Publikationsserver der Universitätsbibliothek Marburg

Titel:Orientierung und Analyse der Morphologie von Purpurmembran Monolagen – Wege zur Membranfusion
Autor:Schranz, Michael
Weitere Beteiligte: Hampp, Norbert (Prof. Dr.)
Veröffentlicht:2010
URI:https://archiv.ub.uni-marburg.de/diss/z2010/0120
URN: urn:nbn:de:hebis:04-z2010-01204
DOI: https://doi.org/10.17192/z2010.0120
DDC: Chemie
Titel (trans.):Orientation and analysis of purple membrane monolayers – an approach to membrane fusion
Publikationsdatum:2010-04-27
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
purple membrane, Konforma, Bakteriorhodopsin, atomic force microscopy, Einzelmolekül Kraftspektroskopie, bacteriorhodopsin, orientation, single molecule force spectroscopy, Monolayer <Biologie>, Purpurmembran, Membranfusion, Orientierung, Kraftmikroskopie, Oberfläche, Morphologie

Zusammenfassung:
Im Rahmen dieser Arbeit wurden Erkenntnisse gewonnen, die die Strukturierung von Purpurmembranen auf festen Substraten ermöglichen. Dazu zählen die Erforschung der Morphologie von PM auf unterschiedlichen Substraten, die Orientierung der Membranen und die Fusion von PM zur Gewinnung von ausgedehnten PM-Monolagen. Die Krümmung der BR-Mutanten D85N und D85T in alkalischen Lösungen wurden mittels AFM und Kraftspektroskopie untersucht. Dabei konnte die Theorie bestätigt werden, nach der die Membrankrümmung auf die Konformationsänderung des BR während des Photozyklus zurückzuführen ist. Durch Kraftspektroskopie wurde die Biegungsrichtung der D85X-Membranen identifiziert und gezeigt, dass die Kräfte, die zur Biegung der Membranen führen größer sind als die Kräfte zwischen PM und Oberfläche. Eine neue Methode zur orientierten Immobilisierung von PM auf einer Oberfläche wurde in dieser Arbeit entwickelt. Die BR-Mutante Q3C wurde auf Goldsubstraten angebunden. Q3C-PM konnte nur mit seiner extrazellulären Seite eine Bindung zur Goldoberfläche eingehen, da der N-Terminus nur von dieser Seite zugänglich war. Die entgegengesetzt liegenden PMs konnten entfernt werden, so dass eine orientierte PM-Monolage erhalten wurde. Durch Einzelmolekül Kraftspektroskopie konnten die Seiten der angebundenen Q3C-PM identifiziert werden. Die Ergebnisse ließen auf einen hohen Grad an Orientierung der PMs schließen. Die an BR-Q3C aufgenommenen Kraftkurven zeigten einen zusätzlichen Peak, der durch die Gold-Cystein-Bindung verursacht wurde. Die Entfaltung der Helix A konnte so erstmals kraftspektroskopisch analysiert werden. Ein weiteres Ergebnis ergab sich aus der Analyse der Kraftkurven: Bei einem Teil der BR-Monomere wurden die α-Helices nicht paarweise entfaltet. Diese Kraftkurven resultierten aus dem Entfalten der Helices A-C in einem simultanen Prozess. Zur Fusion von PM auf Oberflächen wurde der Einfluss verschiedener Substrate auf die Morphologie der PM untersucht. Dabei stellte sich heraus, dass Glimmer große Auswirkungen auf die adsorbierten Biokomponenten hat. Es zeigte sich bei Raumtemperatur und erhöhten Temperaturen eine fortschreitende Denaturierung der PMs von ihren Rändern aus. Diese Denaturierung kann auf Wechselwirkungen mit dem Substrat zurückgeführt werden, da PM in Suspension unter denselben Bedingungen stabil ist. Die Denaturierung konnte mit molekularer Auflösung und zeitaufgelöst beobachtet werden. Durch Modifikation der Glimmeroberfläche mit Polyasparaginsäure konnte die Denaturierung verringert werden. Auch die Substrate Gold und Silicium hatten einen geringeren denaturierenden Effekt. Sowohl der modifizierte Glimmer als auch Gold und Silicium waren nur spärlich mit PM belegt. Die auf die PM wirkenden Kräfte können einerseits zur Denaturierung der Probe führen, sind aber andererseits notwendig, um die PM auf der Oberfläche zu halten. Es zeigte sich, dass nur auf unbehandelten Glimmeroberflächen ein Belegungsgrad mit PM erreicht wurde, der eine Fusion der Purpurmembranen zu einer durchgehenden Monolage ermöglicht. Gebleichte Purpurmembranen wurden auf Glimmer abgeschieden und mit Retinal regeneriert. Diese Vorgehensweise führte zu einer polykristallinen Monolage. Die kristallinen Bereiche wurden durch AFM-Untersuchungen mit molekularer Auflösung abgebildet. Dabei zeigte sich, dass die Bereiche zueinander verdrehte Orientierungen ihrer Kristallstruktur aufwiesen. Zeitaufgelöste Analysen zeigten die Beweglichkeit der Bereiche innerhalb der Membran. Verbesserte Methoden zur Regeneration von PM auf Glimmeroberflächen wurden entwickelt, indem mehrere Faktoren, die auf die Regeneration der Membranen einwirkten untersucht wurden. Es stellte sich heraus, dass das Ethanol, das als Lösungsmittel des Retinals verwendet wurde, einen denaturierenden Effekt auf die Membranen hatte. Die Regeneration ohne Retinalzugabe führte zu kristallinen Bereichen mit einer Ausdehnung von mehreren hundert Nanometern. Durch die verbesserte Regeneration wurde ein Anteil an regenerierten Bereichen von ca. 2/3 der mit PM belegten Fläche erreicht. Die in dieser Arbeit erhaltenen Ergebnisse sind für viele Anwendungen von BR relevant, in denen eine Orientierung von PM oder ein Kontakt von PM-Monolagen mit einem Substrat nötig ist. Ein Lösungsansatz für das Problem der Denaturierung von PM wurde durch die Beeinflussung der Oberflächenwechselwirkungen gefunden. Neben der Denaturierung sind jedoch auch der Belegungsgrad und die Desorption der Membranen zu beachten. Generell muss für Schnittstellen zwischen Biomolekülen und herkömmlicher Technik ein geeignetes Substrat gewählt werden, indem alle diese Faktoren berücksichtigt werden. Weitergehende Untersuchungen der komplexen Wechselwirkungen an Oberflächen sind für viele Bereiche der Biotechnologie von Interesse – auch eine weitere Verbesserung der Fusion von PM könnte von den gewonnenen Erkenntnissen profitieren.

Bibliographie / References

  1. D. Rhinow, Purple membranes from Halobacterium salinarum as building blocks for nanobiotechnology: The importance of mechanical and thermal properties for matrix and surface applications, Philipps-Universität Marburg 2008. [42]
  2. D. J. Müller, M. Amrein, and A. Engel, Adsorption of Biological Molecules to a Solid Support for Scanning Probe Microscopy, J. Struct. Biol. 1997, 119, 172-188. [54]
  3. D. Chen, Y. Lu, S. Sui, B. Xu, K. Hu, Oriented Assembly of Purple Membrane on Solid Support, Mediated by Molecular Recognition, J. Phys. Chem. B 2003, 107, 3598-3605. [58] D. J. Müller, C.-A. Schoenenberger, G. Büldt, and A. Engel, Immuno-Atomic Force Microscopy of Purple Membrane, Biophys. J. 1996, 70, 1796-1802.
  4. U. Haupts, J. Tittor, E. Bamberg, and D. Oesterhelt, General Concept for Ion Translocation by Halobacterial Retinal Proteins: The Isomerization/Switch/Transfer (IST) Model, Biochemistry 1997, 36, 2-7.
  5. [40] D. Rhinow and N. A. Hampp, Light-and pH-Dependent Conformational Changes in Protein Structure Induce Strong Bending of Purple Membranes -Active Membranes Studied by Cryo-SEM, J. Phys. Chem. B 2008, 112, 13116-13120.
  6. F. Oesterhelt, Kraftinduzierte Sekundärstrukturänderungen in einzelnen Molekülen, Ludwig-Maximilians-Universität München 2000.
  7. C. Möller, G. Büldt, N. A. Dencher, A. Engel, and D. J. Müller, Reversible Loss of Crystallinity on Photobleaching Purple Membrane in the Presence of Hydroxylamine, J. Mol. Biol. 2000, 301, 869-879.
  8. C. Möller, M. Allen, V. Elings, A. Engel, and D. J. Müller, Tapping-Mode Atomic Force Microscopy Produces Faithful High-Resolution Images of Protein Surfaces, Biophys. J. 1999, 77, 1150-1158.
  9. D. J. Müller and A. Engel, Strategies to prepare and characterize native membrane proteins and protein membranes by AFM, Curr. Opin. Coll. Interf. Sci. 2008, 13, 338- 350.
  10. M. Sumper and G. Herrmann, Studies on the Biosynthesis of Bacterio-opsin - Demonstration of the Existence of Protein Species Structurally Related to Bacterio- opsin, Eur. J. Biochem. 1978, 89, 229-235.
  11. M. Sumper and G. Herrmann, Biogenesis of purple membrane: Regulation of bacterio- opsin synthesis, FEBS Lett. 1976, 69, 149-152.
  12. D. Porschke, Strong Bending of Purple Membranes in the M-state, J. Mol. Biol. 2003, 331, 667-679.
  13. A. Kedrov, H. Janovjak, C. Ziegler, W. Kühlbrandt, and D. J. Müller, Observing folding pathways and kinetics of a single sodium-proton antiporter from Escherichia coli, J. Mol. Biol. 2006, 355, 2–8.
  14. A. Giahi, M. El Alaoui Faris, P. Bassereau, and T. Salditt, Active membranes studied by X-ray scattering, Eur. Phys. J. E 2007, 23, 431-437.
  15. [88] D. J. Müller, N. Wu, and K. Palczewski, Vertebrate Membrane Proteins: Structure, Function, and Insights from Biophysical Approaches, Pharmacol. Rev. 2008, 60, 43-78. [89] E.-L. Florin, V. T. Moy, and H. E. Gaub, Adhesion Forces Between Individual Ligand- Receptor Pairs, Science 1994, 264, 415-417.
  16. H.-G. Choi, J. Min, W. H. Lee, and J.-W. Choi, Adsorption behavior and photoelectric response characteristics of bacteriorhodopsin thin films fabricated by self-assembly technique, Colloids Surf. B 2002, 23, 327-337.
  17. Y. Kawase, M. Tanio, A. Kira, S. Yamaguchi, S. Tuzi, A. Naito, M. Kataoka, J. K. Lanyi, R. Needleman, and H. Saito, Alteration of Conformation and Dynamics of Bacteriorhodopsin Induced by Protonation of Asp 85 and Deprotonation of Schiff Base as Studied by 13 C NMR, Biochemistry 2000, 39 (47), 14472-14480.
  18. K. Koyama, N. Yamaguchi, and T. Miyasaka, Antibody-Mediated Bacteriorhodopsin Orientation for Molecular Device Architectures, Science 1994, 265, 762–765.
  19. [84] F. Moreno-Herrero, J. Colchero, J. Gomez-Herrero, and A. M. Baro, Atomic force microscopy contact, tapping, and jumping modes for imaging biological samples in liquids, Phys. Rev. E 2004, 69, 031915-1-031915-9.
  20. [27] N. Hampp, Bacteriorhodopsin as a Photochromic Retinal Protein for Optical Memories, Chem. Rev. 2000, 100, 1755-1776.
  21. [31] N. Hampp and M. Neebe, Bacteriorhodopsin-based Multi-level Optical Security Features, SPIE-IS&T 2006, 6075, 1-9.
  22. M. Kessler, K. E. Gottschalk, H. Janovjak, D. J. Müller, and H. E. Gaub, Bacteriorhodopsin Folds into the Membrane against an External Force, J. Mol. Biol. 2006, 357, 644-654.
  23. M. Eisenbach, C. Weissmann, G. Tanny, and S. R. Caplan, Bacteriorhodopsin-loaded charged synthetic membranes -Utilization of light energy to generate electrical current, FEBS Lett. 1977, 81, 77-80.
  24. J. Tittor, D. Oesterhelt, and E. Bamberg, Bacteriorhodopsin mutants D85N, D85T and D85,96N as proton pumps, Biophys. Chem. 1995, 56, 153-157.
  25. [29] P. C. Pandey, Bacteriorhodopsin – Novel biomolecule for nano devices, Anal. Chim. Acta 2006, 568, 47-56.
  26. J. A. He, L. Samuelson, L. Li, J. Kumar, and S. K. Tripathy, Bacteriorhodopsin Thin Film Assemblies-Immobilization, Properties, and Applications, Adv. Mater. 1999, 11, 435-446.
  27. J. L. Hutter and J. Bechhoeffer, Calibration of atomic-force microscope tips, Rev. Sci. Instrum. 1993, 64 (7), 1868-1873.
  28. J. Tittor, U. Haupts, C. Haupts, D. Oesterhelt, A. Becker, and E. Bamberg, Chloride and Proton Transport in Bacteriorhodopsin Mutant D85T: Different Modes of Ion Translocation in a Retinal Protein, J. Mol. Biol. 1997, 271, 405-416.
  29. M. Frydrych, P. Silfsten, S. Parkkinen, J. Parkkinen, and T. Jaaskelainen, Color sensitive retina based on bacteriorhodopsin, BioSystems 2000, 54, 131-140. [36]
  30. T. Ederth, Computation of Lifshitz-van der Waals Forces between Alkylthiol Monolayers on Gold Films, Langmuir 2001, 17, 3329-3340.
  31. [72] R. Renthal and C. Alaniz, Conformational change in bacterio-opsin on binding to retinal, Biophys. Chem. 1999, 78, 241-245.
  32. [22] S. Subramaniam and R. Henderson, Crystallographic analysis of protein conformational changes in the bacteriorhodopsin photocycle, Biochim. Biophys. Acta 2000, 1460, 157-165.
  33. M. Glaeser, and H. Luecke, Crystal Structure of the D85S Mutant of Bacteriorhodopsin: Model of an O-like Photocycle Intermediate, J. Mol. Biol. 2001, 313, 615-628.
  34. [96] A. Kedrov, H. Janovjak, K. T. Sapra, and D. J. Müller, Deciphering Molecular Interactions of Native Membrane Proteins by Single-Molecule Force Spectroscopy, Annu. Rev. Biophys. Biomol. Struct. 2007, 36, 233-260.
  35. S. Zhong, H. Li, X. Chen, E. Cao, G. Jin, and K. Hu, Different Interactions between the Two Sides of Purple Membrane with Atomic Force Microscope Tip, Langmuir 2007, 23, 4486-4493.
  36. G. U. Lee, L. A. Chrisey, and R. J. Colton, Direct Measurement of the Forces Between Complementary Strands of DNA, Science 1994, 266, 771-773.
  37. F. Kienberger, H. Mueller, V. Pastushenko, and P. Hinterdorfer, Following single antibody binding to purple membranes in real time, EMBO reports 2004, 5, 579-583. [60] D. J. Müller, G. Büldt, and A. Engel, Force-induced Conformational Change of Bacteriorhodopsin, J. Mol. Biol. 1995, 249, 239-243.
  38. P. Wagner, M. Hegner, H.-J. Güntherodt, and G. Semenza, Formation and in Situ Modification of Monolayers Chemisorbed on Ultraflat Template-Stripped Gold Surfaces, Langmuir 1995, 11, 3867-3875.
  39. K. Hiraki, T. Hamanaka, T. Mitsui, and Y. Kito, Formation of the two-dimensional hexagonal lattice of bacteriorhodopsin in reconstituted brown membrane, Biochim. Biophys. Acta 1978, 536, 318-322.
  40. [74] D. Oesterhelt and W. Stoeckenius, Halobacterium halobium and its fractionation into red and purple membrane, Methods Enzymol. 1974, 31, 667-678.
  41. L. Bergström, Hamaker constants of inorganic materials, Adv. Colloid Interface Sci. 1997, 70, 125-169.
  42. R. M. Pashley, Hydration forces between mica surfaces in Li + , Na + , Na + and Cs + electrolyte solutions: a correlation of double layer and hydration forces with surface cation exchange properties, J. Colloid Interface Sci. 1981, 83, 531–546.
  43. [67] D. T. Kim, H. W. Blanch, and C. J. Radke, Imaging of reconstituted purple membranes by atomic force microscopy, Colloids Surf. B 2005, 41, 263-276. [68] D. Oesterhelt, L. Schuhmann, and H. Gruber, Light-Dependent Reaktion of Bacteriorhodopsin with Hydroxylamine in Cell Suspensions of Halobacterium Halobium: Demonstration of an Apo-Membrane, FEBS Lett. 1974, 44 (3), 257-261. [69]
  44. J. N. Israelachvili, Intermolecular and Surface Forces, Academic Press, London, 1991, Second Edition.
  45. A. Miller and D. Oesterhelt, Kinetic optimisation of bacteriorhodopsin by aspartic acid 96 as an internal proton donor, Biochim. Biophys. Acta 1990, 1020, 57-64.
  46. C. Renner, B. Kessler, and D. Oesterhelt, Lipid composition of integral purple membrane by 1 H and 31 P NMR, J. Lipid Res. 2005, 46, 1755-1764. [18] P. J. Booth, Unravelling the folding of bacteriorhodopsin, Biochim. Biophys. Acta 2000, 1460, 4-14.
  47. A. Corcelli, V. M. T. Lattanzio, G. Mascolo, P. Papadia, and F. Fanizzi, Lipid-protein stoichiometries in a crystalline biological membrane: NMR quantitative analysis of the lipid extract of the purple membrane, J. Lipid Res. 2002, 43, 132-140.
  48. M. Weik, H. Patzelt, G. Zaccai, and D. Oesterhelt, Localization of Glycolipids in Membranes by In Vivo Labeling and Neutron Diffraction, Mol. Cell 1998, 1, 411-419. [17]
  49. M. L. Li, B. F. Li, and L. Jiang, Long-Lived M-State in Multilayer Films Fabricated by Alternative Deposition of a Polycation and Bacteriorhodopsin, Langmuir 2000, 16, 5503-5505.
  50. L. Chai and J. Klein, Large Area, Molecularly Smooth (0.2 nm rms) Gold Films for Surface Forces and Other Studies, Langmuir 2007, 23, 7777-7783.
  51. [56] K. Koyama, N. Yamaguchi, and T. Miyasaka, Molecular Organization of Bacteriorhodopsin Films in Optoelectronic Devices, Adv. Mater. 1995, 7, 590-594. [57]
  52. B. Hayward, D. A. Grano, R. M. Glaeser, and K. A. Fisher, Molecular orientation of bacteriorhodopsin within the purple membrane of Halobacterium halobium, Proc. Natl. Acad. Sci. USA 1978, 75 (9), 4320-4324.
  53. L. Keszthelyi, Orientation of membrane fragments by electric field, Biochim. Biophys. Acta 1980, 598, 429-436.
  54. [50] J. A. He, L. Samuelson, L. Li, J. Kumar, and S. K. Tripathy, Oriented Bacteriorhodopsin / Polycation Multilayers by Electrostatic Layer-by-Layer Assembly, Langmuir 1998, 14, 1674-1679.
  55. [43] A. A. Kononenko, E. P. Lukashev, A. V. Maximychev, S. K. Chamorovsky, A. B. Rubin, S. F. Timashev, and L. N. Chekulaeva, Oriented purple-membrane films as a probe for studies of the mechanism of bacteriorhodopsin functioning. I. The vectorial character of the external electric-field effect on the dark state and the photocycle of Bacteriorhodopsin, Biochim. Biophys. Acta 1986, 850, 162-169.
  56. M. B. Jackson and J. M. Sturtevant, Phase Transitions of the Purple Membranes of Halobacterium halobium, Biochemistry 1978, 17 (5), 911-915.
  57. J. Min, H.-G. Choi, J.-W. Choi, W. H. Lee, and U. R. Kim, Photocurrent of bacteriorhodopsin films deposited by electrophoretic method, Thin Solid Films 1998, 327-329, 698-702.
  58. Z. Chen and R. R. Birch, Protein-based artificial retinas, TIBTECH 1993, 11, 292-300. [35]
  59. [37] T. Fischer and N. A. Hampp, Purple membranes as microscaled nanopatterned biosubstrates for reversible attachment of biocomponents, Soft Matter 2007, 3, 707- 712.
  60. T. Miyasaka, K. Koyama, and I. Itoh, Quantum Conversion and Image Detection by a Bacteriorhodopsin-Based Artificial Photoreceptor, Science 1992, 255, 342–344.
  61. D.-C. Neugebauer, H. P. Zingsheim, and D. Oesterhelt, Recrystallization of the Purple Membrane in Vivo and in Vitro, J. Mol. Biol. 1978, 123, 247-257. [65] T. R. Herrmann and G. W. Rayfield, The Electrical Response to Light of Bacteriorhodopsin in Planar Membranes, Biophys. J. 1978, 21, 111-125.
  62. [47] T. Miyasaka and K. Koyama, Rectified photocurrents from purple membrane Langmuir-Blodgett films at the electrode-electrolyte interface, Thin Solid Films 1992, 210/211, 146-149.
  63. D. Sarid: " Scanning Force Microscopy " , 1991, Oxford University Press, New York
  64. J. A. Burns, J. C. Butler, J. Moran, and G. M. Whitesides, Selective Reduction of Disulfides by Tris(2-carboxyethyl)phosphine, J. Org. Chem. 1991, 56, 2648-2650. [76]
  65. E.-L. Florin, M. Rief, H. Lehmann, M. Ludwig, C. Dornmair, V. T. Moy, and H. E. Gaub, Sensing specific molecular interactions with the atomic force microscope, Biosensors & Bioelectronics 1995, 10, 895-901.
  66. X. Zhuang and M. Rief, Single-molecule folding, Curr. Opinion Struct. Biol. 2003, 13, 88-97.
  67. M. Rief, F. Oesterhelt, B. Heymann, and H. E. Gaub, Single Molecule Force Spectroscopy on Polysaccharides by Atomic Force Microscopy, Science 1997, 275, 1295-1297.
  68. S. B. Hwang, Y. W. Tseng, and W. Stoeckenius, Spontaneous aggregation of bacteriorhodopsin in brown membrane, Photochem. Photobiol. 1981, 33, 419-427.
  69. D. J. Müller, M. Kessler, F. Oesterhelt, C. Möller, D. Oesterhelt, and H. E. Gaub, Stability of Bacteriorhodopsin α-Helices and Loops Analyzed by Single-Molecule Force Spectroscopy, Biophys. J. 2002, 83, 3578-3588.
  70. [45] S. B. Hwang, J. I. Korenbrot, and W. Stoeckenius, Structural and Spectroscopic Characteristics of Bacteriorhodopsin in Air-Water Interface Films, J. Membr. Biol. 1977, 36, 115-135.
  71. N. A. Dencher, D. Dresselhaus, G. Zaccai, and G. Büldt, Structural Changes in Bacteriorhodopsin during Proton Translocation Revealed by Neutron Diffraction, Proc. Natl. Acad. Sci. USA 1989, 86, 7876-7879.
  72. M. P. Krebs and T. A. Isenbarger, Structural determinants of purple membrane assembly, Biochim. Biophys. Acta 2000, 1460, 15-26.
  73. P. M. Dove and C. M. Craven, Surface charge density on silica in alkali and alkaline earth chloride electrolyte solutions, Geochim. Cosmochim. Acta 2004, 69, 4963-4970.
  74. G. Kollbach, S. Steinmüller, T. Berndsen, V. Buss, and W. Gärtner, The Chromophore Induces a Correct Folding of the Polypeptide Chain of Bacteriorhodopsin, Biochemistry 1998, 37, 8227-8232.
  75. D. G. Archer and P. Wang, The Dielectric Constant of Water and Debye-Hückel Limiting Law Slopes, J. Phys. Chem. Ref. Data 1990, 19, 371-411.
  76. D. J. Müller and A. Engel, The Height of Biomolecules Measured with the Atomic Force Microscope Depends on Electrostatic Interactions, Biophys. J. 1997, 73 (3), 1633-1644. [81] A. Engel, C.-A. Schoenenberger, and D. J. Müller, High resolution imaging of native biological samples using scanning probe microscopy, Curr. Opin. Struct. Biol. 1997, 7, 279-284.
  77. R. Henderson, The purple membrane from Halobacterium halobium, Annu. Rev. Biophys. Bioeng. 1977, 6, 87-109.
  78. V. L. Shnyrov and P. L. Mateo, Thermal transitions in the purple membrane from Halobacterium halobium, FEBS 1993, 324, 237-240.
  79. Y. Mukohata, Y. Sugiyama, Y. Kaji, J. Usukura, and E. Yamada, The white membrane of crystalline bacterioopsin in Halobacterium halobium strain R1mW and its conversion into purple membrane by exogenous retinal, Photochem. Photobiol. 1981, 33, 593-600.
  80. J. Pudewills, Entwicklung und Charakterisierung photochromer Sicherheitsinkjettinten auf Basis von Bakteriorhodopsin, Philipps-Universität Marburg 2009. [33] T. Fischer and N. A. Hampp, Two-Photon Absorption of Bacteriorhodopsin: Formation of a Red-Shifted Thermally Stable Photoproduct F 620 , Biophys. J. 2005, 89, 1175-1182. [34]
  81. M. Kessler and H. E. Gaub, Unfolding Barriers in Bacteriorhodopsin Probed from the Cytoplasmic and the Extracellular Side by AFM, Structure 2006, 14, 521-527. [64]
  82. F. Oesterhelt, D. Oesterhelt, M. Pfeiffer, A. Engel, H. E. Gaub, and D. J. Müller, Unfolding Pathways of Individual Bacteriorhodopsins, Science 2000, 288, 143-146. [94] A. Kedrov, C. Ziegler, H. Janovjak, W. Kühlbrandt, and D. J.Müller, Controlled Unfolding and Refolding of a Single Sodium-proton Antiporter using Atomic Force Microscopy, J. Mol. Biol. 2004, 340, 1143-1152.
  83. M. Stroud, Bacteriorhodopsin D85N: Three spectroscopic species in equilibrium, Biochemistry 1993, 32, 1332-1337.
  84. U. Haupts, J. Tittor, and D. Oesterhelt, Closing in on Bacteriorhodopsin: Progress in understanding the molecule, Annu. Rev. Biophys. Biomol. Struct. 1999, 28, 367-399. [21]
  85. D. J. Müller, J. B. Heymann, F. Oesterhelt, C. Möller, H. Gaub, G. Büldt, and A. Engel, Atomic force microscopy of native purple membrane, Biochim. Biophys. Acta 2000, 1460, 27-38
  86. H.-J. Butt, Measuring local surface charge densities in electrolyte solutions with a scanning force microscope, Biophys. J. 1992, 63, 578-582.
  87. J. Czege and L. Rheinisch, Light-scattering changes during the photocycle of bacteriorhodopsin, Acta Biochim. Biophys. Hung. 1987, 22, 463-478.
  88. M. Schranz, Einzelmolekül-Kraftspektroskopie an mutierten Bakteriorhodopsinen, Diplomarbeit, Philipps-Universität Marburg, 2004 [78] H. J. Butt, K. H. Downing, and P. K. Hansma, Imaging the membrane protein bacteriorhodopsin with the atomic force microscope, Biophys. J. 1990, 58, 1473–1480. [79] D. J. Müller, F. A. Schabert, G. Büldt, and A. Engel, Imaging Purple Membranes in Aqueous Solutions at Sub-Nanometer Resolution by Atomic Force Microscopy, Biophys. J. 1995, 68, 1681-1686.
  89. D. J. Müller, D. Fotiadis, S. Scheuring, S. A. Müller, and A. Engel, Electrostatically Balanced Subnanometer Imaging of Biological Specimens by Atomic Force Microscope, Biophys. J. 1999, 76, 1101-1111.
  90. M. Stark, C. Möller, D. J. Müller, and R. Guckenberger, From Images to Interactions: High Resolution Phase Imaging in Tapping-Mode Atomic Force Microscopy, Biophys.
  91. [66] N. Kahya, E.-I. Pecheur, W. P. de Boeij, D. A. Wiersma, and D. Hoekstra, Reconstitution of Membrane Proteins into Giant Unilamellar Vesicles via Peptide- Induced Fusion, Biophys. J. 2001, 81, 1464-1474.
  92. A. Sethuraman and G. Belfort, Protein Structural Perturbation and Aggregation on Homogeneous Surfaces, Biophys. J. 2005, 88, 1322-1333.
  93. Y. Jin, T. Honig, I. Ron, N. Friedman, M. Sheves, and D. Cahen, Bacteriorhodopsin as an electronic conduction medium for biomolecular electronics, Chem. Soc. Rev. 2008, 37, 2422-2432.
  94. [48] K. A. Fisher, K. Yanagimoto, and W. Stoeckenius, Oriented adsorption of purple membrane to cationic surfaces, J. Cell Biol. 1978, 77, 611-621.
  95. R. Ros, F. Schwesinger, D. Anselmetti, M. Kubon, R. Schäfer, A. Plückthun, and L. Tiefenauer, Antigen binding forces of individually addressed single-chain Fv antibody molecules, Proc. Natl. Acad. Sci. USA 1998, 95, 7402-7405.
  96. F. Höök, M. Rodahl, B. Kasemo, and P. Brzezinski, Structural changes in hemoglobin during adsorption to solid surfaces: Effects of pH, ionic strength, and ligand binding, Proc. Natl. Acad. Sci. USA 1998, 95, 12271-12276.
  97. L. S. Brown, H. Kamikubo, L. Zimanyi, M. Kataoka, F. Tokunaga, P. Verdegem, J. Lugtenburg, and J. K. Lanyi, A local electrostatic change is the cause of the large-scale protein conformation shift in bacteriorhodopsin, Proc. Nat. Acad. Sci. USA 1997, 94, 5040-5044.
  98. F. Garczarek, S. B. Leonid, K. L. Janos, and K. Gerwert, Proton binding within a membrane protein by a protonated water cluster, Proc. Natl. Acad. Sci. USA 2005, 102, 3633-3638.
  99. H. Houjou, K. Koyama, M. Wada, K. Sameshima, Y. Inoue, and M. Sakurai, Effects of the protein electrostatic environment on the absorption maximum of bacteriorhodopsin, Chem. Phys. Let. 1998, 294, 162-166.
  100. [62] H. F. Knapp, P. Mesquida, and A. Stemmer, Imaging the surface potential of active purple membrane, Surf. Interface Anal. 2002, 33, 108-112.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten