Publikationsserver der Universitätsbibliothek Marburg

Titel:Nachweis von Cyanid und Schwermetallen mittels Chip-basierter Chemo- und Biosensoren
Autor:Turek, Monika
Weitere Beteiligte: Schöning, M. J. (Prof. Dr.)
Veröffentlicht:2010
URI:https://archiv.ub.uni-marburg.de/diss/z2010/0081
DOI: https://doi.org/10.17192/z2010.0081
URN: urn:nbn:de:hebis:04-z2010-00815
DDC:610 Medizin
Titel (trans.):Detection of cyanide and heavy metals by means of chip-based chemical sensors and biosensors
Publikationsdatum:2010-03-16
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Cyanide, Biosensor, Schwermetall, Heavy metals, Chemischer Sensor, Kaliumcyanid, Enzym-Biosensor, Chemical sensor

Zusammenfassung:
In der Umweltanalytik spielen Cyanid und Schwermetalle eine wichtige Rolle, denn beide Komponenten sind schädlich für den Menschen. Aufgrund ihrer guten chemischen und physikalischen Eigenschaften werden sowohl Cyanid als auch Schwermetalle häufig für industrielle Zwecke verwendet und können somit über industrielle Abgase und Abwässer in die Umwelt gelangen. Darüber hinaus kommen beide Komponenten in der Natur vor. Im Rahmen dieser Arbeit wurden Silizium-basierte Chemo-/Biosensoren für die qualitative und quantitative Erfassung von Cyanid und Schwermetallen in Flüssigkeiten entwickelt. Im Falle der Cyaniderfassung wurden kapazitive Elektrolyt-Isolator-Silizium (EIS-) Strukturen, auf denen das Enzym Cyanidase immobilisiert wurde, sowie Ag-basierte ionenselektive Elektroden (ISEs) konzeptioniert, mittels Dünnschicht-/Dickschichttechnik prozessiert und hinsichtlich ihrer intrinsischen Sensoreigenschaften charakterisiert und optimiert. Der Cyanid-Biosensor nutzt die lokale pH-Wert-Verschiebung, die bei der enzymatischen Katalyse von Cyanid durch die Cyanidase zu Ammoniak und Formiat entsteht. Die Cyaniderfassung mittels Ag-Halogenid- bzw. Ag-Chalkogenidglas-ISE basiert auf der Komplexbindung zwischen CN-Ionen in der Lösung und Ag-Ionen in der Membran, die in einer Änderung des Oberflächenpotentials des Sensors resultiert. Sowohl der Enzym-Biosensor als auch die Ag-basierte ISE zeigten ein von der Cyanidkonzentration abhängiges Signal, das gut mit den theoretischen und experimentellen Werten aus der Literatur übereinstimmte. Aufgrund der geringen Aktivität und Stabilität der immobilisierten Cyanidase und unter Berücksichtigung von theoretischen Modellberechnungen zeigte sich jedoch, dass der entwickelte Biosensor nur unter optimalen Labor-Bedingungen für die Cyaniderfassung eingesetzt werden konnte. Für die Schwermetallerfassung in Flüssigkeiten wurden unterschiedliche Chip-basierte Chalkogenidglas-ISEs mittels gepulster Laserabscheidung hergestellt und für die Messung von Ag-, Cu-, Pb- und Cd-Ionen charakterisiert. Das Messprinzip dieser Sensoren basiert auf einem konzentrationsabhängigen, dynamischen Ionenaustausch zwischen Schwermetallionen aus der Messlösung und Schwermetallionen in der Sensormembran, was zu einer Veränderung des Oberflächenpotentials führt. Die Chalkogenidglas-ISEs zeigten ein von der Schwermetallkonzentration abhängiges Signal, entsprechend der theoretisch zu erwartenden Nernstempfindlichkeit. In gemischten Schwermetalllösungen konnte neben der hohen Sensitivität der Chalkogenidglas-ISE (z.B. Cu-ISE gegenüber Cu-Ionen) zusätzlich deren Querempfindlichkeit zu anderen Schwermetallionen in Form einer Multi-Sensoranordnung vorteilhaft eingesetzt werden. Deshalb wurde in einem grundlegenden Experiment in Kooperation mit der Hochschule Bonn-Rhein-Sieg (Prof. W. Heiden) eine „einfache“ elektronische Zunge – bestehend aus drei Chalkogenidglas-ISEs (für Ag-, Cu- und Pb-Ionen) – aufgebaut. Unter Zuhilfenahme einer Fuzzy-Logic-Software war es im ersten Schritt möglich, Schwermetalle aus Zwei-Komponentengemischen zu separieren. Darüber hinaus wurde für die gleichzeitige Erfassung von Cyanid und Schwermetallen in Lösungen erstmalig eine portable hybride Messzelle entwickelt und ein Messprotokoll vorgestellt, bei dem Cyanid und Schwermetalle zunächst über eine Ansäuerung und Temperaturbehandlung voneinander getrennt wurden, um anschließend simultan mittels der jeweiligen Chalkogenidglas-ISE potentiometrisch erfasst werden zu können. Diese hybride Messzelle konnte erfolgreich für simultane Messungen von Cu-, Pb- bzw. Cd-Ionen und CN-Ionen im µ-molaren Konzentrationsbereich eingesetzt werden.

Bibliographie / References

  1. Kloock, J.P., Mourzina, Y.G., Schubert, J., Schöning, M.J.: A first step towards a microfabricated thin-film sensor array on the basis of chalcogenide glass materials. Sensors 2 (2002) S. 356-365.
  2. L.A. Zadeh, The Concept of a Linguistic Variable and Its Application to Approx- imate Reasoning, Memorandum ERL-M 411, Berkeley, 1973.
  3. Van Hal, R.E.G.; Eijkel, J.C.T.; Bergveld, P.: A novel description of ISFET sensitivity with the buffer capacity and double-layer capacitance as key parameters. Sensors and Actuators B 24-25 (1995), S. 201-205
  4. Mak, K. K. W.; Law, A. W. C.; Tokuda, S.; Yanase, H.; Renneberg, R. Application of cyanide hydrolase from klebsiella sp. in a biosensor system for detection of low-lewel cyanide. Appl. Microbiol. Biotechnol. 2005, 67, 631-636.
  5. Campanella, L.; Colapicchioni,C.; Favero, G.; Sammartino, M.P.; Tomassetti, M.: Organophosphorus pesticide (paraoxon) analysis using solid state sensors. Sensors and Actuators B 33 (1996), S. 25-33
  6. Li, D.: Electrokinetics in microfluidics. Elsevier Academic Press, Amsterdam, 2004
  7. Pranitis, D.M.; Telting-Diaz, M.; Meyerhoff, M.E.: Potentiometric ion-, gas-, and bio-selective membrane electrodes. Critical Reviews in Analytical Chemistry 23 (1992), S. 163-186
  8. Girault, H.H.: Analytical and physical electrochemistry. EPFL Press, New York, 2004
  9. Schöning, M.J.: Sensoren für chemische und biologische Größen. Vorlesungsskriptum, 2000
  10. Besombes, J.-L.; Cosnier, S.; Reverdy, L.; Reverdy, G.: A biosensor as warning device for the detection of cyanide, chlorophenols, atrazine and carbamate pesticides. Analytica Chimica Acta 311 (1995), S. 255-263
  11. Groom, C.A.; Luong, J.H.T.: A flow through analysis biosensor system for cyanide. Journal of Biotechnology 21 (1991), S. 161-171
  12. Frumar, M.; Wagner, T.: Ag doped chalcogenide glass and their applications. Current Opinion in Solid State and Material Science 7 (2003), S. 117-126
  13. Riesen, A.: Analyse von kombinierten Signalen immobilisierter Chemosensoren mit Fuzzy Logic. Bachelor Arbeit an der Hochschule Bonn-Rhein-Sieg, Fachbereich Informatik, 2009
  14. T. R. Crompton, Analysis of Seawater (Springer Verl., Hei- delberg Berlin, 2006).
  15. Bergveld, P;, Sibbald, A.: Analytical and biomedical applications of ion-selective field-effect transistors. Elsevier, Amsterdam, 1988
  16. Referenzen [1] Neshkova, M.T., Pancheva, E.M., Pashova, V.: A new generation of CN -sensing silver chalcogenide-selective membranes for FIA application. Sens. Actuators B 19 (2006) S. 625-631.
  17. Mourzina, Y.G.; Schöning, M.J.; Schubert, J.; Zander, W.; Legin, A.V.; Vlasov, Y.G.; Kordos, P.; Lüth, H.: A new thin-film Pb microsensor based on chacogenide glasses. Sensors and Actuators B 71 (2000), S. 13-18
  18. Men, H., Zou, S., Li, Y., Wang, Y., Ye, X., Wang, P.: A novel electronic tongue combined MLAPS with stripping voltammetry for environmental detection. Sens.
  19. Merkoci, A.; Braga, S.; Fabregas, E.; Alegret, S.: A potentiometric biosensor for d-amygdalin based on a consolidated bio composite membrane. Analytica Chimica Acta 391 (1999), S. 65-72
  20. Kameswara Rao, V.; Suresh, S.; Bhattacharya, A.; Rao, N.B.S.N.: A potentiometric detector for hydrogen cyanide gas using silver dicyano complex. Talanta 49 (1999), S. 367-371
  21. Mattiasson, B.; Mosbach, K.; Svenson, A.: Application of cyanide-metabolizing enzymes to environmental control; enzyme thermistor assay of cyanide using immobilized rhodanese and injectase. Biotechnology and Bioengineering 19 (2004), S. 1643-1651
  22. Legin, A.V.; Rudnitskaya, A.M.; Vlasov, Y.G.; di Natale, C.; Mazzone, E.; d'Amico, A.: Application of electronic tongue for quantitative analysis of mineral water and wine.
  23. Sharma, S.K.; Sehgal, N.; Kumar, A.: Biomolecules for development of biosensors and their applications. Current Applied Physics 3 (2003), S. 307-316
  24. Keusgen, M. Biosensors: new approaches in drug discovery. Naturwissenschaften 2002, 89, 433- 444.
  25. Mortimer, C.E.; Müller, U.: Chemie. Basiswissen der Chemie. Georg Thieme Verlag, Stuttgart, 2003
  26. Watanabe, A.; Yano, K.; Ikebukuro, K.; Karube, I.: Cloning and expression of a gene encoding cyanidase from pseudomonas stutzeri AK61. Applied Microbiology and Biotechnology 50 (1998), S. 93-97
  27. Van Sommeren, A.P.G.; Machielsen, P.A.G.M.; Gribnau, T.C.J.: Comparison of three activated agaroses for use in affinity chromatography: effects on coupling performance and ligand leakage. Journal of Chromatography 639 (1993), S. 23-31
  28. J. Watkinson, Compression in Video and Audio, Focal Press, London, 1995.
  29. Tavernier, M.L.; Michaud, P.; Wadouachi, A.; Petit, E.: Continuous production of oligoglucuronans by immobilized glucuronan lyase. Enzyme and Microbial Technology 45 (2009), S. 48-52
  30. Smith, R.M.; Martell, A.E.: Critical stability constants. Plenum Press, New York, 1989
  31. Legin, A.V.; Babain, V.A.; Kirsanov, D.O.; Mednova, O.V.: Cross-sensitive rare earth metal ion sensors based on extraction systems. Sensors and Actuators B 131 (2008), S. 29-36
  32. Vlasov, Y.G.; Legin, A.V.; Rudnitskaya, A.M.: Cross-sensitivity evaluation of chemical sensors for electronic tongue: determination of heavy metal ions. Sensors and Actuators B 44 (1997), S. 532-537
  33. Luna, R.M.; Lapidus, G.T.: Cyanidation kinetics of silver sulfide. Hydrometallurgy 56 (2000), S. 171-188
  34. Smit, M.H.; Cass, A.E.: Cyanide detection using a substrate-regenerating, peroxidase-based biosensor. Analytical Chemistry 62 (1990), S. 2429-2436
  35. Volotovsky, V.; Kim, N.: Cyanide determination by an ISFET-based peroxidase biosensor.
  36. Cipollone, R.; Ascenzi, P.; Frangipani, E.; Visca, P.: Cyanide detoxification by recombinant bacterial rhodanese. Chemosphere 63 (2006), S. 942-949
  37. Watanabe, A.; Yano, K.; Ikebukuro, K.; Karube, I.: Cyanide hydrolysis in a cyanide-degrading bacterium, pseudomonas stutzeri AK61, by cyanidase. Microbiology 144 (1998), S. 1677-1682
  38. Neshkova M.T., Pancheva, E.M.: Cyanide ion-selective electrodes based on thin electroplated membranes of silver chalcogenides. Anal. Chim. Acta 242 (1991) S. 73-83.
  39. Danke an die Arbeitsgruppe in Marburg für die schöne Aufnahme und sehr gute Betreuung. Danke für die Cyanidase und die dazugehörigen Diskussionen. Danke Lothar, Gigi, Holger, Elvira und Anja. Danke!
  40. Danke an Dr. P. Krüger für die schöne Zusammenarbeit am BMBF-Projekt. Danke! Danke an das IBN im FZ Jülich. Danke an Dr. J. Schubert, Dr. B. Holländer und an W. Zander für die Nutzung der PLD-Anlage sowie die zahlreichen RBS- Untersuchungen. Danke an H.P. Bochem, A. Steffen und J. Müller für die Nutzung des Reinraumes und die zahlreichen REM-Aufnahmen. Danke!
  41. Danke an das INB in der FH Aachen. Danke an meine ganze Arbeitsgruppe in Jülich für die schöne Zusammenarbeit, Unterstützung, Diskussionen, netten gemeinsamen Nachmittage und Abende. Danke Maryam, David, Stefan, Matthias, Heiko, Christina,
  42. Camman, K.; Galster, H.: Das Arbeiten mit ionenselektiven Elektroden. Eine Einführung für Praktiker. Springer-Verlag, Berlin Heidelberg New York, 1995
  43. Danke an die Nebenprüfer, dass Sie sich die Mühe gemacht haben, die Arbeit zu begutachten und die Disputation zu gestalten. Danke!
  44. Datenblatt 18-1113-53: NHS-activated sepharose TM 4 fast flow. Amersham Biosiences 262
  45. U.S. Department of health and human services, public health service, agency for toxic substances and disease registry. Toxicological profile for cyanide. 2006.
  46. Lvova, L.; Paolesse, R.; di Natale, C.; d'Amico, A.: Detection of alcohols in beverages: an application of poryhyrin-based electronic tongue. Sensors and Actuators B 118 (2006), S. 439-447
  47. Legako, J.A.; White, B.J.; Harmon, H.J.: Detection of cyanide using immobilized porphyrin and myoglobin surface. Sensors and Actuators B 91 (2003), S. 128-132
  48. Forzani, E.S., Zhang, H., Chen, W., Tao, N.: Detection of heavy metal ions in drinking water using a high-resolution differential surface plasmon resonace sensor. Environ.
  49. Goulden, P.D.; Afghan, B.K.; Brooksbank, P.: Determination of nanogram quantities of simple and complex cyanides in water. Analytical Chemistry 44 (1972), S. 1845-1849
  50. Basheer, S.; Kut, Ö.M.; Pernosil, J.E.; Bourne, J.R.: Development of an enzyme membrane reactor for treatment of cyanide-containing wastewaters from the food industry. Biotechnology and Bioengineering 41 (1993), S. 465-473
  51. Bergveld, P.: Development of an ion-sensitive solid-state device for neurophysiological measurements. IEEE Transactions on Biomedical Engineering 17 (1970), S. 70-71
  52. Verrelli, G.; Francioso, L.; Paolesse, R.; Siciliano, P.; di Natale, D.; d'Amico, A.; Logrieco, A.: Development of silicon-based potentiometric sensors: towards a miniaturized electronic tongue.
  53. Bergveld, P.: Development, operation and application of the ion-sensitive field-effect transistor as a tool for electrophysiology. IEEE Transactions on Biomedical Engineering 19 (1972), S. 342-
  54. Nernst, W.: Die elektrochemische Wirksamkeit der Ionen. Zeitschrift für physikalische Chemie 4 (1889), S. 129-181
  55. Katz, L.: Die Glaselektrode und ihre Anwendungen. S. Steinkopff, Frankfurt Main, 1950
  56. Danke an alle fleißigen Studenten, die mit mir zusammengearbeitet haben. Danke an Ming Li, Abhishek, Tegpal, Somi, Arash, Shiyun und Udaya. Danke!
  57. Park, S.-M.; Yoo, J.-S.: Electrochemical impedance spectroscopy for better electrochemical measurements. Analytical Chemistry (2003), S. 455A-461A 260 Datenblatt: Eupergit C®. Degussa, 2007
  58. Gutés, A.; Céspedes, F.; del Valle, M.: Electronic tongues in flow analysis. Analytica Chimica Acta 600 (2007), S. 90-96
  59. Badugu, R.; Lakowicz, J. R.; Geddes, C. D. Enhanced fluorescence cyanide detection at physiologically lethal levels: reduced ICT-based signal transduction. J. Am. Chem. Soc. 2005, 127, 3635-3641.
  60. Fisher bioblock scientific cyanide ion electrodes instruction manual 265
  61. Zadeh, L.A.: Fuzzy sets. Information and Control 8 (1965), S. 338-353
  62. H.-J. Zimmermann, Fuzzy Set Theory and Its Applications, Kluwer, Boston, 1991.
  63. ß-Galactosidase, rec. E.coli 119
  64. Eisenman, G.; Rudin, D.O.; Casby, J.U.: Glass electrode for measuring sodium ion. Science 126 (1957), S. 831-834
  65. Christen, H.R.: Grundlagen der allgemeinen und anorganischen Chemie. Verlag Sauerländer, Aarau-Frankfurt am Main-Salzburg, 1988
  66. Albers, J.: Grundlagen integrierter Schaltungen, Bauelemente und Mikrostrukturierung. Carl Hanser Verlag, München, 2007
  67. Danke an Prof. Dr. W. Heiden und an A. Riesen für die schöne iterative Zusammenarbeit. Danke!
  68. Kloock, J.P.: Herstellung und Charakterisierung von Sensormembranen aus Chalkogenidglasschichten für den Einsatz als Schwermetallsensoren in Flüssigkeiten. Dissertation an der Technischen Universität Ilmenau, 2008
  69. Ohta, T.; Ikemoto, Y.; Usami, A.; Koide, T.; Wakabayashi, S.: High affinity interaction between histidine-rich glycoprotein and the cell surface type ATP synthase on T-cells. Biochimica et Biophysica Acta 1788 (2009), S. 1099-1107
  70. Frant, M.S.: Historical perspective. History of the early commercialization of ion-selective electrodes. The Analyst 119 (1994), S. 2293-2301
  71. Woodward, J.: Immobilised cells and enzymes. IRL Press, Oxford-Washington DC, 1985
  72. Gómez de Segura, A.; Alcalde, M.; Yates, M.; Rojas-Cervantes, M.L.; López-Cortés, N.; Ballesteros, A.; Plou, F.J.: Immobilization of dextransucrase from leuconostoc mesenteroides NRRL B-512F on Eupergit C® supports. Biotechnology Progress 20 (2004), S. 1414-1420
  73. Tu, M.; Zhang, X.; Kurabi, A.; Gilkes, N.; Mabee, W.; Saddler, J.: Immobilization of ß- glucosidase on Eupergit C for lignocellulose hydrolysis. Biotechnology Letters 28 (2006), S. 151-
  74. Kallenberg, A.I.; van Rantwijk, F.; Sheldon, R.A.: Immobilization of penicillin G acylase: The key of optimum performance. Advanced Synthesis & Catalysis 347 (2005), S. 905-926
  75. Hernaiz, M.J.; Crout, D.H.G.: Immobilization/stabilization on Eupergit C® of the ß- galactosidase from B. circulans and an α-galactosidase from aspergillus oryzae. Enzyme and Microbial Technology 27 (2000), S. 26-32
  76. Mateo, C.; Palomo, J.M.; Fernandez-Lorente, G.; Guisan, J.M.; Fernandez-Lafuente, R.: Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme and Microbial Technology 40 (2007), S. 1451-1463
  77. Mateo, C.; Abian, O.; Fernandez-Lafuente, R.; Guisan, J.M.: Increase in conformational stability of enzymes immobilized on epoxy-activated supports by favoring additional multipoint covalent attachment. Enzyme and Microbial Technology 26 (2000), S. 509-515
  78. Kloock, J.P., Schöning, M.J., Mourzina, Y.G., Schubert, J., Ermolenko, Y., Doll, T.: Inorganic thin-film sensor membranes wiht PLD-prepared chalcogenide glasses: Challenges and implementation. Sensors 4 (2004) S. 156-162.
  79. Ipatov, A.; Abramova, N.; Bratov, A.; Domíquez, C.: Integrated multisensor chip with sequential injection technique as a base for " electronic tongue " devices. Sensors and Actuators B 131 (2008), S. 48-52
  80. Chhabda, T.A.: Investigation of multi-component heavy metal analytes with thin-film micro sensors using fuzzy logic data evaluation. Master of Science Thesis an der Fachhochschule Aachen, Institut für Nano-und Biotechnologien, 2008
  81. Simon, W.; Wuhrmann H.R.; Vasak, M.; Pioda, L.A.R.; Dohner, R.; Stefanac, Z.: Ionenselektive Sensoren. Angewandte Chemie 82 (1970), S. 433-443
  82. Vlasov, Y.G., Bychkov, E.A.: Ion-selcetive chalcogenide glass electrodes. Ion-selective Electrode Rev. 9 (1987) S. 5-93.
  83. Bergveld, P.: ISFET, theory and practice. IEEE Sensor Conference Toronto (2003), S. 1-26
  84. Basheer, S.; Kut, Ö.M.; Pernosil, J.E.; Bourne, J.R.: Kinetics of enzymatic degradation of cyanide. Biotechnology and Bioengineering 39 (1992), S. 629-634
  85. Mousty, C.; Vieille, L.; Cosnier, S.: Laccase immobilization in redox active layered double hydroxides: a reagentless amperometric biosensor. Biosensors and Bioelectronics 22 (2007), S. 1733-1738
  86. Wilchek, M.; Miron, T.: Limitations of N-hydroxysuccinimide esters in affinity chromatography and protein immobilization. Biochemistry 26 (1987), S. 2155-2161
  87. Danke an Frau G. Lins und an Frau F. Lorek für die schöne Organisation. Danke! Danke an Frau A. Stühn und an das BMBF für die finanzielle Unterstützung und Motivation. Danke!
  88. Schöning M.J.; Näther, N.; Auger, V.; Poghossian, A.; Kondelka-Hep, M.: Miniaturised flow- trough cell with integrated capacitive EIS sensor fabricated at wafer level using Si and SU-8 technologies. Sensors and Actuators B 108 (2005), S. 986-992
  89. Esen, H.; Inalli, M.; Sengur, A.; Esen, M.: Modelling a ground-coupled heat pump system using adaptive neuro-fuzzy inference systems. International Journal of Refrigeration 31 (2008), S. 65-74
  90. Yeoh, H.-H., Tatsuma, T., Oyama, N.: Monitoring the cyanogenic potential of cassava: The trend towards biosensor development. Trends Anal. Chem. 17 (1998) S. 234-240.
  91. Moreno, L.; Merlos, A.; Abramova, N.; Jiménez, C.; Bratov, A.: Multi-sensor array used an " electronic tongue " for mineral water analysis. Sensors and Actuators B 116 (2006), S. 130-134
  92. Lin, C.-T.; Lee, C.S.G.: Neural-network-based fuzzy logic control and decision system. IEEE Transaction on Computers 40 (1991), S. 1320-1336
  93. Yao, Y.; Ma, Y.-Z.; Qin, M.; Ma, X.-J.; Wang, C.; Feng, X.-Z.: NHS-ester functionalized poly (PEGMA) brushes on silicon surface for covalent protein immobilization. Colloids and Surface B: Biointerface 66 (2008), S. 233-239
  94. Yan, M.; Cai, S.X.; Wybourne, M.N.; Keana, F.W.: N-hydroxysuccinimide esters functionalized perfluorphenyl azides as novel photoactive heterobifunctional cross-linking reagents. The covalent immobilization of biomolecules to polymer surfaces. Bioconjugate Chemistry 5 (1994), S. 151-157
  95. Magario, I.; Ma, X.; Neumann, A.; Syldatk, C.; Hausmann, R.: Non-porous magnetic micro- particles: comparison to porous enzyme carriers for a diffusion rate-controlled enzymatic conversion. Journal of Biotechnology 134 (2008), S. 72-78
  96. Vlasov, Y.G.; Legin, A.V.: Non-selective chemical sensors in analytical chemistry: from " electronic nose " to " electronic tongue " . Fresenius Journal of Analytical Chemistry 361 (1998), S. 255-260
  97. Glyn Davies, O.; Moody, G.L.; Thomas, D.R.: Optimisation of poly(vinylchloride) matrix membrane ion-selective electrodes for ammonium ions. The Analyst 113 (1988), S. 497-500
  98. Ovalbumin, chicken 43
  99. D'Annibale, A.; Stazi, S.R.; Vinciguerra, V.; Giovannozzi, G.: Oxirane-immobilized lentinula edodes laccase: stability and phenolics removal efficiency in olive mill wastewater. Journal of Biotechnology 77 (2000), S. 265-273
  100. Nagy, K.; Eine, K.; Syverud, K.; Aune, O.: Promising new solid-state reference electrode.
  101. Cheung, J.; Horwitz, J.: Pulsed laser deposition: history and laser-target interactions. Materials Research Society Bulletin 17 (1992), S. 30-36
  102. Chrisey, D.B.; Hubler, G.K.: Pulsed laser deposition of thin films. John Wiley & Sons, Inc., New York, 1994
  103. Küster, F.W.; Thiel, A.; Ruland, A.: Rechentafeln für die chemische Analytik. Walter de Gruyter, Berlin-New York, 2003
  104. Buck, R.P.; Lindner, E.: Recomendations for nomenclature of ion-selective electrodes (IUPAC recommendations 1994). Pure and Applied Chemistry 66 (1994), S. 2527-2536
  105. Lowry, D.A.; Oniciu, L.: Reference electrode for potentiometric analyses in corrosive media.
  106. Firat, M.; Güngör, M.: River flow estimation using adaptive neuro fuzzy inference system.
  107. M. J. Schöning and A. Poghossian, Electroanal. 18, 1893 (2006).
  108. Danksagung Danke an Prof. Dr. M.J. Schöning und an Prof. Dr. M. Keusgen, dass Sie mir die Möglichkeit gegeben haben, eine Doktorarbeit machen zu können. Danke für die fachliche und persönliche Unterstützung und Förderung. Danke!
  109. Weinberg, H.S., Cook, S.J.: Segmented flow injection, UV digestion, and amperometric detection for the determination of total cyanide in wastewater treatment plant effluents. Anal. Chem. 74 (2002) S. 6055-6063.
  110. Sze, S.M.: Semiconductor devices. Physics and technology. John Wiley & Sons, Inc., 2002
  111. Sze, S.M.: Semiconductor sensors. John Wiley & Sons, Inc., New York-Chichester-Brisbane- Toronto-Singapore, 1994
  112. Poghossian, A.; Schöning, M. J. Silicon-based chemical and biological field-effect sensors. In Encyclopedia of Sensors; Grimes, C. A.; Dickey, E. C.; Pishko, M. V.; American Scientific Publishers, Stevenson Ranch: USA, 2006; Vol. 9, pp 463-534.
  113. Meeussen, J.C.L.N.; Temminghoff, E.J.M.; Keizer, M.G.; Novozamsky, I.: Spectrophotometric determination of total cyanide, iron-cyanide complexes, free cyanide and thiocyanate in water by a continuous-flow system. The Analyst 95 (1989), S. 959-963
  114. Benco, J.S.; Nienaber, H.A.; McGimpsey, W.G.: Synthesis of an ammonium-ionophore and its application in planar ion selective electrode. Analytical Chemistry 75 (2003), 152-156
  115. Thomas, J.D.R.: The development and scope of ion-selective electrodes. Pure and Applied Chemistry 66 (1994), S.2527-2536
  116. Legin, A.V.; Rudnitskaya, A.M.; Vlasov, Y.G.; di Natale, C.; d'Amico, A.: The features of the electronic tongue in comparison with the characteristics of the discrete ion-selective sensors.
  117. Dole, M.: The glass electrode, methods, application and theory. John Wiley, New York, 1941
  118. Morf, W.E., Kahr, G., Simon, W.: Theoretical treatment of the selectivity and detection limit of silver compound membrane electrodes. Anal. Chem. 46 (1974) S. 1538-1543.
  119. Pungor, E.: Theory and application of anion. Analytical Chemistry 39 (1967), S. 28A-45A 174
  120. Anderson, G.W.; Zimmerman, J.E.; Callahan, F.M.: The use of esters of N- hydroxysuccinimide in peptide synthesis. Journal of the American Chemical Society 86 (1963), S. 1839-1842
  121. Schöning, M.J., Schmidt, C., Schubert, J., Zander, W., Mesters, S., Kordos, P., Lüth, H., Legin, A., Seleznev, B., Vlasov, Y.G.: Thin film sensors on the basis of chalcogenide glass materials prepared by pulsed laser deposition technique. Sens.
  122. Danke an Melanie, Claudia, Silvia, Simone, Thomas und Vera für die fachliche Unterstützung, Bereitstellung von Gerätschaften, gemeinsame Organisation sowie für die schönen gemeinsamen Abende. Danke!
  123. Trypsin inhibitor, soja 20
  124. Jones, D. A. Why are so many food plants cyanogenic? Phytochemistry 1997, 47(2), 155-162.
  125. Gattrell, M.; Cheng, S.C.; Guena, T.; MacDougall, B.: Cyanide ion-selective electrode measurements in the presence of copper. Journal of Electroanalytical Chemistry 508 (2001), S. 97-104
  126. Simonis, A.; Dawgul, M.; Lüth, H.; Schöning, M.J.: Miniaturised reference electrodes for field- effect sensors compatible to silicon chip technology. Electrochimica Acta 51 (2005), S. 930-937
  127. Schöning, M.J.: Playing around with field-effect sensors on the basis of EIS structures, LAPS and ISFETs. Sensors 5 (2005), S. 126-138
  128. Simonis, A.; Lüth, H.; Wang, J.; Schöning, M.J.: New concepts of miniaturised reference electrodes in silicon technology for potentiometric sensor systems. Sensors and Actuators B 103 (2004), S. 429-435
  129. Simonis, A.; Lüth, H.; Wang, J.; Schöning, M.J., Strategies of miniaturised reference electrodes integrated in a silicon-based " one chip " pH sensor, Sensors (2003), S. 330-339
  130. Poghossian, A.; Thust, M.; Schroth, P.; Steffen, A.; Lüth, H.; Schöning, M. J. Penicillin detection by means of silicon-based field-effect structures. Sens. Mater. 2001, 13(4), 207-223.
  131. Mourzina, Y.G., Schubert, J., Zander, W., Legin, A., Vlasov, Y.G., Lüth, H., Schöning, M.J.: Development of multisensor systems based on chalcogenide thin film chemical sensors for the simultaneous multicomponent analysis of metal ions in complex solutions. Electrochim. Acta 47 (2001) S. 251-258.
  132. Schubert, J.; Schöning, M.J.; Schmidt, C.; Siegert, M.; Mesters, S.; Zander, W.; Kordos, P.; Lüth, H.; Legin, A.; Mourzina, Y.G.; Seleznev, B.; Vlasov, V.G.: Chalcogenide-based thin film sensors prepared by pulsed laser deposition technique. Applied Physics A: Materials Science and Processing 69 (1999), S. 803-805
  133. Moreno, L.; Kloock, J.P.; Schöning, M.J.; Baldi, A.; Ipatov, A.; Bratov, A.; Jiménez-Jorquera, C.: Electronic integrated multisensor tongue applied to grape juice and wine analysis. The Analyst 133 (2008), S. 1440-1448
  134. Poghossian, A.; Abouzar, M.H.; Schöning, M.J.: Capacitance-voltage and impedance characteristics of field-effect EIS sensors functionalised with polyelectrolyte multilayers. Innovation Literaturverzeichnis et Technologie en Biologie et Medecine – une Revue de Technologie Biomedicale 29 (2008), S. 149-154.
  135. Turek, M.; Keusgen, M.; Poghossian, A.; Mulchandani, A.; Wang, J.; Schöning, M.J.: Enzyme- modified electrolyte-insulator-semiconductor sensors. Journal of Contemporary Physics 43 (2008), S. 82-85
  136. Turek, M.; Heiden, W.; Riesen, A.; Chhabda, T.A.; Krüger, P.; Keusgen, M.; Schöning, M.J.: Artificial intelligence/fuzzy logic method for analysis of combined signals from heavy metal chemical sensors. Electrochimica Acta 54 (2009), S. 6082-6088
  137. Kloock, J.P.; Moreno, L.; Huachupoma, S.; Xu, J.; Wagner, T.; Bratov, A.; Doll, T.; Vlasov, Y.G.; Schöning, M.J.: Halbleiterbasierte Schwermetallsensorik auf der Basis von Chalkogenidgläsern für zukünftige " Lab on Chip " -Anwendungen. In: Gerlach, G.; Kaden, H.: 7. Dresdner Sensor-Symposium – Neue Herausforderungen und Anwendungen in der Sensortechnik, TUDpress, Dresden, 2005, S. 221-224
  138. Camman, K.: Instrumentelle analytische Chemie. Spektrum Akademischer Verlag, Heidelberg- Berlin, 2001
  139. Hofmeister, F.: Zur Lehre von der Wirkung der Salze. Archiv für experimentelle Pathologie und Pharmakologie 24 (1888), S. 247-260
  140. Wang, X.-H.; Forssberg, K.S.E.: The solution electrochemistry of the sulfide-xanthate-cyanide systems in sulfide mineral flotation. Minerals Engineering 9 (1996), S. 527-546
  141. Marquardt, H.; Schäfer, S. G. Lehrbuch der Toxikologie; Spektrum Akademischer Verlag: Heidelberg Berlin, 1997; pp 555-565.
  142. Ingvorsen, K.; Hojer-Pedersen, B.; Godtfredsen, S. E. Novel cyanide-hydrolyzing enzyme from alcaligenes xylosoxidans subsp. denitrificans. Appl. Environ. Microbiol. 1991, 57, 1783-1789.
  143. Turek, M., Ketterer, L., Claßen, M., Berndt, H.K., Elbers, G., Krüger, P., Keusgen, M., Schöning, M.J.: Development and electrochemical investigations of an EIS- (electrolyte-insulator-semiconductor) based biosensor for cyanide detection. Sensors 7
  144. Beullens, K; Mészáros, P.; Vermeir, S.; Kirsanov, D.; Legin, A.V.; Buysens, S.; Cap, N.; Nicolai, B.M.; Lammertyn, J.: Analysis of tomato taste using two types of electronic tongues. Sensors and Actuators B 131 (2008), S. 10-17
  145. Heiden, W.; Brickmann, J.: Segmentation of protein surfaces using fuzzy logic. Journal of Molecular Graphics 12 (1994), S. 106-115


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten