Publikationsserver der Universitätsbibliothek Marburg

Titel:A mathematical model of sleep-wake cycles: the role of hypocretin/orexin in homeostatic regulation and thalamic synchronization
Autor:Postnova, Svetlana
Weitere Beteiligte: Braun, Hans (Dr.)
Veröffentlicht:2010
URI:https://archiv.ub.uni-marburg.de/diss/z2010/0051
URN: urn:nbn:de:hebis:04-z2010-00511
DOI: https://doi.org/10.17192/z2010.0051
DDC: Medizin
Titel (trans.):Ein mathematisches Modell von Schlaf-Wach-Zyklen: die Rolle von Hypocretin/Orexin für homöostatische Regulation und Thalamische Synchronisation
Publikationsdatum:2010-03-16
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Simulation, Computersimulation, Exzitatorische Synapse, Hypothalamus, Thalamus, Circadian, Synaptic plasticity, Hypothalamus, Schlaf, Thalamus, Neuronale Plastizität

Summary:
Sleep is vital to our health and well-being. Yet, we do not have answers to such fundamental questions as “why do we sleep?” and “what are the mechanisms of sleep regulation?”. Better understanding of these issues can open new perspectives not only in basic neurophysiology but also in different pathological conditions that are going along with sleep disorders and/or disturbances of sleep, e.g. in mental or neurological diseases. A generally accepted concept that explains regulation of sleep was proposed in 1982 by Alexander Borb´ely. It postulates that sleep-wake transitions result from the interaction between a circadian and a homeostatic sleep processes. The circadian process is ascribed to a “genetic clock” in the neurons of the suprachiasmatic nucleus of the hypothalamus. The mechanisms of the homeostatic process are still unclear. In this study a novel concept of hypocretin (orexin) - based control of sleep homeostasis is presented. The neuropeptide hypocretin is a synaptic co-transmitter of neurons in the lateral hypothalamus. It was discovered in 1998 independently by two different groups, therefore, obtaining two names, hypocretin and orexin. This neuropeptide is required to maintain wakefulness. Dysfunction in the hypocretin system leads to the sleep disorder narcolepsy, which, among other symptoms, is characterized by severe disturbances of sleep-wake cycles with sudden sleep-attacks in the wake period and interruptions of the sleep phase. On the other hand injection of hypocretin promotes wakefulness and improves the performance of sleep deprived subjects. The major proposals of the present study are the following: 1) the homeostatic regulation of sleep depends on the dynamics of a neuropeptide hypocretin; 2) ongoing impulse generation of the hypocretin neurons during wakefulness is sustained by reciprocal excitatory connections with other neurons, including local glutamate interneurons; 3) the transition to a silent state (sleep) is going along with an activity-dependent weakening of the hypocretin synaptic efficacy; 4) during the silent state (sleep) synaptic efficacy recovers and firing (wakefulness) can be reinstalled due to the circadian or other input. This concept is realized in a mathematical model of sleep-wake cycles which is built up on a physiology-based, although simplified Hodgkin-Huxley-type approach. In the proposed model a hypocretin neuron is reciprocally connected with a local interneuron via excitatory glutamate synapses. The hypocretin neuron additionally releases the neuropeptide hypocretin as co-transmitter. Besides of the local glutamate interneurons hypocretin neuron excites two gap junction coupled thalamic neurons. The functionally relevant changes are introduced via activity-dependent alterations of the synaptic efficacy of hypocretin. It is decreasing with each action potential generated by the hypocretin neuron. This effect is superimposed by a slow, continuous recovery process. The decreasing synaptic efficacy during the active wake state introduces an increasing sleep pressure. Ist dissipation during the silent sleep state results from the synaptic recovery. The model data demonstrate that the proposed mechanisms can account for typical alterations of homeostatic changes in sleep and wake states, including the effects of an alarm clock, napping and sleep deprivation. In combination with a circadian input, the model mimics the experimentally demonstrated transitions between different activity states of hypothalamic and thalamic neurons. In agreement with sleep-wake cycles, the activity of hypothalamic neurons changes from silence to firing, and the activity of thalamic neurons changes from synchronized bursting to unsynchronized single-spike discharges. These simulation results support the proposed concept of state-dependent alterations of hypocretin effects as an important homeostatic process in sleep-wake regulation, although additional mechanisms may be involved.

Bibliographie / References

  1. Gallopin T, Fort P, Eggermann E, Cauli B, Luppi PH, Rossier J, Audinat E, Mühlethaler M, Serafin M (2000) Identification of sleep-promoting neurons in vitro. Nature 404:992–995.
  2. Tessone CJ, Mirasso CR, Toral R, Gunton JD (2006) Diversity-induced resonance. Phys Rev Lett 97(19):194101-194105.
  3. Huber MT, Braun HA (2006) Stimulus-response curves of a neuronal model for noisy subthreshold oscillations and related spike generation. Phys Rev E 73:041929– 1041939.
  4. Tononi G, Cirelli C (2006) Sleep function and synaptic homeostasis. Sleep Med Rev 10(1):49-62.
  5. Moruzzi G, Magoun HW (1949) Brain stem reticular formation and activation of the EEG. Electroencephalogr Clin Neurophysiol 1:455–473.
  6. Fredholm BB, Bttig K, Holmen J, Nehlig A, Zvartau EE (1999) Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol Rev 51:83–133.
  7. Yamazaki S, Kerbeshian MC, Hocker CG, Block GD, Menaker M (1998) Rhythmic properties of the hamster suprachiasmatic nucleus in vivo. J Neurosci 18:10709– 10723.
  8. van den Pol AN (1999) Hypothalamic hypocretin (orexin): robust innervation of the spinal cord. J Neurosci 19:3171–3182.
  9. Peyron C, Tighe DK, van den Pol AN, de Lecea L, Heller HC, Sutcliffe JG, Kilduff TS (1998) Neurons containing hypocretin (orexin) project to multiple neuronal systems. J Neurosci 18(23):9996–10015.
  10. Mallis MM, Mejdal S, Nguyen TT, and Dinges DF (2004) Summary of the key Features of seven biomathematical models of human fatigue and performance. Aviat Space Environ Med 75(3):A4–A14.
  11. Chemelli RM, Willie JT, Sinton CM, Elmquist JK, Scammell T, Lee C, Richardson JA, Williams SC, Xiong Y, Kisanuki Y, Fitch TE, Nakazato M, Hammer RE, Saper CB, Yanagisawa M (1999) Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell 98(4):437–451.
  12. Kandel ER, Scwartz JH, and Jessell TM (1991) Principles of Neural Science, 4th ed., New York, McGraw-Hill.
  13. McGinty DJ, Harper RM (1973) 5-HT containing neurons: Unit activity in behaving cats. In Serotonin and behavior, J Barchas, E Usden, ed, pp 267–279, Academic Pres, New York.
  14. Chou TC (2003) A bistable model of sleep-wake regulation. In Regulation of Wake- Sleep Timing: Circadian Rhythms and Bistability of Sleep-Wake States, pp 82–99, Cambridge, MA, Harvard University.
  15. McIlwain H and Pull I (1979) Adenosine and its mononucleotides as regulatory and adaptive signals in brain. In Physiological and Regulatory Functions of Adenosine and Adenine Nucleotides, HP Baer, GI Drummond, ed, pp 361–376, Raven Press, New York.
  16. Rainnie DG, Grunze HC, McCarley RW, Greene RW (1994) Adenosine inhibition of mesopontine cholinergic neurons: implications fro EEG arousal. Science 263:689– 692.
  17. Thakkar MM, Delgiacco RA, Strecker RE, McCarley RW (2003) Adenosinergic inhi- bition of basal forebrain wakefulness-active neurons: a simultaneous unit recording and microdialysis study in freely behaving cats. Neuroscience 122(4):1107–1113.
  18. Strecker RE, Morairty S, Thakkar MM, Porkka-Heiskanen T, Basheer R, Dauphin LJ, Rainnie DG, Portas CM, Greene RW, McCarley RW (2000) Adenosinergic modulation of basal forebrain and preoptic/anterior hypothalamic neuronal ac- tivity in the control of behavioral state. Behav Brain Res 115: 183–204.
  19. Semba K, Fibiger HC (1992) Afferent connections of the laterodorsal and the pe- dunculopontine tegmental nuclei in the rat: a retro-and antero-grade transport and immuohistochemical study. J Comp Neurol 323:387–410.
  20. Steininger TL, Rye DB, Wainer BH (1992) Afferent projections to the cholinergic pedunculopontine tegmental nucleus and adjacent midbrain extrapyramidal area in the albino rat. I. Retrograde tracing studies. J Comp Neurol 321(4):515–543.
  21. Rechtschaffen A, Kales A (1968) A Manual of Standardized Terminology, Tech- niques, and Scoring System for Sleep Stages of Human Subjects. US Department of Health, Education, and Welfare Public Health Service -NIH/NIND.
  22. Peyron C, Faraco J, Rogers W, Ripley B, Overeem S, Charnay Y, Nevsimalova S, Aldrich M, Reynolds D, Albin R, Li R, Hungs M, Pedrazzoli M, Padigaru M, Kucherlapati M, Fan J, Maki R, Lammers GJ, Bouras C, Kucherlapati R, Nishino S, Mignot E (2000) A mutation in a case of early onset narcolepsy and a generalized absence of hypocretin peptides in human narcoleptic brains. Nat Med 6(9):991–997.
  23. Card JP (1999) Anatomy of the mammalian circadian timekeeping system. In Hand- book of behavioral state control: Cellular and molecular mechanisms, R Lydic and HA Baghdoyan, ed, pp 13–28, CRC Press.
  24. Lu J, Sherman D, Devor M, Saper CB (2006b) A putative flip-flop switch for control of REM sleep. Nature 441(7093):589-594.
  25. Phillips AJK and Robinson PA (2007) A quantitative model of sleep-wake dynam- ics based on the physiology of the brainstem ascending arousal system. J Biol Rhythms 22:167–179.
  26. Jones BE (2003) Arousal systems. Front Biosci 8:s438-s451.
  27. Jacobs BL, Gannon PJ, Azmitia EC (1984) Atlas of serotonergic cell bodies in the cat brainstem: an immunocytochemical analysis. Brain Res Bull 13(1):1–31.
  28. Steriade M (1992) Basic mechanisms of sleep generation. Neurology 42(7):9–17.
  29. Mileykovskiy BY, Kiyashchenko LI, Siegel JM (2005) Behavioral correlates of ac- tivity in identified hypocretin/orexin neurons. Neuron 46:787–798.
  30. Mochizuki T, Crocker A, McCormack S, Yanagisawa M, Sakurai T, Scammell TE (2004) Behavioral state instability in orexin knock-out mice. J Neurosci 24(28):6291-6300.
  31. Madsen PL (1993) Blood flow and oxygen uptake in the human brain during various states of sleep and wakefulness. Acta Neurol Scand Suppl 148:3–27.
  32. Steriade M, McCarley RW (2005) Brain control of wakefulness and sleep. 2nd ed, Kluwer Academic/Plenum Publishers, New York.
  33. Porkka-Heiskanen T, Strecker RE, McCarley RW (2000) Brain site-specificity of extracellular adenosine concentration changes during sleep deprivation and spon- taneous sleep: an in vivo microdialysis study. Neuroscience 99(3):507–17.
  34. Steriade M, McCarley RW (1990) Brainstem control of wakefulness and sleep. New York:Plenum.
  35. Siegel JM (2000) Brainstem mechanisms generating REM sleep. In Principles and practice of sleep medicine, MH Kryger, T Roth, WC Dement, ed, pp 112–133, Philadelphia: W.B. Saunders Company.
  36. Landolt HP, Rtey JV, Tnz K, Gottselig JM, Khatami R, Buckelmller I, Achermann P (2004) Caffeine attenuates waking and sleep electroencephalographic markers of sleep homeostasis in humans. Neuropsychopharmacology 29: 1933–1939.
  37. Roehrs T, Roth T (2008) Caffeine: sleep and daytime sleepiness. Sleep Med Rev 12(2):153–162.
  38. James JE, Keane MA (2007) Caffeine, sleep and wakefulness: implications of new understanding about withdrawal reversal. Hum Psychopharmacol 22:549–558.
  39. Caton R (1875) The electrical currents of the brain. J Nerv Ment Dis 2(4):610.
  40. Maquet P, Dive D, Salmon E, Sadzot B, Franco G, Poirrier R, Franck G (1992) Cerebral glucose utilization during stage 2 sleep in man. Brain Res 571:149–153.
  41. Fujiki N, Yoshida Y, Ripley B, Honda K, Mignot E, Nishino S (2001) Changes in CSF hypocretin-1 (orexin A) levels in rats across 24hours and in response to food deprivation. NeuroReport 12:993–997.
  42. Ursin R (2008) Changing concepts on the role of serotonin in th regulation of sleep and waking. In Serotonin and sleep: molecular, functional and clinical aspects, JM Monti, SR Pandi-Perumal, BL Jacobs, DJ Nutt, ed, pp 3–21, Birkhaeuser Verlag/Switzerland.
  43. Kononenko NI, Kuehl-Kovarik MC, Partina KM, Dudeka FE (2008) Circadian dif- ference in firing rate of isolated rat suprachiasmatic nucleus neurons. Neurosci Lett 436(3):314–316.
  44. Refinetti R (2005) Circadian physiology. 2nd ed. CRC Press.
  45. Mistlberger RE (2005) Circadian regulation of sleep in mammals: role of the supra- chiasmatic nucleus. Brain Res Rev 49:429–454.
  46. Herzog ED, Takahashi JS, Block GD (1998) Clock controls circadian period in iso- lated suprachiasmatic nucleus neurons. Nature Neurosci 1:708–713.
  47. Steriade M, Amzica F (1998) Coalescence of sleep rhythms and their chronology in corticothalamic networks. Sleep Res Online 1(1):1–10.
  48. Goldbeter A (2002) Computational approaches to cellular rhythms. Nature 420(6912):238–245.
  49. Rye DB (1997) Contributions of pedunculopontine region to normal and altered REM sleep. Sleep 20:757–788.
  50. Kayama Y, Koyama Y (2003) Control of sleep and wakefulness by brainstem mono- aminergic and cholinergic neurons. Acta Neurochir Suppl 87:3–6.
  51. Chagoya de Sanchez V, Hernandez MR, Surarez J, Vidrio S, Yanez L and Diaz- Munoz M (1993) Daynight variations of adenosine and its metabolizing enzymes in the brain cortex of the rat-possible physiological significance for the energetic homeostasis and the sleepwake cycle. Brain Res 612:115–121.
  52. Lee MG, Hassani OK, Jones BE (2005) Discharge of identified orexin/hypocretin neurons across the sleep-waking cycle. J Neurosci 25(28):6716–6720.
  53. Szymusiak R, Alam N, McGinty D (2000) Discharge patterns of neurons in cholin- ergic regions of the basal forebrain during waking and sleep. Behav Brain Res 115(2):171–182.
  54. Glenn LL, Steriade M (1982) Discharge rate and excitability of cortically project- ing intralaminar thalamic neurons during waking and sleep states. J Neurosci 2(10):1387–1404.
  55. Morairty S, Rainnie D, McCarley R, Greene R (2004) Disinhibition of ventrolat- eral preoptic area sleep-active neurons by adenosine: a new mechanism for sleep promotion. Neuroscience 123:451–457.
  56. Jones BE and Beaudet A (1987) Distribution of acetylcholine and catecholamine neurons in the cat brain stem studied by choline acetyltransferase and tyrosine hydroxylase immunochistochemistry. J Comp Neurol 261:15–32.
  57. Nambu T, Sakurai T, Mizukami K, Hosoya Y, Yanagisawa M, Goto K (1999) Dis- tribution of orexin neurons in the adult rat brain. Brain Res 827(1-2):243–260.
  58. Salomon RM, Ripley B, Kennedy JS, Johnson B, Zeitzer JM, Nishino S, Mignot E (2003) Diurnal variation of CSF hypocretin-1 (orexin-A) levels in control and depressed subjects. Biol Psychiatry 54(2):96–104.
  59. Siegel JM (2008) Do all animals sleep? Trends Neurosci 31(4):208–213.
  60. McGinty D, Harper RM (1976) Dorsal raphe neurons: depression of firing during sleep in cats. Brain Res 101:569–575.
  61. Kumar S, Szymusiak R, Bashir T, Rai S, McGinty D, Alam MN (2007) Efects of serotonin on perifornical-lateral hypothalamic area neurons in rat. Eur J Neurosci 25:201–212.
  62. Walsh JK, Muehlbach MJ, Humm TM, Dickins QS, Sugerman JL, Schweitzer PK (1990) Effect of caffeine on physiological sleep tendency and ability to sustain wakefulness at night. Psychopharmacology (Berl) 101(2):271–273.
  63. Ida T, Nakahara K, Katayama T, Murakami N, Nakazato M (1999) Effect of lateral cerebroventricular injection of the appetite-stimulating neuropeptide, orexin and neuropeptide Y, on the various behavioral activities of rats. Brain Res 821:526– 529.
  64. Lu J, Greco MA, Shiromani P, Saper CB (2000) Effect of lesions of the ventrolateral preoptic nucleus on NREM and REM sleep. J Neurosci 20(10):3830–3842.
  65. Chamberlin NL, Arrigoni E, Chou TC, Scammel TE, Greene RW, Saper CB (2003) Effects of adenosine on GABAergic synaptic inputs to identified ventrolateral preoptic neurons. Neuroscience 119:913–918.
  66. Jones BE, Harper ST, Halaris AE (1977) Effects of locus coeruleus lesions upon cerebral monoamine content, sleep-wakefulness states and the response to am- phetamine in the cat. Brain Res 124(3):473–96.
  67. Methippara MM, Kumar S, Alam MN, Szymusiak R, McGinty D (2005) Effects on sleep of microdialysis of adenosine A(1) and A(2a) receptor analogs into the lateral preoptic area of rats. Am J Physiol 289:R1715–1723.
  68. Landisman CE, Long MA, Beierlein M, Deans MR, Paul DL, Connors BW (2002) Electrical synapses in the thalamic reticular nucleus. Neurosci 22(3): 1002–1009.
  69. Minor TR, Rowe MK, Soames Job RF and Ferguson EC (2001) Escape deficits induced by inescapable shock and metabolic stress are reversed by adenosine re- ceptor antagonists. Behav Brain Res 120:203–212.
  70. Calvet J, Langlots J, Guerin C, Calvet MC (1964b) Etude statistique de la relation entre les ondes cerebrales et les decharges unitaires corticales. J Physiol (Paris) 56:312–313.
  71. Calvet J, Calvet MC, Scherrer J (1964a) Etude stratigraphique corticale de l'activite E.E.G. spontanee. Electroencephalog Clin Neurophysiol 17:109–125.
  72. Fuentealba P, Crochet S, Timofeev I, Bazhenov M, Sejnowski TJ, Steriade M (2004) Experimental evidence and modeling studies support a synchronizing role for elec- trical coupling in the cat thalamic reticular neurons in vivo. Eur J Neurosci 20(1):111–119.
  73. Huston JP, Haas HL, Boix F, Pfister M, Decking U, Schrader J, Schwarting RK (1996) Extracellular adenosine levels in neostriatum and hippocampus during rest and activity periods of rats. Neuroscience 73:99–107.
  74. Fox RF, Gatland IR, Roy R, Vemuri G (1988) Fast, accurate algorithm for numerical simulation of exponentially correlated colored noise. Phys Rev A 38(11):5938– 5940.
  75. Hursh SR, Redmond DP, Johnson ML, Thorne DR, Belenky G, Balkin TJ, Storm WF, Miller JC, Eddy DR (2004) Fatigue models for applied research in warfight- ing. Aviat Space Environ Med 75(3):A44–A53.
  76. Kayama Y, Ohta M, Jodo E (1992) Firing of " possibly " cholinergic neurons in the rat laterodorsal tegmental nucleus during sleep and wakefulness. Brain Res 569(2):210–220.
  77. Noda H, Adey WR (1970) Firing variability in cat association cortex during sleep and wakefulness. Brain Res 18(3):513–526.
  78. McCormick DA, Feeser HR (1990) Functional implications of burst firing and single spike activity in lateral geniculate relay neurons. Neuroscience 39:103–113.
  79. Haas HL, Sergeeva OA, and Selbach O (2008) Histamine in the Nervous System. Physiol Rev 88:1183–1241.
  80. Wada H, Inagaki N, Itowi N, Yamatodani A (1991) Histaminergic neuron system in the brain: distribution and possible functions. Brain Res Bull 27(3-4):367–370.
  81. Freedman R, Foote SL, Bloom FE (1975) Histochemical characterization of a neo- cortical projection of the nucleus locus coeruleus in the squirrel monkey. J Comp Neurol 164:209–231.
  82. Gerashchenko D, Kohls MD, Greco M, Waleh NS, Salin-Pascual R, Kilduff TS, Lappi DA, Shiromani PJ (2001) Hypocretin-2-saporin lesions of the lateral hypothala- mus produce narcoleptic-like sleep behavior in the rat. J Neurosci 21(18):7273– 7283.
  83. Li Y, Gao XB, Sakurai T, van den Pol AN (2002) Hypocretin/Orexin excites hypocretin neurons via a local glutamate neuron-A potential mechanism for or- chestrating the hypothalamic arousal system. Neuron 36:1169–1181.
  84. Rosin DL, Weston MC, Sevigny CP, Stornetta RL, Guyenet PG (2003) Hypotha- lamic orexin (hypocretin) neurons express vesicular glutamate transporters VG- LUT1 or VGLUT2. J Comp Neurol 465:593–603.
  85. Yamanaka A, Beuckmann CT, Willie JT, Hara J, Tsujino N, Mieda M, Tominaga M, Yagami K, Sugiyama F, Goto K, Yanagisawa M, Sakurai T (2003) Hypothalamic orexin neurons regulate arousal according to energy balance in mice. Neuron 38(5):701–713.
  86. Salin-Pascual R, Gerashchenko D, Greco M, Blanco-Centurion C, Shiromani PJ (2001) Hypothalamic regulation of sleep. Neuropsychopharmacology 25(5): S21– S27.
  87. McGinty D, Szymusiak R (2003) Hypothalamic regulation of sleep and arousal. Front Biosci 8:s1074–s1083.
  88. Hauta WJH (1946) Hypothalamic regulation of sleep in rats. An experimental study. J Neurophysiol 9:285–316.
  89. Lu J, Jhou TC, and Saper CB (2006a) Identification of wake-active dopaminergic neurons in the Ventral periaqueductal gray matter. J Neurosci 26(1):193–202.
  90. Postnova S, Wollweber B, Voigt K, Braun HA (2007a) Impulse-Pattern in Bidirec- tionally Coupled Model Neurons of Different Dynamics. Biosystems 89:135–142.
  91. van Wylen DG, Park TS, Rubio R and Berne RM (1986) Increases in cerebral interstitial fluid adenosine concentration during hypoxia, local potassium infusion, and ischemia. J Cereb Blood Flow Metab 6:522–528.
  92. Sakurai T, Nagata R, Yamanaka A, Kawamura H, Tsujino N, Muraki Y, Kageyama H, Kunita S, Takahashi S, Goto K, Koyama Y, Shioda S, Yanagisawa M (2005) Input of orexin/hypocretin neurons revealed by a genetically encoded tracer in mice. Neuron 46:297–308.
  93. Winsky-Sommerer R, Yamanaka A, Diano S, Borok E, Roberts AJ, Sakurai T, Kilduff TS, Horvath TL, de Lecea L (2004) Interaction between the corticotropin- releasing factor system and hypocretins (orexins): a novel circuit mediating stress response. J Neurosci 24(50):11439–11448.
  94. Jewett ME and Kronauer RE (1999) Interactive mathematical models of subjective alertness and cognitive throughput in humans. J Biol Rhythms 14:588–597.
  95. Morrison JH, Foote SL, OConnor D, Bloom FE (1982) Laminar, tangential and regional organization of the noradrenergic innervation of the monkey cortex: dopa- mine-beta-hydroxylase immunohistochemistry. Brain Res Bull 9:309–319.
  96. Hockman CH and Thomas CC (1972) Limbic system and autonomic function. Springfield, Ill., xviii.
  97. Hartman BK (1974) Localization of the noradrenergic nervous system in human brain. J Psychiatr Res 11:283–288.
  98. Ibuka N and Kawamura H (1975) Loss of circadian rhythm in sleep-wakefulness cycle in the rat by suprachiasmatic nucleus lesions. Brain Res 96:76–81.
  99. Siegel JM (1990) Mechanisms of sleep control. J Clin Neurophysiol 7(1):49–65.
  100. Cassone VM (1991) Melatonin and suprachiasmatic nucleus function. In Supra- chiasmatic nucleus: the mind's clock, DC Klein, RY Moore and SM Reppert, ed, pp 309–323, Oxford University Press.
  101. Cassone VM, Warren WS, Brooks DS, Lu J (1993) Melatonin, the pineal gland, and circadian rhythms. J Biol Rhythms 8:S73–S81.
  102. Hill S and Tononi G (2005) Modeling Sleep and Wakefulness in the Thalamocortical System. J Neurophysiol 93:1671–1698.
  103. Steriade M, Dossi RC, Nuñez A (1991) Network modulation of a slow intrinsic oscillation of cat thalamocortical neurons implicated in sleep delta waves: corti- cally induced synchronization and brainstem cholinergic suppression. J Neurosci 11(10):3200–3217.
  104. McCarley RW (2007) Neurobiology of REM and NREM sleep. Sleep Med 8:302–330.
  105. Monti J, Pandi-Perumal SR, Sinton CM (2008) Neurochemistry of Sleep and Wake- fulness. Cambridge University Press.
  106. Monckton JE, McCormick DA (2002) Neuromodulatory role of serotonin in the ferret thalamus. J Neurophysiol 87:2124–2136.
  107. McCarley RW and Hobson JA (1975) Neuronal excitability modulation over the sleep cycle: a structural and mathematical model. Science 189:58–60.
  108. Sinton CM, McCarley RW (2004) Neurophysiological mechanisms of sleep and wake- fulness: a question of balance. Semin Neurol 24(3):211–223.
  109. Harris CD (2005) Neurophysiology of sleep and wakefulness. Respir Care Clin N Am 11(4):567–586.
  110. Jouvet M (1967) Neurophysiology of the States of Sleep. Physiol Rev 47(2): 117– 177.
  111. Mejer JH and Rietveld WJ (1989) Neurophysiology of the suprachiasmatic circadian pacemaker in rodents. Physiol Rev 69(3):671–707.
  112. Jones BE and Webster HH (1988) Neurotoxic lesions of the dorsolateral pontomesen- cephalic tegmentum-cholinergic cell area in the cat. I. Effects upon the cholinergic innervation of the brain. Brain Res 451:13–32.
  113. Capecce MC, Baghdoyan HA, Lydic R (1999) New directions for the study of cholin- ergic REM sleep generation: specifying pre-and post-synaptic mechanisms. In Rapid eye movement sleep, BN Mallick, S Inoue, ed, pp 123–141, New York:Marcel Dekker.
  114. Strogatz SH (1994) Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engeneering. Addison-Wesley publ.
  115. Press WH, Flannery BP, Teukolsky SA, Vetterling WT (1988) Numerical Recipes in C. Cambridge University Press.
  116. Tsujino N, Sakurai T (2009) Orexin/Hypocretin: a neuropeptide at the interface of sleep, energy homeostasis, and reward system. Pharmacol Rev 61(2):162-176.
  117. Kolaj M, Doroshenko P, Yan Cao X, Coderre E, Renaud LP (2007) Orexin-induced modulation of state-dependent intrinsic properties in thalamic paraventricular nu- cleus neurons attenuates action potential patterning and frequency. Neuroscience 147(4):1066–1075.
  118. Sakurai T, Amemiya A, Ishii M, Matsuzaki I, Chemelli RM, Tanaka H, Williams SC, Richardson JA, Kozlowski GP, Wilson S, Arch JR, Buckingham RE, Haynes AC, Carr SA, Annan RS, McNulty DE, Liu WS, Terrett JA, Elshourbagy NA, Bergsma DJ, Yanagisawa M (1998) Orexins and orexin receptors: a family of hypothalamic neuropeptides and G-protein coupled receptors that regulate feeding behavior. Cell 92:573–585.
  119. Khateb A, Fort P, Alonso A, Jones BE, Muehlethaler M (1993) Pharmacological and immunohistochemical evidence for serotonergic modulation of cholinergic nucleus basalis neurons. Eur J Neurosci 5:541–547.
  120. Provencio I, Rollag MD, Castrucci AM (2002) Photoreceptive net in the mammalian retina. This mesh of cells may explain how some blind mice can still tell day from night. Nature 415:493.
  121. Shouse MN, Siegel JM (1992) Pontine regulation of REM sleep components in cats: integrity of the pedunculopontine tegmentum (PPT) is important for phasic events but unnecessary for atonia during REM sleep. Brain Res 571(1):50–63.
  122. Xia J, Chen X, Song C, Ye J, Yu Z, Hu Z (2005) Postsynaptic excitation of prefrontal cortical pyramidal neurons by hypocretin-1/orexin A through the inhibition of potassium currents. J Neurosci Res 82(5):729–736.
  123. Szymusiak R, Steininger T, Alam N, McGinty D (2001) Preoptic area sleep-regula- ting mechanisms. Arch Ital Biol 139(1-2):77–92.
  124. Postnova S, Finke C, Jin W, Schneider H and Braun HA (in print a) The Role of Neuronal Dynamics and Noise for Stimulus Encoding and Synchronization. J Physiol Paris.
  125. Postnova S, Voigt K, Braun HA (in print b) A mathematical model of homeostatic regulation of sleep-wake cycles by hypocretin/orexin. J Biol Rhythms.
  126. Urade Y, Hayaishi O (1999) Prostaglandin D2 and sleep regulation. Biochim Bio- phys Acta 1436(3):606–615.
  127. Trulson ME, Jacobs BL (1979) Raphe unit activity in freely moving cats: correlation with level of behavioral arousal. Brain Res 163:135–150.
  128. Thannickal TC, Moore RY, Nienhuis R, Ramanathan L, Gulyani S, Aldrich M, Cornford M, Siegel JM (2000) Reduced number of hypocretin neurons in human narcolepsy. Neuron 27:469–474.
  129. Paisley AC, Summerlee AJ (1984) Relationships between behavioural states and activity of the cerebral cortex. Prog Neurobiol 22(2):155–184.
  130. Puizillout JJ, Gaudin-Chazal G, Daszuta A, Seyfritz N, Ternaux JP (1979) Release of endogenous serotonin from " encephale isole " cats. II. Correlations with raphe neuronal activity and sleep and wakefulness. J Physiol (Paris) 75:531–537.
  131. Kiyashchenko LI, Mileykovskiy BY, Maidment N, Lam HA, Wu MF, John J, Peever J, Siegel JM (2002) Release of Hypocretin (Orexin) during Waking and Sleep States. J Neurosci 22(13):5282–5286.
  132. Moore RY (1973) Retinohypothalamic projection in mammals: a comparative study. Brain Res 49:403–409.
  133. Portas CM, Thakkar M, Rainnie DG, Greene RW, McCarley RW (1997) Role of adenosine in behavioral state modulation: a microdialysis study in the freely moving cat. Neuroscience 79:225–235.
  134. Ticho SR, Radulovacki M (1991) Role of adenosine in sleep and temperature regu- lation in the preoptic area of rats. Pharmacol Biochem Behav 40:33–40.
  135. Sakurai T (2005) Roles of orexin/hypocretin in regulation of sleep/wakefulness and energy homeostasis. Sleep Med Rev 9(4):231–241.
  136. Rasmussen K, Morilak DA, and Jacobs BL (1986) Single unit activity of locus coeruleus neurons in the freely moving cat. I. During naturalistic behaviors and in response to simple and complex stimuli. Brain Res 371:324–334.
  137. Cespuglio R, Faradji H, Gomez M-E, Jouvet M (1981) Single unit recordings in the nuclei raphe dorsalis and magnus during sleep-waking cycle of semi-chronic prepared cats. Neurosci Lett 24:133–138.
  138. McCormick DA, Bal T (1997) Sleep and arousal: thalamocortical mechanisms. Annu Rev Neurosci 20:185–215.
  139. Hobson JA (1999) Sleep and dreaming, In Fundamental neuroscience, MJ Zigmond, FE Bloom, SC Landis, JL Roberts, LR Squire, ed, pp 1207–1228, Academic Press.
  140. Tobler I, Scherschlicht R (1990) Sleep and EEG slow-wave activity in the domestic cat: effect of sleep deprivation. Behav Brain Res 37:109–118.
  141. Stenberg D, Litonius E, Halldner L, Johansson B, Fredholm BB and Porkka-Heiska- nen T (2003) Sleep and its homeostatic regulation in mice lacking the adenosine A1 receptor. J Sleep Res 12:283–290.
  142. Steriade M (2005) Sleep and neuronal plasticity: cellular mechanisms of corticotha- lamic oscillations. In Sleep circuits and functions, PH Luppi, ed, pp 1–24, CRC Press LLC.
  143. Luppi PH (2004) Sleep: Circuits and Functions. CRC Press.
  144. Hobson JA, McCarley RW, and Wyzinski PW (1975) Sleep cycle oscillation: recip- rocal discharge by two brainstem neuronal groups. Science 189:55–58.
  145. Landolt HP (2008) Sleep homeostasis: A role for adenosine in humans? Biochem Pharmacol 75:2070–2079.
  146. Szymusiak R, Iriye T, McGinty D (1989) Sleep-waking discharge of neurons in the posterior lateral hypothalamic area of cats. Brain Res Bull 23:111–120.
  147. Szymusiak R, Alam N, Steininger TL, McGinty D (1998) Sleep-waking discharge patterns of ventrolateral preoptic/anterior hypothalamic neurons in rats. Brain Res 803(1-2):178–188.
  148. Ungerstedt U (1971) Stereotaxic mapping of the monoamine pathways in the rat brain. Acta Physiol Scand 367:1–48.
  149. Moore RY (2007) Suprachiasmatic nucleus in sleep-wake regulation. Sleep Med 3:27–33.
  150. Gaykema RP, Gaál G, Traber J, Hersh LB, Luiten PG (1991) The basal forebrain cholinergic system: efferent and afferent connectivity and long-term effects of lesions. Acta Psychiatr Scand Suppl 366:14–26.
  151. Steriade M (2003) The corticothalamic system in sleep. Front Biosci 8:d878–d899.
  152. Lidbrink P (1974) The effect of lesions of ascending noradrenaline pathways on sleep and waking in the rat. Brain Res 74:19–40.
  153. Virus RM, Djuricic-Nedelson M, Radulovacki M, Green RD (1983) The effects of adenosine and 20 -doxycoformycin on sleep and wakefulness in rats. Neurophar- macology 22:14011404.
  154. Sutcliffe JG, de Lecea L (2002) The hypocretins: setting the arousal threshold. Nat Rev Neurosci 3:339–349.
  155. Semba K (1999) The mesopontine cholinergic system: a dual role in REM sleep and wakefulness. In Handbook of behavioral state control: molecular and cellular mechanisms, R Lydic, HA Baghdoyan, ed, pp 161–180, Boca Raton, FL:CRC.
  156. Sakurai T (2007) The neural circuit of orexin (hypocretin): maintaining sleep and wakefulness. Nat Rev Neurosci 8:171–181.
  157. Siegel J (2002) The neural control of sleep and waking. Springer-Verlag New York, Inc.
  158. Pace-Schott EF, Hobson JA (2002) The neurobiology of sleep: Genetics, cellular physiology and subcortical networks. Nat Rev Neurosci 3:591–605.
  159. Hobson JA, Stickgold R, Pace-Schott EF (1998) The neurophysiology of REM sleep dreaming. Neuroreport 9:R1–R14.
  160. Jones BE (1993) The organization of central cholinergic systems and their functional importance in sleep-waking states. Prog Brain Res 98:61–71.
  161. Sakai K, El Mansari M, Lin JS, Zhang G, Vanni-Mercier G (1990) The posterior hypothalamus in the regulation of wakefulness and paradoxical sleep. In The Diencephalon and Sleep, M Mancia, G Marini, ed, pp 171–198, New York, Raven Press.
  162. Morgane PJ, Stern WC (1975) The role of serotonin and norepinephrine in sleep- waking activity. Natl Inst Drug Abuse Res Monogr Ser (3):37–61.
  163. Lin L, Faraco J, Li R, Kadotani H, Rogers W, Lin X, Qiu X, de Jong PJ, Nishino S, Mignot E (1999) The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell 98(3):365–376.
  164. Illnerova H (1991) The suprachiasmatic nucleus and rhythmic pineal melatonin pro- duction. In Suprachiasmatic nucleus: the mind's clock, DC Klein, RY Moore, SM Reppert, pp 171–216, Oxford University Press.
  165. Jouvet M, Moruzzi G (1972) Neurophysiology and neurochemistry of sleep and wake- fulness. Springer-Verlag.
  166. Meghji P (1991) Adenosine production and metabolism In Adenosine in Nervous System, T Stone, ed, pp 25–42, Academic Press, London.
  167. Steriade M (1994) Sleep oscillations and their blockage by activating systems. J Psychiatry Neurosci 19(5):354–358.
  168. Gerashchenko D, Chou TC, Blanco-Centurion CA, Saper CB, Shiromani PJ (2005) Effects of lesions of the histaminergic tuberomammillary nucleus on spontaneous sleep in rats. Sleep 27(7): 1275–1281.
  169. Klein D, Moore RY, Reppert SM (1991) Suprachiasmatic nucleus: The mind's clock. Oxford University Press, New York.
  170. Wallenstein GV (1994) A model of the electrophysiological properties of nucleus reticularis thalami neurons. Biophys J 66(4):978–988.
  171. Hodgkin AL and Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117(4):500– 544.
  172. Liu ZW, Gao XB (2007) Adenosine inhibits activity of hypocretin/orexin neurons by the A1 receptor in the lateral hypothalamus: a possible sleep-promoting effect. J Neurophysiol 97:837–848.
  173. de Lecea L, Kilduff TS, Peyron C, Gao X, Foye PE, Danielson PE, Fukuhara C, Battenberg EL, Gautvik VT, Bartlett FS 2nd, Frankel WN, van den Pol AN, Bloom FE, Gautvik KM, Sutcliffe JG (1998) The hypocretins: hypothalamus- specific peptides with neuroexcitatory activity. Proc Natl Acad Sci USA 95:322– 327.
  174. Rao Y, Liu ZW, Borok E, Rabenstein RL, Shanabrough M, Lu M, Picciotto MR, Horvath TL, Gao XB (2007) Prolonged wakefulness induces experience-dependent synaptic plasticity in mouse hypocretin/orexin neurons. J Clin Invest 117(12):4022-4033.
  175. Scammell T, Gerashchenko D, Urade Y, Onoe H, Saper C, Hayaishi O (1998) Acti- vation of ventrolateral preoptic neurons by the somnogen prostaglandin D2. Proc Natl Acad Sci USA 95(13):7754–7759.
  176. Gu Y, Liljenstrm H (2007) A neural network model of attention-modulated neuro- dynamics. Cogn Neurodyn 1(4):275–85.
  177. Postnova S, Voigt K, Braun HA (2007b) Neural synchronization at tonic-to-bursting transitions. J Biol Phys 33(2):129–143.
  178. Schaap J, Albus H, vandeLeest HT, Eilers PHC, Detari L, Mejer JH (2003) Hetero- geneity of rhythmic suprachiasmatic nucleus neurons: implications for circadian waveform and photoperiodic encoding. Proc Natl Acad Sci USA 100(26):15994–9.
  179. Thakkar MM, Strecker RE, McCarley RW (1998) Behavioral state control through differential serotonergic inhibition in the mesopontine cholinergic nuclei: A simul- taneous unit recording and microdialysis study. J Neurosci 18:5490–5497.
  180. Luebke JI, Greene RW, Semba K, Kamondi A, McCarley RW, Reiner PB (1992) Serotonin hyperpolarizes cholinergic low-threshold burst neurons in the rat lat- erodorsal tegmental nucleus in vitro. Proc Natl Acad Sci USA 89: 743–747.
  181. Saper CB, Chou TC, Scammell TE (2001) The sleep switch: hypothalamic control of sleep and wakefulness. Trends Neurosci 24:726–731.
  182. Landolt HP, Werth E, Borvely AA, Dijk DJ (1995) Caffeine intake (200mg) in the morning affects human sleep and EEG power spectra at night. Brain Res 675:67–74.
  183. Gallopin T, Luppi PH, Cauli B, Urade Y, Rossier J, Hayaishi O, Lambolez B, Fort P (2005) The endogenous somnogen adenosine excites a subset of sleep-promoting neurons via A2A receptors in the ventrolateral preoptic nucleus. Neuroscience 134:1377–1390.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten