GCCGCCATGGATGGTGAAATCCCGG
 CTGTGG
10.) Rev-CG15279 (# 9) CGGGGTCAACTCATTCTCGAT
11.) Fw-CG15279 (#10) CGGAGTGAAGAGTTCGGGAAAG
12.) CG33309-Fw1-Ex2 (# 30) TCTGACAGGGTATGAATCGG
13.) CG33309-Rv1-Ex2 (# 32) CTGTTCGATGTATTGCGATTC

Zur Klonierung der mRNA-Verfolgung mit dem MS2cp/MS2sl-System und dem λN/BoxB-System
14.) Fw-boxb-Spe (# 80) GACTAGTCTTAGATGGCCGCAGAATTCC
15.) Rev-boxb-BamHI (# 76) CGCGAATCCCGCCTTAATTAAGCATCGATG
5 Material und Methoden

16.) Fw-Spe-NLS-LN-Bam (# Si1) ACTAGTTTAATGCCAAAAAAGAAAAAGAAA
AGTTATGGCCAGATCTGACGCCCAGACGCGT
CGTCGGAGCGTGTCGGAGAAGCAGGC
CAGTGAAGCGCCCGCCAACGGATCCGCG
17.) Rev-Spe-NLS-LN-Bam (# Si2) CGCGGATCCGTTGGCGCCTGCTGCT
GCCTGCTTCTCGGCACGACGTGGCTTTT
CTTTTCTTTTTTGGCATTAAACTAGT
18.) MF821-SpeI (#69) ACTAGTACATGAGGATCACCCATGTTCA
CCAT
19.) MF822-BamHI (# 70) GGATCCACATGAGGATCACCCATGTTCA
CTTTCC
20.) Fw-SpeI-NLS-MS2cp (# 123) ACTAGTATGCCAAAAAAGAAAAAGAAAAGT
TATGGCTTCCAACTTCACCCAGTTTGTG
21.) Rev-BamHI-MS2cp (# 122) GGCGGGATCCTTCAGCGTGGAGACCTGGAA
5.1.2 Geräte

Für das Promotor-LacZ-Konstrukt pc77F3-Δ5´UTR-29bp
28.) 77f-rev-5´-BamHI (# 8) GGCGGGATCCTTCAGCGTGGAGACCTGGAA

5.1.2 Geräte

Fluoreszenzmikroskop Axioplan 2 imaging, Zeiss
Fluoreszenzlampe FluoArc, Zeiss
Digitale Fluoreszenzmikroskopkamera AxioCam MR.Zeiss
Fotomikroskop Axiophot, Zeiss
5 Material und Methoden

Digitale Fotomikroskopkamera AxioCamCc1, Zeiss
Stereomikroskop Stemi SV 6
Elektrophoreseapparaturen Werkstatt Universität Marburg
Kühlzentrifuge Heraeus Megafuge 1.0 R; Biofuge freco, Heraeus
Magnetrührer Mono Variomag; Monotherm, Variomag
pH-Meter GPRT 1400 A, Greising electronic
PCR-Maschine Personal Cycler, Biometra
Photometer Ultrospec 3000, Pharmacia Biotech
Pipettenset 1µl-1000µl Transferpette S, Brand
Reaktionsgefäßschüttler Reax 2000, Heidolph
Schüttler Rocky 3D Horizontalschüttler
Spannungsquelle Power Pac 300, Biorad
Tischzentrifugen Biofuge pico, Heraeus
Thermoblock HBT 130, HCL
UV-Crosslinker UV Stratalinker™ 2400, Stratagene
Vakuumbad Univapo 100 H
Vortex-Gerät MAGV, Rabenau, Londorf
Wasserbad Haake 5P; Haake C1
Kapillarziehgerät Vertical Pipette Puller 720, Kopf
Mikroinjektionsapparatur 5242 Hermle ZK401, Eppendorf
Mikromanipulator Leitz
Hybridisierungsofen Unitherm Hybridisationoven, UniEquip

5.1.3 Chemikalien

Acrylamid Fluka
Adenosintriphosphat (ATP) Boehringer
Agarose Invitrogen
Albumin Fraktion V Roth
Ampicillin Roth
Ammoniumpersulfat (APS) Merck
Bacto-Agar Difco
5 Material und Methoden

Bacto-Trypton Difco
β-Mercaptoethanol Roth
5-Bromo-4-chloro-3-indolyl-phosphat (X-Phosphat) Boehringer
5-Bromo-4-chloro-3-indoxyl-β-D-thiogalactosid (X-Gal) Roth
Borsäure Fluka
Bromphenolblau Merck
Desoxycholsäure Natriumsalz Roth
Di-Natriumhydrogenphosphat Merck
Diethylether Roth
Digoxigenin Boehringer
1,4-Dithio-L-threitol (DTT) Fluka
DNAzol Invitrogen
Essigsäure Roth
Ethanol Roth
Ethidiumbromid Sigma-Aldrich
Ethylendiaminotetraessigsäure (EDTA) Roth
Ficoll Sigma
Formaldehyd (37% Lösung) Sigma
Formamid Merck
Glukose Merck
Glutaraldehyd Sigma-Aldrich
Glycin Roth
Glykogen Fluka
Harnstoff Roth
Heparin Roth
Heptan Roth
Heringssperma DNA Fluka
Isopropanol Roth
Kaliumacetat Roth
Kaliumhydroxid Merck
Levamisol Sigma-Aldrich
Magnesiumchlorid Roth
Methanol Roth
Natriumacetat Roth
5 Material und Methoden

Natriumchlorid Roth
Natriumdihydrogenphosphat Roth
Natriumdodecylsulfat (SDS) Sigma
Natriumhydroxid Roth
4-Nitrotetrazoliumchlorid (NBT) Roche
Octylphenolpolyethylenlycolether (Triton X-100) Roth
Phenol Merck
Poly-L-Lysin solution Sigma-Aldrich
Polyoxyethylensorbitanmonolaurat (Tween 20) Roth
Polyvinylpyrrolidon Roth
Propionsäure Sigma-Aldrich
Ribonukleotide Boehringer
Rinderserumalbumin (BSA) Roth
Salzsäure Roth
Tris Roth
TRIzol Invitrogen

Weitere, hier nicht aufgeführte Chemikalien wurden von den Firmen Invitrogen/Gibco, Merck, Roth, Serva und Sigma-Aldrich bezogen.

5.1.4 Enzyme

Klenow Polymerase Amersham Pharmacia Biotechs
ProteinaseK Boehringer
Restriktionsendonukleasen Amersham Pharmacia Biotechs, Roche, Mannheim New England Biolabs
RNase A Boehringer
Taq DNA Polymerase Peqlab, Qiagen
T4-DNA-Ligase Fermentas
RnaseOut Invitrogen
SuperScript RT-Polymerase Invitrogen
5 Material und Methoden

5.1.5 Fertige Reagenziensätze

DIG-RNA-Labeling-Kit Boehringer
GFX™ PCR DNA and Pharmacia
Gel Band Purification Kit
Jetstar Plasmid Kit 2.0 Genomed
Mass Ruler DNA-Ladder, Mix MBI Fermentas
Mass Ruler DNA-Ladder, Low Range MBI Fermentas
Oligotex® mRNA Mini Kit Qiagen
OneStep RT-PCR Kit Qiagen
TOPO TA Cloning-Kit Invitrogen
In Situ Cell Death Detection Kit,TMR Red Roche
Prime-it® II Random Primer Labeling Kit Stratagene
Chromatin Immunoprecipitation Assay Kit Upstate
PCR Purification Kit Qiagen

5.1.6 Sonstiges Material

Präparier-Pinzetten (Inox 5) Dumont & Fils
Objekträger Roth
Deckgläschen Roth
Hybond N-Membran Amersham, Braunschweig
Whatman Papier Schleicher und Schütte

5.1.7 Lösungen, Medien und Puffer

Gelladepuffer (10x): 0,1 % Bromphenolblau
0,9 % Borsäure
40 % Glycerin in TAE, TBE oder MOPS
0,1 % Xylencyanol
5 Material und Methoden

PBS: 130 mM NaCl
7 mM Na₂HPO₄
3 mM NaH₂PO₄

PBT: 0,1 % Tween 20 in PBS

PBSTD: 0,3 % Triton X-100 und
0,3 % Natriumdeoxycholat in PBS

LB-Agar: 1 % Bacto-Trypton
0,5 % Hefeextrakt
85,5 mM NaCl
1,5 % Bacto-Agar

LB-Medium: 1 % Bacto-Trypton
0,5 % Hefeextrakt
85,5 mM NaCl

TAE (10x): 2000 mM Tris/Acetat (pH 7,7)
100 mM EDTA (pH 7,7)

TBE (10x): 900 mM Tris
900 mM Borsäure
20 mM EDTA

TE-Puffer 1 mM Tris HCl
10 mM EDTA

20 x SSC 3 M NaCl
03 M Na-Citrat*2H₂O
In ddH₂O pH 7,0 einstellen mit HCl
5 Material und Methoden

5.1.8 *Drosophila melanogaster* Fliegenstämme

White
w¹, +; Transformationsstamm, (Klemenz, 1987)

CSTM
w⁻; Sp/CyO; MKRS/TM2; balancierter Multimarkerstamm zur chromosomalen Lokalisation von Insertionen.

dj Pr650-lacZ
Transgener, P-Element tragender Fliegenstamm, der auf dem Transformationsvektor p*ChabΔsal* basiert. Dabei wurden 650 bp, stromaufwärts des AUG-translationsstarts gelegene, genomische *dj*-Sequenzen vor das *lacZ*-Reportergen kloniert (Hempel et al., 2006). Die Zahlen geben die dem AUG vorgelagerten Basenpaare an.

dj like D52-lacZ
Transgener, P-Element tragender Fliegenstamm, der auf dem Transformationsvektor p*ChabΔsal* basiert. Dabei wurden die ersten 52, stromaufwärts des AUG-Translationsstarts gelegenen Basenpaare der *dj*-Sequenz deletiert und 598, stromaufwärts der Deletion gelegene Basenpaare vor das *lacZ*-Reportergen kloniert (Hempel et al., 2006).

protB-eGFP
Transgener, P-Element tragender Fliegenstamm, der auf dem Transformationsvektor p*ChabΔsal* basiert. Das transgene Konstrukt trägt ein Fusionsgen aus dem protB-ORF unter Kontrolle des eigenen Promotors und eigener 5´ UTR und einem c-terminalen eGFP (Jayaramaiah Raja und Renkawitz-Pohl, 2005).

protA-eGFP
Transgener, P-Element tragender Fliegenstamm, der auf dem Transformationsvektor p*ChabΔsal* basiert. Das transgene Konstrukt trägt ein Fusionsgen aus dem protA-ORF unter Kontrolle des eigenen Promotors und eigener
5 Material und Methoden

5` UTR und einem c-terminalen eGFP. (Jayaramaiah Raja und Renkawitz-Pohl, 2005)

Mst77F-eGFP Transgener, P-Element tragender Fliegenstamm, der auf dem Transformationsvektor pChab∆sal basiert. Das transgene Konstrukt trägt ein Fusionsgen aus dem Mst77F-ORF unter Kontrolle des eigenen Promotors und eigener 5` UTR und einem c-terminalen eGFP (Jayaramaiah Raja und Renkawitz-Pohl, 2005).

can^{12} can^{12}/TM3; männlich sterile Mutante mit einer P-Element-Insertion in dem Gen cannonball (Hiller et al., 2001) freundlicherweise zur Verfügung gestellt von M. T. Fuller.

BL-6 P{hsFLP}^{1}, w^{1118}; Adv^{1}/CyO; Fliegenlinie mit Hitzeschock induzierbarer FLP-Rekombinase auf dem X-Chromosom.

f04398 pBac[WH]f04398; FRT Insertions Stamm der zur Erzeugung der Protamin Deletion genutzt wurde. Intergrationsort ist im letzten Intron des Gens CG33309. Stamm erhalten von der Exelixis Collection an der Harvard Medical School (Thibault et al., 2004).

5 Material und Methoden

erhalten von der Exelixis Collection an der Harvard Medical School (Thibault et al., 2004).

5.1.9 Antikörper

Anti-sa (Chen et al., 2005)
Anti Digoxigenin-AP Fab Fragment Roche

5.1.10 Bakterienstamm

Folgender Stamm des Bakteriums *Escherichia coli* K12 wurde verwendet:

DH5α
\[supE44, \, \Delta lacU169, \, F^- \, \Phi 80\Delta lacZ, \, \Delta M15, \, \Lambda mda^- \,\]
\[hsdR17, \, recA1, \, endA1, \, gyrA96, \, thi-1, \, relA1. \]

5.1.11 Computer-Software

Textverarbeitungsprogramm: Microsoft Word XP
Bildbearbeitungsprogramm: Adobe Photoshop 7.0
\[\text{ImageJ} \]
DNA-Analyseprogramme: ApE
5 Material und Methoden

5.2 Methoden

5.2.1 Allgemeine Fliegenarbeiten

5.2.1.1 Haltung von Drosophila melanogaster

Drosophila melanogaster Nährmedium Mais-Grieß-Agar: 60 % Maisgrieß
- 7,15 % Fruktose
- 1,2 % Trockenhefe
- 0,14 % Nipagin
- 0,6 % Propionsäure
- 0,7 % Agar

Die Fliegenzucht erfolgt in Kulturröhrchen in drei verschiedenen Größen (2,5 cm; 3 cm; 4 cm), die mit milbensicheren Stopfen verschlossen werden. Die Röhrchen sind zu 1/4 mit Nährmedium befüllt. Das Nährmedium wird zusätzlich mit Trockenhefe bestreut, um die Eiablage zu stimulieren. Die Fliegen werden bei 25° C oder bei 18° C gehalten. Betäubt werden die Fliegen mit CO2 oder Diethylether.

5.2.1.2 Kreuzungen von Drosophila melanogaster

Zur Kreuzung von *Drosophila melanogaster* werden jungfräuliche Weibchen und Männchen zusammen in ein kleines Zuchtröhrchen gegeben. Um jungfräuliche Weibchen zu erhalten werden die Flaschen aus denen die Weibchen abgesammelt werden sollen leer geklopf, alle Weibchen die dann innerhalb der nächsten vier bis sechs Stunden schlüpfen sind jungfräulich, da die Männchen erst sechs Stunden nach dem Schlüpfen fertil werden.
5 Material und Methoden

5.2.1.3 P-Element vermittelte Keimbahntransformation in Drosophila melanogaster
(Rubin und Spradling, 1983)

5.2.1.4 Sammeln und Entchorionisierung von Fliegenembryonen

Apfelsaftagar 25 % Apfelsaft
1,25 % Saccharose
2,5 % Trockenhefe
0,2 % Nipagin
2,7 % Agar

Zwei bis drei Tage alte Fliegen werden zur Eiablage auf Apfelsaftagarschalen gesetzt (5 cm), die zur Stimulation der Eiablage mit etwas Hefe bestrichen sind. Zur Injektion werden die Embryonen alle 30 Minuten abgesammelt. Die ersten zwei bis drei Ablagen werden verworfen. Die Embryonen werden dann in ein feinmaschiges Stahlnetzkörbchen überführt und mehrmals mit 0,7 % NaCl (+ 0,02 % Triton X-100) gewaschen, um Heferückstände zu entfernen. Die Embryonen werden dann durch Zugabe von einer 1:1 Mischung von Klorix (Chlorreiniger, Natriumhypochlorid) und
5 Material und Methoden

Wasser für zwei bis drei Minuten entchorionisiert. Anschließend werden die Embryonen nochmal gründlich mit 0,7 % NaCl (+ 0,02 % Triton X-100) gewaschen. Die entchorionisierten Embryonen werden dann auf einen Apfelsaftagarblock zur Injektion aufgereiht und auf ein Deckgläschen geklebt. Um den inneren Druck der Embryonen zu vermindern, werden sie etwa acht Minuten getrocknet und anschließend mit Mineralöl abgedeckt.

5.2.1.5 Mikroinjektion der Embryonen

10x Injektionspuffer 1 mM NaHPO₄ (pH 7,4)
10 mM KCl

Injektionsmischung 10 ng Transformationsvektor
2,5 ng pπ25,7wc Helferplasmid
2,5 µl 10x Injektionspuffer
mit ddH₂O auf 25 µl auffüllen

5 Material und Methoden

5.2.1.6 Selektion der transgenen Fliegen

Die Selektion der transgenen Fliegen ist möglich durch den dominanten Selektionsmarker white w^{1} (Klemenz et al., 1987). Da die Transposition des Vektors nur in der Keimbahn stattfinden kann, sind die ersten transgenen Fliegen erst nach einer Kreuzung mit dem Injektionsstamm w^{1} in der F1-Generation zu finden. Die transgenen Fliegen sind durch die rote Augenfarbe von denen des Injektionsstamms, die weiße Augen haben, zu unterscheiden. Um Mehrfach-Insertionen des Vektors zu verringern werden 2-3 Generationen lang transgene Weibchen gegen w^{1} Männchen gekreuzt. Die heterozygoten transgenen Fliegen werden dann untereinander verkreuzt, um homozygote Fliegen zu erhalten, diese sind an der dunkleren Augenfarbe zu erkennen.

5.2.2 Erzeugung einer präzisen Deletion des Protamin Lokuses

5 Material und Methoden

5.2.3 Muller5-Test zur Bestimmung der Mutationsrate auf dem X-Chromosom

5 Material und Methoden

5 Material und Methoden

5.2.4 Präparation und Analyse von DNA und RNA

5.2.4.1 Erzeugung chemisch kompetenter *Escherichia coli*

(Sambrook et al., 1998)

SOB-Medium

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Konzentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 % (w/v) Bacto-Trypton</td>
<td></td>
</tr>
<tr>
<td>0,5 % (w/v) Hefeextrakt</td>
<td></td>
</tr>
<tr>
<td>10 mM NaCl</td>
<td></td>
</tr>
<tr>
<td>2,5 mM KCl</td>
<td></td>
</tr>
<tr>
<td>10 mM MgCl₂</td>
<td></td>
</tr>
<tr>
<td>10 mM MgSO₄</td>
<td></td>
</tr>
</tbody>
</table>

RF1

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Konzentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 mM RbCl</td>
<td></td>
</tr>
<tr>
<td>50 mM MnCl</td>
<td>(erst nach dem Autoklavieren zugeben)</td>
</tr>
<tr>
<td>230 mM KCl</td>
<td></td>
</tr>
<tr>
<td>10 mM CaCl</td>
<td></td>
</tr>
<tr>
<td>15 % (v/v) Glycerin</td>
<td></td>
</tr>
</tbody>
</table>

RF2

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Konzentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 mM MOPS (pH 6,8)</td>
<td></td>
</tr>
<tr>
<td>10 mM RbCl</td>
<td></td>
</tr>
<tr>
<td>75 mM CaCl</td>
<td></td>
</tr>
<tr>
<td>15 % (v/v) Glycerin</td>
<td></td>
</tr>
</tbody>
</table>

2,5 ml einer Übernacht-Kultur von *Escherichia coli Dh5α* werden in 250 ml SOB-Medium überführt (1:100) und bis zu OD 600 von 0,5 - 0,6 auf dem Schüttler inkubiert. Nach 15 Minuten Inkubation auf Eis, werden die Zellen durch Zentrifugation bei 4000 upm und 4 °C für 10 Minuten pelletiert. Das Pellet wird in 80 ml kaltem RF1-Puffer resuspendiert und wieder 15 Minuten auf Eis inkubiert. Die Zellen werden dann erneut bei 4000 upm und 4 °C durch Zentrifugation pelletiert, in 20 ml kaltem RF2-Puffer resuspendiert und für 15 Minuten auf Eis inkubiert. Die Zellsuspension wird anschließend in 200 µl Aliquots aufgeteilt und in flüssigem Stickstoff eingefroren. Die Lagerung erfolgt bei -80 °C.
5 Material und Methoden

5.2.4.2 Transformation chemisch kompetenter *Escherichia coli*

5.2.4.3 Plasmid-Mini-Préparation (analytischer Maßstab)

S1-Lösung 50 mM Tris/HCL, pH 8,0
10 mM EDTA
100 µg/ml RNAse A

S2-Lösung 200 mM NaOH
1 %(w/v)SDS

S3-Lösung 2,6 M Kaliumacetat, pH 5,2 mit Essigsäure

In 3 ml LB-Medium plus Antibiotikum wird eine Einzelkolonie angeimpft und über Nacht auf dem Schüttler bei 37 °C inkubiert. Die Bakteriensuspension wird bei 6.000 upm für eine Minute zentrifugiert und der Überstand verworfen. Das entstandene Pellet wird in 100 µl P1 resuspendiert. Um die Zellen zu lysieren werden 200 µl P2 zugegeben und fünf Minuten bei Raumtemperatur inkubiert. Die Mischung wird anschließend zur Neutralisation und Proteinfällung mit 150 µl P3 und 40 µl Chloroform versetzt und fünf Minuten bei 13.000 upm zentrifugiert. Der Überstand wird in ein neues Eppendorf-Reaktionsgefühl überführt, und die enthaltene Plasmid-DNA durch Zugabe von 0,6 Vol Isopropanol und anschließender Zentrifugation für 30
5 Material und Methoden

Miunten bei 13.000 upm bei 4°C gefällt. Der Überstand wird abgenommen und das DNA-Pellet mit 70% Ethanol für 10 Minuten gewaschen. Anschließend wird es getrocknet und in 40 µl ddH₂O resuspendiert. Lagerung erfolgt bei -18°C.

5.2.4.4 Plasmid-Midi-Präparation (präparativer Maßstab)

5.2.4.5 Präparation von genomischer DNA aus Drosophila melanogaster

Extraktionspuffer
100 mM Tris/HCl, pH 9,0
100 mM EDTA, pH 9,0
1 % (w/v) SDS

Etwa 30 Fliegen werden in 100 µl Extraktionspuffer in einem 1,5 ml Eppendorfreaktionsgefäß mit einem Pistill zerstoßen und für 30 Minuten bei 65°C inkubiert. Anschließend werden 14 µl 8 M KAc zugegeben und die Mischung 30 Minuten auf Eis inkubiert. Anschließend wird bei 13.000 upm bei 4°C für 15 Minuten zentrifugiert um die Fliegenrückstände zu pelletieren. Der DNA-haltige Überstand wird in ein neues 1,5 ml Eppendorfreaktionsgefäß überführt. Die DNA wird durch Zugabe von 0,6 Vol Isopropanol gefällt und durch 30 Minuten Zentrifugieren bei 13.000 upm und 4°C pelletiert. Das DNA-Pellet wird zweimal mit 70 % Ethanol gewaschen, getrocknet und in 30-100 µl ddH₂O resuspendiert. Die Lagerung erfolgt bei -20°C.

5.2.4.6 „Single Fly“ DNA Präparation

SquiB
10 mM Tris, pH 8,2
5 Material und Methoden

1 mM EDTA
25 mM NaCl

Eine Fliege wird in 50 µl SquiB plus 1 µl ProteinaseK (20 mg/ml) mit einem Pistill zermörtelt und für 30 Minuten bei 37 °C inkubiert. Zur Inaktivierung der ProteinaseK wird der Ansatz für zwei Minuten auf 85 °C erhitzt. Aufbewahrung bei 4 °C. Für eine PCR werden 10µl eingesetzt.

5.2.4.7 Isolation von Gesamt-RNA und mRNA aus Drosophila melanogaster Testes

5.2.4.8 Agarosegelelektrophorese

(Sambrook et al., 1998)

In der Gelelektrophorese werden DNA-Moleküle aufgrund ihrer Größe in einem Agarosegel aufgetrennt. Die DNA läuft entlang eines Spannungsfelds, gegensätzlich zu ihrer eigenen Ladung, zum positiven Pol durch ein TAE- oder TBE-Agarosegel. Die Agarosekonzentration liegt, abhängig von der Größe der DNA-Moleküle, zwischen 0,8 % und 2,0 %. Dem Agarosegel sind 0,5 µg/µl Ethidiumbromid zugesetzt, um die DNA unter UV-Licht sichtbar zu machen. Die DNA wird mit 1/6 Vol Ladepuffer aufgetragen und unter einer Spannung zwischen 60 und 100 V laufen gelassen.
5 Material und Methoden

5.2.4.9 Isolation von DNA aus Agarosegel

5.2.4.10 Bestimmung der Nukleinsäure-Konzentration

Nukleinsäuren können aufgrund ihrer maximalen Absorption bei einer Wellenlänge von $\lambda = 260$ nm photometrisch quantifiziert werden. Aus der Absorption (OD) lässt sich aufgrund folgender Beziehungen die Konzentration doppelsträngiger DNA in ng/µl bei einer Dicke der Quarzküvette von 1 cm berechnen:

$$\text{OD} 260 \times 50 \times \text{Verdünnungsfaktor}$$

5.2.4.11 Ethanolfällung von DNA

(Ausubel et al., 1993)

5.2.5 Southern Blot Analyse

(Sambrook et al., 1998)

DNA Isolation und Kapillarblot
5 Material und Methoden

Alkaliner Transfer Puffer 0,4 N NaOH
1 m NaCl

Neutralisationspuffer 0,5 M Tris HCl pH 7,2
1 M NaCl

Genomische DNA aus einem 1,5 ml Eppendorfgefäβ voll Fliegen wurde mit DNAzol (Invitrogen) laut Herstellerangaben isoliert. 5 µg DNA werden mit 10 U EcoRI 7 Stunden bei 37°C verdaut. Die verdaute DNA wird dann auf einem 0,7 % TAE-Agarosegel sehr langsam laufen gelassen bis sie stark aufgetrennt ist. Das Gel wird mit Lineal fotografiert um später den Banden auf dem entwickelten Film Größen zuordnen zu können. Die DNA im Gel wird dann denaturiert indem das Gel zweimal 15 Minuten bei Raumtemperatur in alkalinem Transfer Puffer gewaschen wird. Um die Hybond-N-Membran vorzubereiten wird sie in ddH₂O gewässert bis sie durchnässt ist und dann für mindestens fünf Minuten in alkalinem Transfer Puffer schwimmen gelassen. An Membran und Gel wird die gleiche Ecke abgeschnitten, um die Orientierung bestimmen zu können. Es erfolgt der Transfer der DNA auf die Membran durch einen Kapillarblot nach Sambrook (1998). Nach dem Blot wird die Membran für 15 Minuten in Neutralisations Puffer gewaschen. Die DNA auf der noch feuchten Membran wird dann im UV-Crosslinker kovalent an die Membran gebunden.

Markierung der Sonden und Hybridisierung

Hybridisierungslösung 6x SSC
5x Denhardts
0,5 % SDS
100 µg/ml Heringssperma DNA

100x Denhartds 1 % (w/v) Ficoll
1 % (w/v) Polyvinylpyrrolidon
1 % (w/v) BSA

„blue juice“ 20 mM Tris, pH 7,5
5 Material und Methoden

1 mM EDTA, pH 8,0
0,25% Bromphenolblau

Zuerst wird die Membran in 6x SSC (Material) eingeweicht, sie muss für mindesten zwei Minuten untergetaucht sein. Zur Prähybridisierung wird die Membran für eine Stunde bei 68°C in Hybridisierungslösung inkubiert. Derweil werden die Sonden mit \(^{32}\)P markiert. Die Markierung erfolgt mit dem Prime-it® II Random Primer Labeling Kit von Stratagene® nach Herstelleranweisungen. Die Markierungsreaktion wird mit 50 µl „blue juice“ gestoppt. Es werden Säulen mit Capture Agarose zur Reinigung der Sonden vorbereitet dazu wird in 0,5 ml Reaktionsgefäß mit Loch im Boden mit 100 µl Glasperlen und 500 µl Biogel P10 gefüllt und in ein 1,5 ml Reaktionsgefäß gestellt und für eine Minute bei 1000 upm zentrifugiert. Die Sonden werden nun auf die vorbereiteten Säulen gegeben und bei 1000 upm zentrifugiert. Danach werden die Sonden für fünf Minuten bei 100°C gekocht und auf Eis abgekühlt. Die vorbereiteten Sonden werden jetzt auf die Membran gegeben. Die Hybridisierung erfolgt bei 68°C über Nacht.

Waschen der Membran

Waschlösung 1 2 x SSC

Waschlösung 2 2x SSC

Waschlösung 3 0,1 x SSC

Waschlösung 4 0,1 % SDS

5 Material und Methoden

Waschschritt mit Waschlösung 4 erfolgt wieder bei Raumtemperatur für wenige Minuten. Die Membran wird dann mit einem Papiertuch abgetupft und noch feucht in Frischhaltefolie eingewickelt. In der Dunkelkammer wird sie dann auf einen Film aufgelegt und dann bei -80 °C für eine Woche belichtet. Danach wird der Film in der Dunkelkammer entwickelt.

5.2.6 Enzymatische Manipulationen von DNA-Molekülen

5.2.6.1 Verdau von DNA mittels Restriktionsendonukleasen

Verdauansatz DNA 0-100 ng
Restriktionsenzym 0,5-1 U
10x Puffer 2 µl
BSA (optional) 2 µl
Triton (optional) 2 µl
ddH₂O auf 20 µl auffüllen

Die Reaktion findet für ein bis zwei Stunden bei 37 °C statt.

5.2.6.2 Dephosphorylierung von 5´Enden zur Prävention der Religation des Vektors

5 Material und Methoden

5.2.6.3 Ligation von DNA-Fragmenten

Ligationsansatz

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Menge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vektor-DNA</td>
<td>50-100 ng</td>
</tr>
<tr>
<td>Insert-DNA</td>
<td>1x, 3x und 6x molare Menge der Insert DNA</td>
</tr>
<tr>
<td>10x Ligase-Puffer</td>
<td>2 µl</td>
</tr>
<tr>
<td>T4 Ligase</td>
<td>2 U</td>
</tr>
<tr>
<td>ddH₂O</td>
<td>auffüllen auf 20 µl</td>
</tr>
</tbody>
</table>

In die Reaktion werden 50-100 ng Vektor-DNA eingesetzt und die ein- bis sechsfach molare Menge der Insert-DNA. Die Reaktion findet bei RT für 30 Minuten statt.

5.2.6.4 Polymerase Kettenreaktion (PCR)

(Saiki et al., 1988)

PCR-Reaktionsansatz

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Menge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Template-DNA</td>
<td>5-50 ng</td>
</tr>
<tr>
<td>Vorwärts-Primer (25 pmol/µl)</td>
<td>1 µl</td>
</tr>
<tr>
<td>Rückwärts-Primer (25 pmol/µl)</td>
<td>1 µl</td>
</tr>
<tr>
<td>10x PCR-Puffer</td>
<td>5 µl</td>
</tr>
<tr>
<td>5x Enhancer Lösung</td>
<td>10 µl</td>
</tr>
<tr>
<td>dNTPs (10 mM pro NTP)</td>
<td>1 µl</td>
</tr>
<tr>
<td>ddH₂O</td>
<td>auffüllen auf 50 µl</td>
</tr>
</tbody>
</table>

PCR-Programm
5 Material und Methoden

1. Schritt Denaturierung 90°C 10 Minuten
2. Schritt Denaturierung 90°C 1 Minute
3. Schritt Primeranlagerung Primer spezifische Temperatur 1 Minute
4. Schritt Elongation 72°C Zeit abhängig von der Größe des Fragments
5. Schritt Elongation 72°C 10 Minuten

Nach dem vierten Schritt der DNA-Synthese erfolgt ein Rücksprung zum zweiten Schritt. Der Zyklus wird dann 30 - 35mal wiederholt.

5.2.6.5 Klonieren mit dem TOPO™-TA-Vektor-Kit
(nach Angaben des Herstellers Invitrogen)

Klonierungsansatz

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Volumen</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCR-Produkt</td>
<td>0,5 µl - 2 µl</td>
</tr>
<tr>
<td>TOPO™-TA-Vektor</td>
<td>0,2 µl - 0,5 µl</td>
</tr>
<tr>
<td>Salzlösung</td>
<td>1 µl</td>
</tr>
<tr>
<td>ddH₂O</td>
<td>auf 7 µl auffüllen</td>
</tr>
</tbody>
</table>

5.2.7 Histologische Methoden

5.2.7.1 Immunfluoreszenzfärbungen an Testesquetschpräparaten
5 Material und Methoden

5.2.7.2 Terminal transferase dUTP nick end labeling (TUNEL) zur Detektion von DNA Brüchen

5 Material und Methoden

15 Minuten in PBT + 3 % BSA gewaschen. Erst direkt vor der Verwendung werden
45 µl Labeling Solution und 5 µl Enzym Solution aus dem Kit vermischt, auf die
Präparate gegeben und für 90 sec bei 37°C inkubiert. Danach werden die Präparate
damit mit PBT + 3 % BSA gewaschen wobei beim zweiten Waschschritt 1 µg/ml
Hoechst 33258 zur Waschlösung hinzugegeben wird. Zur mikroskopischen
Auswertung werden die Präparate in Fluoromount G eingebettet. Die Lagerung der
Präparate erfolgt unter Lichtabschluss bei 4°C

5.2.7.3 X-Gal-Färbung an Drosophila melanogaster Testes

Fixierlösung für X-Gal-Färbungen 60 µl 25% Glutardialdehyd
 in 2 ml 100 mM Phosphatpuffer, pH 7,4

Färbelösung für X-Gal-Färbungen 10 mM Phosphatpuffer
 150 mM NaCl
 1 mM MgCl₂
 0,3 % TritonX-100
 3,3 mM K₃[Fe(II)(CN)₆]
 3,3 mM K₄[Fe(II)(CN)₆]

Die Testes werden in PBS präpariert und 15 Minuten (larvale Testes fünf Minuten) in
der Fixierlösung fixiert. Anschließend zweimal mit PBS waschen dann wird 1 ml
Färbelösung zugegeben. Die Färbung wird dann durch Zugabe von 20 µl 10 % X-Gal
(Stocklösung in DMF) gestartet. Die Färberreaktion sollte im Dunkel stattfinden und
dann durch Inkubation bei 37°C beschleunigt werden. Ist die Färbung intensiv genug,
will sie durch PBS-Waschungen gestoppt. Die Testes werden in Glycerin
eingebettet.

5.2.7.4 RNA in situ Hybridisierung an Drosophila melanogaster Testes

Herstellung der DIG markierten RNA Sonde
5 Material und Methoden

RNA Hybridisierungslösung
- 50% Formamid
- 5x SSC
- 100 µg/ml Heparin
- 100 µg/ml Heringssperma DNA
- 0,1% Tween 20

Färbelösung
- 0,1 M NaCl
- (immer frisch ansetzten)
- 0,05 M MgCl₂
- je 5 ml pro Probe
- 0,1 M Tris, pH 9,5
- 1 mM Levamisol
- 0,1% Tween 20

Präparation und Fixierung

Die Testes werden in PBS präpariert und auf Eis gelagert bis sie fixiert werden. Zur Fixierung werde sie 20 Minuten mit frisch angesetztem F-PBS behandelt und danach dreimal fünf Minuten mit PBT gewaschen. Es folgt ein ProteinaseK Verdau (10 µl ProteinaseK (5 mg/ml) auf 990µl PBT) für 90 sec. Dieser wird mit Glycerin (100 µl Glycerin (20 mg/ml) auf 900 µl PBT) abgestoppt. Es wird zweimal fünf Minuten mit PBT gewaschen und 20 Minuten mit 4% F-PBS refixiert und danach noch zweimal fünf Minuten mit PBT gewaschen.

Hybridisierung
5 Material und Methoden

Antikörperbindung

Färbung

Die Proben werden viermal 20 Minuten mit PBT und dreimal 10 Minuten mit frisch angesetzter Färbelösung gewaschen. Die Testes werden zum färben in ein Blockschälchen überführt und durch Zugabe von 3,5 µl NBT und 3,5 µl X-Phosphat zu 1 ml Färbelösung wird die Färberreaktion gestartet. Die Färbung soll sich im Dunkeln entwickeln und wird wenn sie intensiv genug ist durch mehrfaches Waschen
5 Material und Methoden

5.2.7.5 Chromatin Immunoprezipitation (ChIPs) an Drosophila melanogaster Testes

Vorbereitung des Chromatins

Immunoprezipitation
Material und Methoden

Die Beads werden durch kurzes Zentrifugieren entfernt und der Antikörper wird dazu gegeben und über Nacht bei 4°C inkubiert. Am nächsten Tag werden je 60 µl ProteinA-beads zugegeben und bei 4°C für vier Stunden geschüttelt.

Waschschritte

Es folgen fünf Waschschritte für je fünf Minuten auf 4°C, für die die Beads jeweils für eine Minute bei 1000 upm abzentrifugiert werden. Gewaschen wird mit je 1 ml, einmal mit Low Salt Immune Complex Wash Buffer, einmal mit High Salt Immune Complex Wash Buffer, einmal LiCl Immune Complex Wash Buffer und zweimal mit TE-Puffer.

Elution

Elnuation Buffer 0,1 M NaHCO₃
1% SDS
In 1x TE-Puffer

Mit frischen Elution Buffer wird zweimal mit je 125 µl für 15 Minuten auf dem Schüttler eluiert. Die eluierte DNA und der vorher entnommene Input werden mit 10 µl bzw. 2 µl 5 M NaCl behandelt und für 65°C für vier Stunden inkubiert um die Vernetzung der DNA mit Proteinen durch die Fixierung aufzuheben. Danach wird die DNA mit dem PCR Purification Kit von Quiagen aufgereinigt. Die DNA wird jetzt zur Analyse mit quantitativer real-time PCR eingesetzt.
6 Anhang

6.1 Liste der im Rahmen dieser Arbeit generierten Klone

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Name</th>
<th>Konstrukt / Primer</th>
<th>Vektor</th>
<th>Primer #</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pc77F1-Topo</td>
<td>EcoRI-448bp-BamHI</td>
<td>pCR®II-TOPO®</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Pc77F2-Topo</td>
<td>EcoRI-330bp-BamHI</td>
<td>pCR®II-TOPO®</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Pc77F2-Δ5’UTR-Topo</td>
<td>EcoRI-196bp-5’UTR-BamHI</td>
<td>pCR®II-TOPO®</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Pc77F3-Topo</td>
<td>EcoRI-261bp-BamHI</td>
<td>pCR®II-TOPO®</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Pc77F3-Δ5’UTR-Topo</td>
<td>EcoRI-127bp-5’UTR-BamHI</td>
<td>pCR®II-TOPO®</td>
<td></td>
</tr>
<tr>
<td>1a</td>
<td>Pc77F1</td>
<td>EcoRI-448bp-BamHI</td>
<td>pChabΔSal</td>
<td></td>
</tr>
<tr>
<td>2a</td>
<td>Pc77F2</td>
<td>EcoRI-330bp-BamHI</td>
<td>pChabΔSal</td>
<td></td>
</tr>
<tr>
<td>3a</td>
<td>Pc77F2-Δ5’UTR</td>
<td>EcoRI-196bp-5’UTR-BamHI</td>
<td>pChabΔSal</td>
<td></td>
</tr>
<tr>
<td>4a</td>
<td>Pc77F3</td>
<td>EcoRI-261bp-BamHI</td>
<td>pChabΔSal</td>
<td></td>
</tr>
<tr>
<td>mst3</td>
<td>pc77F3-Δ5’UTR-29bp-Topo</td>
<td>EcoRI-ganzohne5’UTR-BamHI</td>
<td>pCR®II-TOPO®</td>
<td>S89+8</td>
</tr>
<tr>
<td>12</td>
<td>pc77F3-Δ5’UTR-29bp</td>
<td>EcoRI-ganzohne5’UTR-BamHI</td>
<td>pChabΔSal</td>
<td>S89+8</td>
</tr>
<tr>
<td>202</td>
<td>ProtB-sonde</td>
<td>pCR®II-TOPO®</td>
<td></td>
<td>S24+86</td>
</tr>
<tr>
<td>209</td>
<td>Mst77F-sonde</td>
<td>pCR®II-TOPO®</td>
<td></td>
<td>104+87</td>
</tr>
<tr>
<td>321</td>
<td>CG4480-Sonde</td>
<td>pCR®II-TOPO®</td>
<td></td>
<td>20+61</td>
</tr>
<tr>
<td>326</td>
<td>CG15278-Sonde</td>
<td>pCR®II-TOPO®</td>
<td></td>
<td>19+3</td>
</tr>
<tr>
<td>339</td>
<td>CG33309-Sonde</td>
<td>pCR®II-TOPO®</td>
<td></td>
<td>30+32</td>
</tr>
<tr>
<td>213</td>
<td>6x-MS2-SL-Xba</td>
<td>amp. von Vector AG Feldbrügge</td>
<td>pCR®II-TOPO®</td>
<td>91+92</td>
</tr>
<tr>
<td>220</td>
<td>6x-MS2-SL-Bam/Spe</td>
<td>amp. von Vector AG Feldbrügge</td>
<td>pCR®II-TOPO®</td>
<td>69+70</td>
</tr>
<tr>
<td>459</td>
<td>pChab-tpl-SL-MS2</td>
<td>KpnI-tpl-Xbal-eGFP-NotI---Spel-MS2SL-BamHI</td>
<td>pChabΔSal mit tpl von Christina Rathke</td>
<td></td>
</tr>
<tr>
<td>464</td>
<td>pChab-ProtA-SL-MS2</td>
<td>EcoRI-ProtA-Ncol-eGFP-NotI---Spel-MS2SL-BamHI</td>
<td>pChabΔSal mit ProtA von Sunil</td>
<td></td>
</tr>
<tr>
<td>466</td>
<td>pChab-ProtA-SL-MS2</td>
<td>EcoRI-ProtA-Ncol-eGFP-NotI---Spel-MS2SL-BamHI</td>
<td>pChabΔSal mit ProtA von Sunil</td>
<td></td>
</tr>
<tr>
<td>470</td>
<td>pChab-Mst77F-SL-</td>
<td>EcoRI-Mst77F-Xbal-eGFP-NotI---</td>
<td>pChabΔSal mit Mst77F</td>
<td></td>
</tr>
</tbody>
</table>
6 Anhang

<table>
<thead>
<tr>
<th>Klone</th>
<th>Beschreibung</th>
<th>Vektor</th>
<th>Ebene</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS2</td>
<td>Spel-MS2SL-BamHI-LacZ von Sunil</td>
<td>pCR®II-TOPO®</td>
<td>122+123</td>
</tr>
<tr>
<td>804</td>
<td>Ms2cp-BamHI</td>
<td>Spel-MS2cp-BamHI in Topo</td>
<td>pCR®II-TOPO®</td>
</tr>
<tr>
<td>812</td>
<td>Pchab-MS2cp-cherry</td>
<td>EcoRI-NLSSV40-B2Tpro-Spel-MS2cp-BamHI-Cherry</td>
<td>Pchab-B2tpro-Cherry si401</td>
</tr>
<tr>
<td>824</td>
<td>Pchab-MS2cp-cherry</td>
<td>EcoRI-NLSSV40-ProtBpro-Spel-MS2cp-BamHI-Cherry</td>
<td>Pchab-ProtBpro-Cherry si411</td>
</tr>
<tr>
<td>CG3473pro</td>
<td></td>
<td></td>
<td>S96+124</td>
</tr>
<tr>
<td>Pchab-β2Tpro-M2cp-cherry-neueNLS</td>
<td></td>
<td></td>
<td>812</td>
</tr>
<tr>
<td>β2Tpro-λN-mCherry-neueNLS</td>
<td></td>
<td></td>
<td>Si836</td>
</tr>
</tbody>
</table>

Silja Burkharts Klone (Bachelorarbeit Burkhard 2008)

<table>
<thead>
<tr>
<th>Klone</th>
<th>Beschreibung</th>
<th>Vektor</th>
<th>Ebene</th>
</tr>
</thead>
<tbody>
<tr>
<td>- β2Tpro-Topo</td>
<td>EcoRI – β2Tubulin-Promotor – Spel</td>
<td>pCR®II-TOPO®</td>
<td>79+77</td>
</tr>
<tr>
<td>Si 191 ProtBpro-Topo</td>
<td>EcoRI – Protamin B-Promotor – Spel</td>
<td>pCR®II-TOPO®</td>
<td>78+85</td>
</tr>
<tr>
<td>Si 64 8x-BoxB-Topo</td>
<td>Spel – 8x-BoxB – BamHI</td>
<td>pCR®II-TOPO®</td>
<td>80+76</td>
</tr>
<tr>
<td>Si 67 16x-BoxB-Topo</td>
<td>Spel – 16x-BoxB – BamHI</td>
<td>pCR®II-TOPO®</td>
<td>80+76</td>
</tr>
<tr>
<td>Si 627 Topo-λN</td>
<td>Spel – SV40-NLS - λN-Peptid – BamHI</td>
<td>pCR®II-TOPO®</td>
<td>Si1+Si2</td>
</tr>
<tr>
<td>Si 401 pChab-β2Tpro-mcherry</td>
<td>EcoRI – β2Tubulin-Promotor – Spel – BamHI – mcherry – XbaI</td>
<td>pChabΔSal</td>
<td></td>
</tr>
<tr>
<td>Si 411 pChab-ProtBpro-mcherry</td>
<td>EcoRI – Protamin B-Promotor – Spel – BamHI – mcherry – XbaI</td>
<td>pChabΔSal</td>
<td></td>
</tr>
<tr>
<td>Si 587Tpl94D-eGFP-16xBoxB</td>
<td>KpnI – tpl94D – XbaI – eGFP – NtI – Spel – 16x-BoxB – BamHI</td>
<td>pChabΔSal</td>
<td></td>
</tr>
<tr>
<td>Si 792 Mst77F-eGFP-16xBoxB</td>
<td>EcoRI – mst77F – XbaI – eGFP – NtI – Spel – 16x-BoxB – BamHI</td>
<td>pChabΔSal</td>
<td></td>
</tr>
<tr>
<td>Si 812 ProtA-eGFP-16xBoxB</td>
<td>EcoRI – protA – Ncol – eGFP – NtI – Spel – 16x-BoxB – BamHI</td>
<td>pChabΔSal</td>
<td></td>
</tr>
<tr>
<td>Si 840 ProtA-eGFP-8xBoxB</td>
<td>EcoRI – protA – Ncol – eGFP – NtI – Spel – 8x-BoxB – BamHI</td>
<td>pChabΔSal</td>
<td></td>
</tr>
<tr>
<td>Si 836 β2Tpro-λN-mCherry</td>
<td>EcoRI – β2Tubulin-Promotor – Spel – SV40-NLS - λN-Peptid – BamHI – mcherry – XbaI</td>
<td>pChabΔSal</td>
<td></td>
</tr>
<tr>
<td>Si 860 ProtBpro-λN-mCherry</td>
<td>EcoRI – Protamin B-Promotor – Spel – SV40-NLS - λN-Peptid – BamHI – mcherry – XbaI</td>
<td>pChabΔSal</td>
<td></td>
</tr>
</tbody>
</table>

Tab. 2: Liste der im Rahmen dieser Arbeit klonierten Konstrukte. In der Ersten Spalte ist die laborinternen Klonnummer verzeichnet. Daneben der Name des Konstrukts. In der dritten Spalte sind die Fragmente der Konstrukte mit dazwischen liegenden Schnittstellen benannt. In der Vierten Spalte
6 Anhang

ist der benutzte Vektor bezeichnet und in der letzten Spalte sind evt. Verwendete Primer mit laborinternen Nummerierung benannt. Im unteren Teil der Tabelle sind die Klone verzeichnet, die in Zusammenarbeit mit Silja Burkhart in Rahmen ihrer Bachelorarbeit entstanden (Bachelorarbeit Burkhard 2008).

6.2 Liste von Genen für RNA-binde-Proteine mit vorhergesagter Expression in der männlichen Keinmbahn

<table>
<thead>
<tr>
<th>Name</th>
<th>annot. ID</th>
<th>Fly-Atlas</th>
<th>Testis cDNA</th>
<th>annot. Funktion</th>
<th>Allele</th>
<th>Im Labor</th>
</tr>
</thead>
<tbody>
<tr>
<td>arrest</td>
<td>CG31762</td>
<td></td>
<td></td>
<td></td>
<td>Mehrere Allele</td>
<td>BL 11755</td>
</tr>
<tr>
<td>Bub3</td>
<td>CG7581</td>
<td>down</td>
<td></td>
<td></td>
<td></td>
<td>P-Element</td>
</tr>
<tr>
<td></td>
<td>CG10384</td>
<td>-</td>
<td>-</td>
<td>Spermatogenesis</td>
<td>Mehrere Allele</td>
<td>1 BL18762</td>
</tr>
<tr>
<td></td>
<td>CG3875</td>
<td>up</td>
<td>+</td>
<td>Spermatogenesis</td>
<td>1 Stock</td>
<td>BL14632</td>
</tr>
<tr>
<td></td>
<td>CG3927</td>
<td>up</td>
<td>4/4</td>
<td>Spermatogenesis</td>
<td>2 Stocks</td>
<td>BL 18508</td>
</tr>
<tr>
<td></td>
<td>CG4021</td>
<td>up</td>
<td>3/3</td>
<td>Spermatogenesis</td>
<td>1 Stock</td>
<td>Piggybac</td>
</tr>
<tr>
<td>cup</td>
<td>CG11181</td>
<td>+</td>
<td>up</td>
<td>neg. Reg. of oscar</td>
<td>11 Stocks</td>
<td>BL4978</td>
</tr>
<tr>
<td></td>
<td>Fmr1</td>
<td>CG6203</td>
<td>-</td>
<td>-</td>
<td>viele Allele</td>
<td>Cup¹ EMS</td>
</tr>
<tr>
<td></td>
<td>heph</td>
<td>CG31000</td>
<td>down</td>
<td>-</td>
<td>Viele Allele</td>
<td>BL635</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Heph¹ P-Element</td>
</tr>
<tr>
<td></td>
<td>loqs</td>
<td>CG6866</td>
<td>up</td>
<td>+</td>
<td>Spermatogenesis</td>
<td>BL 18371</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 Allele</td>
<td>P-Element</td>
</tr>
<tr>
<td>Gene</td>
<td>Protein</td>
<td>LoF Effect</td>
<td>Pheno Effect</td>
<td>Reference</td>
<td>n Alleles</td>
<td>Stocks</td>
</tr>
<tr>
<td>--------</td>
<td>---------</td>
<td>------------</td>
<td>--------------</td>
<td>-----------</td>
<td>-----------</td>
<td>--------</td>
</tr>
<tr>
<td>mod</td>
<td>CG2050</td>
<td>down</td>
<td>+ wenig</td>
<td>Fostemann et al. 2005 Jiang et al. 2005</td>
<td>13 Allele</td>
<td>1 Allel vorhanden Flytraplinie CB02172</td>
</tr>
<tr>
<td>nos</td>
<td>CG5637</td>
<td>down</td>
<td>-</td>
<td>Castillon et al. 1993 Bhat et al. 1999</td>
<td>19 Allele</td>
<td>13 Stocks Flytraplinie CB05200</td>
</tr>
<tr>
<td>orb</td>
<td>CG10868</td>
<td>down</td>
<td>+ viele</td>
<td>Oogenesis weibl. steril</td>
<td>5 Stocks</td>
<td>Flytraplinien CB04897 YB0370le</td>
</tr>
<tr>
<td>pea</td>
<td>CG8241</td>
<td>-</td>
<td>-</td>
<td>Spermatid Ent.. Castillon et al.1993 RNA splicing Pea¹ männl. steril</td>
<td></td>
<td>BL2495 Pea¹ P-Element</td>
</tr>
<tr>
<td>Psi</td>
<td>CG8912</td>
<td>down</td>
<td>+</td>
<td>RNA splicing, processing Spermatogenesis Psiv16 Labourier et al. 2002</td>
<td>1 Allel</td>
<td>Flytraplinie CC00797</td>
</tr>
<tr>
<td>Qkr54B</td>
<td>CG4816</td>
<td>-</td>
<td>-</td>
<td>Spermatogenesis Mi et al. 2003</td>
<td>1 Allel</td>
<td>BL 18011</td>
</tr>
<tr>
<td>Qkr58E1</td>
<td>CG3613</td>
<td>-</td>
<td>-</td>
<td>Spermatogenesis Mi et al. 2003 Apoptose</td>
<td>1 Allel</td>
<td>BL 17023</td>
</tr>
<tr>
<td>Qkr58E2</td>
<td>CG5821</td>
<td>-</td>
<td>+</td>
<td>Spermatogenesis Mi et al. 2003 Apoptose</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Qkr58E3</td>
<td>CG3584</td>
<td>-</td>
<td>+</td>
<td>Spermatogenesis</td>
<td>4 Allele</td>
<td></td>
</tr>
</tbody>
</table>
6 Anhang

<table>
<thead>
<tr>
<th>Genename</th>
<th>CG-Nummer</th>
<th>Expression</th>
<th>Funktion</th>
<th>Allele/Stocks</th>
<th>Funktion</th>
<th>Stocks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rb97D</td>
<td>CG6354</td>
<td>up</td>
<td>Spermatogenese, Spermatid Entwicklung, Männlicher Sterilität, Defekt in Nukleus + Axonem</td>
<td>6 Allele</td>
<td>2 Stocks</td>
<td></td>
</tr>
<tr>
<td>Rbp4</td>
<td>CG9654</td>
<td>up 6/6</td>
<td>Rbp4¹ Haynes et al. 1997</td>
<td>1 Allel</td>
<td>1 Stock</td>
<td></td>
</tr>
</tbody>
</table>

7 Literatur

Hempel, L. U.; Rathke, C.; Raja, S. J., Renkawitz-Pohl, R. 2006. In Drosophila, don juan and don juan like encode proteins of the spermatid nucleus and the flagellum and both are regulated at the transcriptional level by the TAF II80 cannonball while translational repression is achieved by distinct elements. Dev Dyn. 235. 1053-64.

7 Literatur

7 Literatur

7 Literatur

Universität Marburg, Entwicklungsbiologie.

8 Abkürzungen

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amp</td>
<td>Ampicillin</td>
</tr>
<tr>
<td>APS</td>
<td>Ammoniumpersulfat</td>
</tr>
<tr>
<td>AS</td>
<td>Aminosäure</td>
</tr>
<tr>
<td>Bp</td>
<td>Basenpaare</td>
</tr>
<tr>
<td>ChIP</td>
<td>Chromatin Immunoprezipitation</td>
</tr>
<tr>
<td>cp</td>
<td>coat protein</td>
</tr>
<tr>
<td>cDNA</td>
<td>komplementäre DNA (complementary DNA)</td>
</tr>
<tr>
<td>DIG</td>
<td>Digoxygenin</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethylsulfoxid</td>
</tr>
<tr>
<td>DNA</td>
<td>Desoxyribonukleinsäure</td>
</tr>
<tr>
<td>dNTP</td>
<td>Desoxynukleotidtriphosphat</td>
</tr>
<tr>
<td>HMG-Box</td>
<td>high mobility group box</td>
</tr>
<tr>
<td>kb</td>
<td>Kilobasen</td>
</tr>
<tr>
<td>kDA oder kD</td>
<td>Kilodalton</td>
</tr>
<tr>
<td>Levamisol</td>
<td>L(-)2,3,5,6-Tetrahydro-6-phenylimidazol[2,1-b]-thiazol</td>
</tr>
<tr>
<td>M</td>
<td>Molar</td>
</tr>
<tr>
<td>mRNA</td>
<td>messenger-RNA, Boten-RNA</td>
</tr>
<tr>
<td>OD</td>
<td>optische Dichte</td>
</tr>
<tr>
<td>ORF</td>
<td>„open reading frame“ (offener Leserahmen)</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerasekettenreaktion</td>
</tr>
<tr>
<td>RNase</td>
<td>Ribonuklease</td>
</tr>
<tr>
<td>RT-PCR</td>
<td>ReverseTranskriptase-Polymerasekettenreaktion</td>
</tr>
<tr>
<td>SDS</td>
<td>Natriumdodecylsulfat</td>
</tr>
<tr>
<td>SL</td>
<td>Stemloop, Haarnadelschlaufe</td>
</tr>
<tr>
<td>SUMO</td>
<td>small ubiquitin-related modifier</td>
</tr>
<tr>
<td>TAE</td>
<td>Tris-Acetat/EDTA</td>
</tr>
<tr>
<td>TAF</td>
<td>TATA-Box associated factor</td>
</tr>
<tr>
<td>TBE</td>
<td>Tris-Borat/EDTA</td>
</tr>
<tr>
<td>TE</td>
<td>Tris/EDTA</td>
</tr>
<tr>
<td>TEMED</td>
<td>N, N, N´, N´-Tetramethylendiamin</td>
</tr>
<tr>
<td>Tris</td>
<td>Tris(hydroxymethyl)aminomethan</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Definition</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
</tr>
<tr>
<td>Tween-20</td>
<td>Polyoxyethylensorbitanmonolaureat</td>
</tr>
<tr>
<td>U</td>
<td>Units</td>
</tr>
<tr>
<td>UAS</td>
<td>Upstream Activating Sequence</td>
</tr>
<tr>
<td>Upm</td>
<td>Umdrehungen pro Minute</td>
</tr>
<tr>
<td>UTR</td>
<td>untranslatierte Region</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolettes Licht</td>
</tr>
<tr>
<td>X-Gal</td>
<td>5-Bromo-4-chloro-3-indoxyl-β-Dthiogalaktosid</td>
</tr>
</tbody>
</table>
PERSÖNLICHE INFORMATIONEN

Name Bridlin Barckmann
Adresse Barfüßerstraße 18, 35037 Marburg, Deutschland
Telefon 0049-(0)6421-14748
Handy 0049-(0)170-7629962
E-mail bridlinbarckmann@yahoo.de
Nationalität Deutsch
Geburtstag 12. Juni 1980

SCHULE UND AUSBILDUNG

Oktober 2008 – andauernd
Philipps-Universität, Entwicklungsbiologie, Marburg, Deutschland
Projekt Transcriptional and translational control of spermatogenensis relevant genes
Position wissenschaftliche Mitarbeiterin, Arbeit an der Doktorarbeit
PI Prof. Dr. R. Renkawitz-Pohl

Oktober 2005 – Oktober 2008
Philipps-Universität, Entwicklungsbiologie, Marburg, Deutschland
Projekt Transcriptional and translational control of spermatogenensis relevant genes
Position GRK 767 Graduiertenschule Doktorantenstipendium
PI Prof. Dr. R. Renkawitz-Pohl

Juni 2006 – August 2006
Stanford University, Kalifornien, USA: Kooperation
Projekt anti-tTAF ChIPs an den Promotoren von Protamine B und Mst77F
9 CV Bridlin Barckmann

PI Prof. Dr. M.T. Fuller

September 2000 – September 2005
Philipps-Universität Marburg, Deutschland
Diplom in Biologie (1.2)
Fächer Entwicklungsbio (1.0), Genetik (1.0), Pharmakologie und Toxikologie (1.7), Mikrobiologie (Zusatzfach 2.0)
Diplomarbeit “Analyse der Transkription- und Translationskontrolle zur Synthese des Mst77F-Proteins, einer Komponente des kondensierten Chromatins des Spermiums in Drosophila melanogaster” (1.2)

März 2004 - Juni 2004
Oxford University, Zoologie
Position Praktikum
PI Dr. H. White-Cooper

1991 - 2000
Gesamtschule Konradsdorf, Germany
allgemeine Hochschulreife Abitur 1.4

PUBLIKATIONEN

Distinct functions of Mst77F and protamines in nuclear shaping and chromatin condensation during Drosophila spermiogenesis
Christina Rathke *, Bridlin Barckmann *, Silja Burkhard; Sunil Jayaramaiah-Raja, John Roote und Renate Renkawitz-Pohl
* contributed equally
Manuskript in Druck bei EJCB
Protamine B and Mst77F are direct targets of tTAFs and the role of BRDTL1 in counteracting the tTAFs function.

Bridlin Barckmann, Xin Chen, Katja Leser, Magret T. Fuller, Renate Renkawitz-Pohl und Christina Rathke
Manuskript in Vorbereitung

KONFERENZEN

Jahrestagung der Deutschen Gesellschaft für Genetik
Köln, Deutschland, Sep 2009
Poster Presentation

Germ cells
Cold Spring Harbour meeting
Cold Spring Harbour laboratory, New York, USA, Okt 2008
Poster Presentation

31. Jahrestagung der Deutschen Gesellschaft für Zellbiologie
Marburg, Deutschland, März 2008

mRNA localisation
EMBO workshop
II Chiocco, Italien, Juni 2007
Poster Presentation

GfE Gesellschaft für Entwicklungsbiologie 17. Jahrestagung
Marburg, Deutschland, März 2007
Poster Presentation

GfE Gesellschaft für Entwicklungsbiologie 16. Jahrestagung
Münster, Deutschland, April 2005
FÄHIGKEITEN

Methoden und Techniken

DNA grundlegende DNA Techniken, Southern Blot, ChIPs
RNA Handhabung und Isolierung von RNA, RT-PCR
Histologie Präparation von *Drosophila* Testes, in situ Hybridisation und Immunfärbungen an *Drosophila* Testes
Genetik klassische Genetik an Drosophila, Herstellung transgener Fliegen, Herstellung von Mutanten mittels des FRT/Flp system

Sprachen

Deutsch Muttersprache
Englisch schriftlich und mündlich fließend
Französisch grundlegende Kenntnisse

Computer Fähigkeiten

Standard Microsoft office Software
Adobe Photoshop
LateX text layout software
div. Programes zur Nutzung in der Molekularbiologie (z.B. LaserGene, Ape u.s.w.)

Workshops

In vivo imaging Kurs 5 Tage Workshop in englisch
Optical Imageing Centre (OIC)
Rotterdam, Niederlande
9 CV Bridlin Barckmann

Scientific Presentation 2.5 Tage workshop in englisch
Bioscript Workshop,
Marburg, Deutschland

Getting funded 2.5 Tage workshop in englisch
Bioscript Workshop,
Marburg, Deutschland
Danksagung

Ich danke Frau Prof. Dr. Renate Renkawitz-Pohl für die Möglichkeit meine Doktorarbeit in ihrer Arbeitsgruppe zu absolvieren, und die herzliche und kompetente Betreuung.

Prof. Dr. Michael Bölker danke ich für die Übernahme der Zweitkorrektur.

Ich danke Christina Rathke und Stephan Awe für die gute Zusammenarbeit und die hilfreichen Diskussionen im „Spermo-Team“ und Silja Burkhart für die Hilfe mit dem Muller5-Test und den diversen Klonierungen für das $\lambda N/BoxB$-System während ihrer Bachelor-Arbeit.

Ich danke Dr. Xin Chen und Prof. Minx Fuller für die Möglichkeit die Testis-ChIPs im Fullerlab in Stanford durchzuführen.

Danke an Dr. Michael Feldbrügge, Julian König und Sebastian Baumann für die Plasmide zur Klonierung des MS2cp/MS2sl-Systems sowie des $\lambda N/BoxB$-Systems.

Angela Sickmann danke ich für die tägliche Teepause, die hat immer gut getan!

Dem 064-Labor und Nadine Müller danke ich für die nette Zusammenarbeit und die gute Stimmung im Labor, die es einfach gemacht hat trotz diverser Tiefpunkte in der Forschungsarbeit immer noch gerne ins Labor zu kommen.

Der gesamten Arbeitsgruppe RePo danke ich für die nette Arbeitsatmosphäre.

Christopher danke fürs tapfere Ertragen meiner Stimmungsschwankungen besonders während des letzten halben Jahres!

Catrin, Anne-Katrin und Annette danke einfach für reden, zuhören, Spaß haben!

Ganz besonders liebevoller Dank meinen Eltern und meiner Schwester, es tut gut eine starke Familie hinter sich zu wissen!
Ich versichere, dass ich meine Dissertation

„Regulation der Transkription und Translation von Mst77F und der Protamine und die Funktion der Protamine während der Spermiogenese von Drosophila“

selbständig, ohne unerlaubte Hilfe angefertigt und mich dabei keiner anderen als der von mir ausdrücklich bezeichneten Quellen und Hilfen bedient habe.

Die Dissertation wurde in der jetzigen oder einer ähnlichen Form noch bei keiner andere Hochschule eingereicht und hat noch keinen sonstigen Prüfungszwecken gedient.

Marburg/Lahn, 2009