Untersuchungen zur Cyclooxygenase-abhängigen Nephrogenese bei der Maus

Inaugural-Dissertation
zur Erlangung des Doktorgrades der gesamten Humanmedizin
dem Fachbereich Medizin der Philipps-Universität Marburg
vorgelegt

von
Andreas Herud
aus Offenbach am Main

Marburg, 2008
Angenommen vom Fachbereich Medizin der Philipps-Universität Marburg am 26.02.09.
Gedruckt mit Genehmigung des Fachbereichs.

Dekan: Prof. Dr. M. Rothmund
Referent: Prof. Dr. R.M. Nüsing
Korreferent: PD Dr. U. Kuhlmann
Inhaltsverzeichnis

I. Einleitung ...1

 I.1. Die physiologische Nierenentwicklung1
 I.2. Einfluss von NSAIDs auf die Nephrogenese8
 I.3. Die Cyclooxygenase ..9
 I.4. Das COX-2\(^{-/-}\)-Mausmodell13
 I.5. Prostaglandin-Rezeptoren16
 I.6. Ziel der Arbeit ..19

II. Material und Methoden ...20

 II.1. Material ...20
 II.1.1. Chemikalien ..20
 II.1.2. Medikamente ...20
 II.1.3. Enzyme und Primer21
 II.1.4. Instrumente und Apparaturen21
 II.1.5. Sonstige Materialien22
 II.1.6. Software ..22
 II.1.7. Tiere ..22

 II.2. Methoden ...23
 II.2.1. Spritzschema ...23
 II.2.2. Zusammensetzung der Medikamente23
 II.2.2.1. ONO AE1-329 (EP-4-Agonist)23
 II.2.2.2. ONO AE1-259-01 (EP-2-Agonist)23
 II.2.2.3. ONO AE1-329 (EP-4-Agonist) \textit{plus}
 ONO AE1-259-01 (EP-4-Agonist)24
 II.2.2.4. NOC-12 (NO-Donator)24
 II.2.2.5. Spermine NONOate (NO-Donator)24
 II.2.2.6. Troglitazone (PPAR\(\gamma\)-Agonist)25
Inhaltsverzeichnis

II.2.2.7. ONO AE3-208 (EP-4-Antagonist)25
II.2.2.8. SC-236 (COX-2-Inhibitor)26
II.2.2.9. Parecoxib (COX-2-Inhibitor)26
II.2.2.10. GW 501516 (PPARd-Agonist)26
II.2.2.11. Rofecoxib (COX-2-Inhibitor) (Tränke)26
II.2.2.12. SC-236 (COX-2-Inhibitor) (Tränke)26
II.2.2.13. Spermine NONOate (NO-Donator) (Tränke) ..26

II.2.3. Verabreichen der Medikamente27
 II.2.3.1. Spritzen der Mäuse27
 II.2.3.2. Versuche über die Tränke27

II.2.4. Genotypisierung28
 II.2.4.1. Isolation der DNA28
 II.2.4.2. Polymerase-Kettenreaktion (PCR)29
 II.2.4.3. Gelzubereitung30
 II.2.4.4. Gelelektrophorese30

II.2.5. Präparation der Mäuse32
II.2.6. Fixieren der Organe32
II.2.7. Parafineinbetten der Organe33
II.2.8. Schneiden der Organe34
II.2.9. Färben der Organe34
II.2.10. Mikroskopieren der Organe36
II.2.11. Statistische Auswertung36

III. Ergebnisse ..37
 III.1. COX-2\(^{-/-}\) ..37
 III.1.1. Zusammenfassung der histomorphologischen Daten ...39
 III.2. COX-2-Inhibitoren40
 III.2.1. Applikation von SC-236 über die Tränke40
III.2.1.1. Applikation von SC-236 intraperitoneal43
III.2.1.2. Zusammenfassung der histomorphologischen Daten ..45

III.2.2. Applikation von Parecoxib ..45
III.2.3. Applikation von Rofecoxib ..47
III.2.4. Zusammenfassung der histomorphologischen Daten49

III.2.5. Vergleichende Zusammenstellung49

III.3. PGE_2-Rezeptoren ..51
III.3.1.1. Zusammenfassung der histomorphologischen Daten ..54

III.3.2.1. Zusammenfassung der histomorphologischen Daten ..58

III.3.3.1. Zusammenfassung der histomorphologischen Daten ..61

III.3.4.1. Zusammenfassung der histomorphologischen Daten ..63

III.3.5. Vergleichende Zusammenstellung63

III.4. NO – Substanzen ...65
III.4.1. Applikation von Spermine NONOate (NOC-22)65
III.4.1.1. Applikation von NOC-22 ab Tag E668
III.4.1.2. Zusammenfassung der histomorphologischen Daten
Inhaltsverzeichnis

Daten ..70

III.4.2. Applikation von NOC-12 ..70
III.4.2.1. Zusammenfassung der histomorphologischen Daten ..72

III.4.3. Vergleichende Zusammenstellung72

III.5. PPAR-Agonisten ...74
III.5.1. Applikation des PPARγ-Agonisten Troglitazone74
III.5.2. Applikation des PPARδ-Agonisten GW50151675
III.5.3. Zusammenfassung der histomorphologischen Daten77
III.5.4. Vergleichende Zusammenstellung77

IV. Diskussion ..79

IV.1. Einfluss von COX-2-Inhibitoren auf die Nephrogenese80

IV.2. Einfluss von EP-Agonisten auf die Nephrogenese82

IV.3. Einfluss eines EP-4-Antagonisten auf die Nephrogenese84

IV.4. Einfluss von NO-Substanzen auf die Nephrogenese84

IV.5. Einfluss von PPAR-Agonisten auf die Nephrogenese85

V. Zusammenfassung ...88

VI. Literaturverzeichnis ...90

VII. Abkürzungsverzeichnis ..98

VIII. Anhang ...100
VIII.1. Verzeichnis der akademischen Lehrer100
VIII.2. Danksagung ...100
I. Einleitung

I.1. Die physiologische Nephrogenese

Im Einzelnen setzen sich die unterschiedlichen Nierengenerationen aus der Vorniere (Pronephros), die der Niere einiger primitiver Fische entspricht, der Urniere (Mesonephros), die ähnlich der Niere von Amphibien und Fischen ist, und der Nachniere (Metanephros) zusammen (s. Abb. 1).

Einleitung

Abb. 1; Schema der drei embryonalen Nierengenerationen im Bereich der dorsalen Rumpfwand. H = Herzbeutel, L = Leberanlage, ZNS = Zentrales Nervensystem (nach Rohen, Lütjen-Drecol; Funktionelle Embryologie; Schattauer [2003])

Nachniere (Metanephros). Die Nachniere beginnt sich am Anfang der 5. Woche in Höhe des ersten Sakralsegments zu entwickeln. Dazu fängt die Ureterknospe kurz vor dem Übergang in die Kloake an, aus dem Wolff-Gang nach dorsokranial in das metanephrogene Blastem auszusprossen. Dieser Vorgang induziert die umliegenden Mesenchymzellen sich zu verdichten und sich wie eine Kappe über die Knospe zu legen. Dies wiederum induziert die Ureterknospe sich kontinuierlich dichotom zu tei-
len. In dessen Folge entstehen Ureter, Nierenbecken, Nierenkelche und aufeinander folgende Generationen von Sammelrohren. Dabei bilden die ersten drei bis vier Ge-
nerationen dieser Rohre, durch Vergrößerung und Konfluenz, die Calices maiores, und die zweiten vier die Calices minores (s. Abb. 3).

Einleitung

Abb. 5: Wichtige Schritte in der Vaskularisation eines Nephrons. UB: Ureterknospe; JG cell: Juxtaglomeruläre Vorläuferzelle; smooth muscle cell: Zelle glatter Muskulatur; endothelial cell: Endothelzelle; mesenchymal cell: Mesenchymzelle (nach Gomez et al.; Recent advances in renal development; Current Opinion in Pediatrics 11 [1999])
In viele der oben beschriebenen Vorgänge scheinen unterschiedliche Gene involviert zu sein. Eine Auflistung bekannter Gene, die für eine reibungslose Nierenentwicklung in den einzelnen Differenzierungsstadien von Bedeutung zu sein scheinen und was bei einem Defekt zu beobachten ist, gibt Tabelle 1 und Abb. 6.

<table>
<thead>
<tr>
<th>Gen</th>
<th>Gewebe-expression</th>
<th>Defekt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proteoglykane und ihre biosynthetischen Enzyme</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hs2st</td>
<td>UK, MM</td>
<td>Fehlende Nierenanlage durch fehlende UK-Teilung und mesenchymale Kondensation</td>
</tr>
<tr>
<td>Gpc3</td>
<td>UK, MM</td>
<td>Selektive Degeneration d. medullären Sammelrohre</td>
</tr>
<tr>
<td>Transkriptionsfaktoren</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emx2</td>
<td>UK, MM</td>
<td>Fehlen von Niere, UK, Genitaltrakt</td>
</tr>
<tr>
<td>Eya1</td>
<td>MM</td>
<td>Fehldes UK-Wachstum und MM-Induktion</td>
</tr>
<tr>
<td>Foxc1</td>
<td>MM</td>
<td>Zwei Nieren und doppelte UKs</td>
</tr>
<tr>
<td>Foxd1</td>
<td>S</td>
<td>Kleine Nieren mit wenigen Nephronen</td>
</tr>
<tr>
<td>Pax2</td>
<td>UK, MM</td>
<td>Fehlerhaftes UK-Wachstum, MM wird nicht induziert</td>
</tr>
<tr>
<td>Rara, Rarb</td>
<td>UK, S, MM</td>
<td>Hypoplasie/Agenesie</td>
</tr>
<tr>
<td>Sall1</td>
<td>MM</td>
<td>Fehlerhaftes UK-Wachstum</td>
</tr>
<tr>
<td>Wt1</td>
<td>MM</td>
<td>MM begeht Apoptose</td>
</tr>
<tr>
<td>Wachstumsfaktoren</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bmp4 (het)</td>
<td>MM</td>
<td>Hypo-/Dysplastische Niere, Hydroureter, Doppelsammelrohre</td>
</tr>
<tr>
<td>Bmp7</td>
<td>UK, MM</td>
<td>Schwere Hypoplasie mit wenigen Nephronen und Sammelrohren</td>
</tr>
<tr>
<td>Fgf7</td>
<td>S</td>
<td>Kleine Nieren, wenig UK-Verzweigungen und Nephronen</td>
</tr>
<tr>
<td>Gdnf</td>
<td>MM</td>
<td>Agenesie, da fehlerhaftes UK-Wachstum</td>
</tr>
<tr>
<td>Wnt4</td>
<td>MM</td>
<td>Fehlerhafte Tubulusformationen</td>
</tr>
<tr>
<td>Wachstumsfaktoren/-rezeptoren</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gfra1</td>
<td>UK, MM</td>
<td>Agenesie, da fehlerhaftes UK-Wachstum</td>
</tr>
<tr>
<td>Notch2</td>
<td>MM</td>
<td>Glomeruläre Defekte</td>
</tr>
<tr>
<td>Ret</td>
<td>UK</td>
<td>Fehlerhafte UK-Wachstum</td>
</tr>
</tbody>
</table>

Tab. 1; MM: Metanephrogenes Mesenchym; S: Stromazellen; UK: Ureterknospe
I.2. Einfluss von NSAIDs auf die Nephrogenese

Im klinischen Alltag sind non steroidal anti-inflammatory drugs (NSAIDs) wie Acetylsalicylsäure (ASS) und Indomethacin häufig verwandte Arzneimittel. Dabei reicht die Indikation von einfachem Kopfschmerz, über Infarktprophylaxe in Herz und Gehirn, bis hin zur Tokolyse und Polyhydramnion-Therapie.

Abb. 6; Schrittweise Differenzierung des Ureter und des Mesenchym in Abhängigkeit verschiedener Gene (nach Kuure et al.; Kidney morphogenesis: cellular and molecular regulation; Mechanism of development 92 [2000])
modynamisches Problem hin und ist gehäuft bei Patienten mit ohnehin geschwächter Nieren-, Herz- und Leberfunktion zu verzeichnen [Leone et al., 1999].

Weitere beobachtete Nebenwirkungen unter NSAID-Einnahme sind der zu frühe Verschluss des Ductus arteriosus, der Hydrops fetalis, die Ileumperforation, diverse Blutungen, eine pulmonale Hypertonie, äußerstenfalls eine Totgeburt [Kaplan et al., 1994].

I.3. Die Cyclooxygenase

NSAIDs wirken durch Hemmung des Enzym Cyclooxygenase (COX). Prostaglandine sind das Produkt der Cyclooxygenase (Prostaglandinsynthese).

Die COX ist ein membrangebundenes Haem- und Glycoprotein, das sowohl Bisoxogenase- als auch Peroxidaseaktivität besitzt. Aus Arachidonsäure synthetisiert sie

Es gibt zwei Isoformen der Cyclooxygenase, COX-1 und COX-2, die in der Maus und auch beim Menschen durch zwei unterschiedliche Gene kodiert werden, Ptgs1 und Ptgs2.

Dem gegenüber steht die COX-2, deren wesentlicher Unterschied zur COX-1 die größere Promotorregion am 5'-Ende des COX-2-Gens und das gehäufte Vorkommen der AU-Instabilitätssequenzen im nichtkodierenden 3'-Ende der mRNA ist. Die Promoterregion enthält wichtige Kontrollelemente, an die Transkriptionsfaktoren binden und damit die Transkription steuern können. Dabei kann die Induktion von zahlreichen intra- und extrazellulären Stimuli ausgehen:

Cytokine (Interleukin-1β und -2, Tumornekrosefaktor-α, Interferon-γ), Wachstumsfaktoren (Transforming growth factor-α und -β, Platelet derived growth factor, Epidermal growth factor), Gewebshormone (Plättchenaktivierender Faktor, Endothelin),

Gehemmt wird die Induktion durch Glukokortikoide und Interleukin-10 [Mertz et al., 1994; Kujubu und Herschmann, 1992]. NSAID dagegen senken die Prostanoidproduktion durch Hemmung der Cyclooxygengaseaktivität. Das Bekannteste unter den NSAID, ASS, acetyliert eine Seringruppe an der Substratbindungsstelle und blockiert irreversibel die Substratverarbeitung [Meade et al., 1993].

I.4. Das COX-2$^{-/-}$-Mausmodell

Einleitung

COX-2+/− und Wildtyp (WT) [Morham et al., 1995]. Des Weiteren belegten diese Versuche COX-2 als Hauptproduzent von Prostaglandinen in der frühen Entzündungsphase [Langenbach et al., 1999].

In der COX-2−/−-Maus sind neben Veränderungen im Herz, wie diffuse myocardiale Fibrosen, und in den Ovarien, insbesondere Gewebeabnormalitäten in der Niere zu sehen. Dabei fällt die adulte COX-2−/−-Maus durch chronisches Nierenversagen auf, zu erkennen am gestiegenen Serum-Kreatinin Spiegel und der Urämie, was auf eine reduzierte glomeruläre Filtrationsrate (GFR) schließen lässt. Natrium- und Wasserhaushalt bleiben dabei unberührt [Dinchuk et al., 1995; Norwood et al., 2000].

Doch all diese Veränderungen sind nicht etwa schon in utero oder direkt nach der Geburt zu beobachten. Es hat sich vielmehr gezeigt, dass die Nieren am Tag E14 völlig normal aussehen und am Tag P3 nicht vom Wildtyp (WT) zu unterscheiden sind. Selbst am Tag P7 gelingt dies nicht [Langenbach et al., 1999; Morham et al., 1995; Norwood et al., 2000]. Erst am Tag P10 sind in einigen Nieren zystische Veränderungen und zusammengedrängte, kleine, subkapsulär gelegene Glomeruli zu beobachten, jedoch nicht bei allen Nieren. Gleichzeitig lässt sich dieses gehemmte Nierenwachstum auch am Nierengewicht ablesen. Ab P10 ist nämlich auch das Verhält-

Bei pharmakologischen Untersuchungen mit dem selektiven COX-2-Inhibitor SC-236 haben sich keine quantitativen Unterschiede in der Glomerulumgröße zum COX-2-/+ ergeben. So zeigte sich nach Gabe des SC-236 ab Tag E0,5 sowohl ein deutlich reduziertes kortikales Volumen an Tag P21 als auch ein deutlich reduzierter glomerulärer Durchmesser von 29,35 ± 0,42 µm im Vergleich zu 47,01 ± 0,41µm beim Kontrolltier. An P0 gab es jedoch keinen Unterschied. Der glomeruläre Durchmesser eines COX-2-/--Tieres beträgt hier 29,35 ± 0,68 µm. In der gleichen Versuchsreihe wurden dichter stehende glomeruläre Zellen und cuboidal geformte Podozyten beobachtet. Bei Gabe des SC-236 erst ab P0 bis P21 fällt der Effekt nicht ganz so deutlich aus. So betrug der gemessene Durchmesser nunmehr 37,31 ± 0,68 µm im Vergleich zu 47,01 ± 0,41 µm beim Kontrolltier. Jedoch gab es auch in diesem Modell keine Veränderung vor P8. Auf das erwachsene Tier hatte SC-236 keinen wesentlichen Effekt. Indiz dafür, dass der COX-2 Hemmer auch diaplazentar übertragen wird, ist zum Einen die deutliche Hochregulation des COX-2 Proteins am Tag P0, die durch SC-236 hervorgerufen wird, und sind zum Anderen die deutlich besseren Ergebnisse im Zeitraum von E0,5 bis P21, als von P0 bis P21 [Kömhoff et al., 2000]

All die bis hierher beschriebenen Phänomene ergeben das Bild einer COX-2 korrelierten Nephrogenese.
I.5. Prostaglandin-Rezeptoren

EP-1:
- in Verbindungsstücken
 - in kortikalen und medullären Sammelrohren
 - in der Media der Arterien, *Vasa recta* und peritubulärer Kapillare
 - in Zellen der *Vasa afferens* und *afferens*
 - in den Glomeruli

EP-2:
- in der Media der Arterien und glomerulärer Arteriolen
- im kortikalen und medullären Interstitium

EP-3:
- im spät distalen Tubuluskonvolut
 - in Verbindungsstücken
 - in kortikalen und medullären Sammelrohren
 - im distalen Tubulus
 - in der Media und im Endothel der Arterien, *Vasa recta* und peritubulärer Kapillare
 - in juxtaglomerulären afferenten Arteriolen
 - in den Glomeruli

EP-4:
- in der Media der Arterien und *Vasa recta*
- in den Glomeruli

<table>
<thead>
<tr>
<th>Rezeptor</th>
<th>Subtyp</th>
<th>Transduktionssystem</th>
</tr>
</thead>
<tbody>
<tr>
<td>PGD₂</td>
<td>DP</td>
<td>cAMP ↑, Ca²⁺ ↑</td>
</tr>
<tr>
<td>PGF₂α</td>
<td>FP</td>
<td>Ca²⁺ ↑</td>
</tr>
<tr>
<td>PGI₂</td>
<td>IP</td>
<td>cAMP ↑</td>
</tr>
<tr>
<td>TXA₂</td>
<td>TP</td>
<td>Ca²⁺ ↑</td>
</tr>
</tbody>
</table>

Tab. 2; Rezeptoren der Arachidonsäuremetaboliten

Es konnte gezeigt werden, dass Prostaglandine auch Liganden an Kernrezeptoren, speziell an PPARγ und PPARδ, sind [Forman et al., 1995; Kliwer et al., 1995; Mital
et al., 2002]. Peroxisome proliferator activated receptors (PPARs) sind eine Gruppe von Zink-Finger enthaltenden Transkriptionsfaktoren, eine Unterfamilie der Kernhormonrezeptorfamilie [Keller und Wahli, 1993; Mandrup und Lane, 1997; Schoonjans et al., 1996]. Man unterscheidet drei Isoformen: PPARα, PPARβ/δ und PPARγ. Die einzelnen Isoformen der PPARs werden an unterschiedlichen Stellen und in unterschiedlichen Geweben unseres Körpers exprimiert [Vamecq und Latruffe, 1999]. Eine gesonderte Stellung nimmt dabei die Niere ein, in der alle drei Isoformen zu finden sind [Braissant et al., 1996; Guan et al., 1997].

Bei den Liganden der einzelnen PPARs kann zwischen endogenen und exogenen Aktivatoren differenziert werden (s. Tab. 3).

Die folgenden Versuche wurden mit Hilfe der PPAR-Agonisten Troglitazone, als PPARγ-Agonist und GW501516, als PPARδ-Agonist durchgeführt.

<table>
<thead>
<tr>
<th>Rezeptor</th>
<th>endogene Liganden</th>
<th>exogene Liganden</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPARα</td>
<td>Leukotrien B₄</td>
<td></td>
</tr>
<tr>
<td>PPARγ</td>
<td>15-d-PGJ₂, 15-HETE</td>
<td>Troglitazone</td>
</tr>
<tr>
<td>PPARδ</td>
<td>PGI₂</td>
<td>GW501516</td>
</tr>
</tbody>
</table>

Tab. 3: Endogene und exogene Liganden der PPARs
I.6. Ziel der Arbeit

II. Material und Methoden

II.1. Material

II.1.1. Chemikalien
Agarose Cambrex Bio Science, Rockland (USA)
Bromophenol blue Roth, Karlsruhe
Chloroform Merck, Darmstadt
DMF Serva, Heidelberg
DMSO Roth, Karlsruhe
EDTA Roth, Karlsruhe
Eisessig Roth, Karlsruhe
Essigsäure Merck, Darmstadt
Ethanol absolut Roth, Karlsruhe
Ethidiumbromid Roth, Karlsruhe
ISO propanol Merck, Darmstadt
Methanol Merck, Darmstadt
PEG 200 Sigma, Taufkirchen
PFA Merck, Darmstadt
RNase freies H2O Ambion, Austin (USA)
SDS Sigma, Taufkirchen
Sucrose Sigma, Taufkirchen
TRIS Roth, Karlsruhe
Triton X-100 Sigma, Taufkirchen
Tween 20 Sigma, Taufkirchen
Xylene cyanol ff Sigma, Taufkirchen
Xylol Merck, Darmstadt

II.1.2. Medikamente
Dynastat® Pharmacia, Erlangen
Forene® Abbott, Wiesbaden
GW 501516 Merck, Darmstadt
Ketavet® Pharmacia, Erlangen
NaCl 0,9% Fresenius Kabi, Bad Homburg
NOC-12 Merck, Schwalbach
ONO AE1-259-01 ONO Pharmaceutica, Osaka (J)
ONO AE1-329 ONO Pharmaceutica, Osaka (J)
ONO AE3-208 ONO Pharmaceutica, Osaka (J)
Rompun® Bayer, Leverkusen
SC-236 Merck, Schwalbach
Spermine NONOate Merck, Schwalbach
Troglitazone Merck, Schwalbach
VIOXX® Merck Sharp & Dohme, Hertfordshire (UK)

II.1.3. Enzyme und Primer
10x PCR Puffer Sigma, Taufkirchen
100 Base-Pair-Ladder Amersham, Buckinghamshire (UK)
dNTP Amersham, Buckinghamshire (UK)
F-Primer Eurogentec, Seraing (B)
Neo-Primer Eurogentec, Seraing (B)
Proteinkinase K Invitrogen, Karlsruhe
R-Primer Eurogentec, Seraing (B)
Taq DNA Polymerase Sigma, Taufkirchen

II.1.4. Instrumente und Apparaturen
Einwegmesser Heraeus Kulzer, Wehrheim /Ts.
Feinwaage Sartorius, Göttingen
Gelbild-Dokumentationseinrichtung Vilber Lourmat, Marne la Vallére (F)
Gelelektrophoresekammer Owl Scientific, Woburn (USA)
Labor(kühl)zentrifuge Heraeus Instruments, Hanau
Magnetrührer IKA Labortechnik, Staufen
Mikroskop Leica, Wetzlar
Minishaker IKA Labortechnik, Staufen
Ofen Hybaid, Teddington (UK)
PCR-Gerät Biometra, Göttingen
Präparierbesteck Aesculap, Tuttlingen
Schneidemaschine Leica Instruments, Nussloch
Spritzen B.Braun, Melsungen
Stromversorgungsgerät Consort, Turnhout (B)
Thermomixer Eppendorf, Hamburg
Tischwaage Kern & Sohn, Bulingen – Frommern
Trockenschrank Heraeus Instruments, Hanau
Wasserbad Leica Instruments, Nussloch

II.1.5. Sonstige Materialien

Deckgläser Menzel-Gläser, Braunschweig
Einbettkasten medite, Burgdorf
Eosin Y Sigma, Taufkirchen
Hematoxylin Sigma, Taufkirchen
Objektglas – Kleber Merck, Darmstadt
Objektträger Menzel-Gläser, Braunschweig
Parafin medite, Burgdorf

II.1.6. Software

BioCapt MW V.11.01 Vilber Lourmat, Marne la Vallére (F)
Prism 4 GraphPad Software, San Diego (USA)
SPOT Advanced V.3.4.5. Diagnostic Instruments, Sterling Heights (USA)

II.1.7. Tiere

Die verwendeten Tiere waren Standardlabormäuse, die unter Standardbedingungen gehalten wurden. Für die hier beschriebenen tierexperimentellen Untersuchungen lag eine Tierversuchsgenehmigung durch das Regierungspräsidium Gießen vor (V54-19CL0-15MR20/14).

Zum Einsatz kamen hier:

C57BL6-Männchen und -Weibchen
COX-2/-Männchen
COX-2/-Weibchen
EP-2/-Männchen und -Weibchen
II.2. Methoden

II.2.1. Spritzschema

Es hat sich gezeigt, dass das Gewicht der Mäuse linear zunimmt und jedem Tag PX ein Gewicht Y zugeordnet werden kann. Um einen schonenden Umgang mit den Tieren zu gewährleisten, wurde zur Bestimmung des zu injizierenden Volumens folgendes Schema benutzt. Dies gilt, wenn nicht anders angegeben, für alle Versuchsreihen.

<table>
<thead>
<tr>
<th>Tag</th>
<th>Gewicht</th>
<th>Volumen</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1 - 3</td>
<td>2 g KG</td>
<td>20 µl/Maus</td>
</tr>
<tr>
<td>P4 - 6</td>
<td>3 g KG</td>
<td>20 µl/Maus</td>
</tr>
<tr>
<td>P7, P8</td>
<td>4 g KG</td>
<td>25 µl/Maus</td>
</tr>
<tr>
<td>P9, P10</td>
<td>5 g KG</td>
<td>25 µl/Maus</td>
</tr>
<tr>
<td>P11 - 14</td>
<td>6 g KG</td>
<td>30 µl/Maus</td>
</tr>
<tr>
<td>P15 - 18</td>
<td>7 g KG</td>
<td>35 µl/Maus</td>
</tr>
<tr>
<td>P19 - 21</td>
<td>8 g KG</td>
<td>35 µl/Maus</td>
</tr>
</tbody>
</table>

II.2.2. Zusammensetzung der Medikamente

II.2.2.1. ONO AE1-329 (EP-4-Agonist)

Die Stammlösung (SL) [20 µg/µl] ist 1:100 bzw. 1:25 mit Ethanol zu verdünnen. Daraus ergeben sich Arbeitslösungen (AL) von 200 ng/µl bzw. 800 ng/µl. Um eine Konzentration von 40 ng/g KG bzw. 160 ng/g KG zu erhalten, sind diese erneut nach folgendem Schema mit NaCl zu verdünnen und das angegebene Volumen zu spritzen (s. Tab. 1).

II.2.2.2. ONO AE1-259-01 (EP-2-Agonist)

Für diesen Versuch ist die Stammlösung (SL) [20 µg/µl] 1:100 bzw. 1:25 mit Ethanol zu verdünnen. Es resultieren Arbeitslösungen (AL) in Konzentrationen von 200 ng/µl bzw. 800 ng/µl. Für eine Dosis von 40 ng/g KG bzw. 160 ng/g KG, sind diese erneut
nach folgendem Schema mit NaCl zu verdünnen und das angegebene Volumen zu spritzen (s. Tab. 1).

<table>
<thead>
<tr>
<th>Tag</th>
<th>Gewicht</th>
<th>Verhältnis</th>
<th>Volumen</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-3</td>
<td>2g KG</td>
<td>1:50</td>
<td>20 µl/Maus</td>
</tr>
<tr>
<td>4-6</td>
<td>3g KG</td>
<td>1:33,3</td>
<td>20 µl/Maus</td>
</tr>
<tr>
<td>7,8</td>
<td>4g KG</td>
<td>1:31,25</td>
<td>25 µl/Maus</td>
</tr>
<tr>
<td>9,10</td>
<td>5g KG</td>
<td>1:25</td>
<td>25 µl/Maus</td>
</tr>
<tr>
<td>11-14</td>
<td>6g KG</td>
<td>1:25</td>
<td>30 µl/Maus</td>
</tr>
<tr>
<td>15-18</td>
<td>7g KG</td>
<td>1:25</td>
<td>35 µl/Maus</td>
</tr>
<tr>
<td>19-21</td>
<td>8g KG</td>
<td>1:21,9</td>
<td>35 µl/Maus</td>
</tr>
</tbody>
</table>

Tab. 1; Verdünnungsschema ONO AE1-329 bzw. ONO AE1-259-01

II.2.2.3. ONO AE1-329 (EP-4-Agonist) plus ONO AE1-259-01 (EP-2-Agonist)

II.2.2.4. NOC-12 (NO-Donator)

Die SL (2mg NOC pro 100 µl NaOH 0,1 M) wird 100x mit 0,9% NaCl verdünnt. 1 µl dieser AL (200 µg/ml) sind pro g KG auf das entsprechende Gesamtvolumen mit 0,9% NaCl aufzufüllen (s. II.2.1.).

II.2.2.5. Spermine NONOate (NO-Donator)

Die SL (2,5 mg Spermine pro 100 µl NaOH 0,1 M bzw. pro 25 µl NaOH 0,1 M) ist 1:100 mit NaCl 0,9% zu verdünnen. 1 µl der entstandenen AL (250 µg/ml bzw. 1 mg/ml) füllt man pro g KG mit 0,9 % NaCl auf das Gesamtvolumen auf (s. II.2.1.).
II.2.2.6. Troglitazone (PPARγ-Agonist)

Die SL (0,8 mg Troglitazone + 160 µl PEG 200 + 8 µl Triton 100) lag in einer Konzentration von 5 µg/µl vor. Diese wurde nach folgender Tabelle mit 0,9% NaCl verdünnt und das angegebene Volumen wurde gespritzt (s. Tab. 2).

<table>
<thead>
<tr>
<th>Tag</th>
<th>Gewicht</th>
<th>Verhältnis</th>
<th>Volumen</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-3</td>
<td>2g KG</td>
<td>1:250</td>
<td>20 µl/Maus</td>
</tr>
<tr>
<td>4-6</td>
<td>3g KG</td>
<td>1:166</td>
<td>20 µl/Maus</td>
</tr>
<tr>
<td>7,8</td>
<td>4g KG</td>
<td>1:156</td>
<td>25 µl/Maus</td>
</tr>
<tr>
<td>9,10</td>
<td>5g KG</td>
<td>1:125</td>
<td>25 µl/Maus</td>
</tr>
<tr>
<td>11-14</td>
<td>6g KG</td>
<td>1:125</td>
<td>30 µl/Maus</td>
</tr>
<tr>
<td>15-18</td>
<td>7g KG</td>
<td>1:125</td>
<td>35 µl/Maus</td>
</tr>
<tr>
<td>19-21</td>
<td>8g KG</td>
<td>1:110</td>
<td>35 µl/Maus</td>
</tr>
</tbody>
</table>

Tab. 2; Verdünnungsschema Troglitazone

II.2.2.7. ONO AE3-208 (EP-4-Antagonist)

Die SL [20 µg/µl] ist 1:10 mit Ethanol zu verdünnen. Daraus ergibt sich eine AL von 2 µg/µl. Diese wurde zu folgenden Verhältnissen mit 0,9% NaCl verdünnt und das angegebene Volumen gespritzt (s. Tab. 3).

<table>
<thead>
<tr>
<th>Tag</th>
<th>Gewicht</th>
<th>Verhältnis</th>
<th>Volumen</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-3</td>
<td>2g KG</td>
<td>1:50</td>
<td>20 µl/Maus</td>
</tr>
<tr>
<td>4-6</td>
<td>3g KG</td>
<td>1:36</td>
<td>20 µl/Maus</td>
</tr>
<tr>
<td>7,8</td>
<td>4g KG</td>
<td>1:29</td>
<td>25 µl/Maus</td>
</tr>
<tr>
<td>9,10</td>
<td>5g KG</td>
<td>1:25</td>
<td>25 µl/Maus</td>
</tr>
<tr>
<td>11-14</td>
<td>6g KG</td>
<td>1:27</td>
<td>30 µl/Maus</td>
</tr>
<tr>
<td>15-18</td>
<td>7g KG</td>
<td>1:25</td>
<td>35 µl/Maus</td>
</tr>
<tr>
<td>19-21</td>
<td>8g KG</td>
<td>1:22</td>
<td>35 µl/Maus</td>
</tr>
</tbody>
</table>

Tab. 3; Verdünnungsschema ONO AE3-208
II.2.2.8. SC-236 (COX-2-Inhibitor)
Die SL (10 mg SC + 1 ml DMSO) ist 1:2 mit Ethanol zu verdünnen. Von dieser resultierenden AL [5 mg/ml] sind 0,5 µl pro g KG auf das entsprechende Gesamtvolumen mit 0,9 % NaCl aufzufüllen (s. II.2.1.).

II.2.2.9. Parecoxib (COX-2-Inhibitor)
Die SL (20 mg Parecoxib + 1 ml NaCl) ist 1:16 mit 0,9 % NaCl zu verdünnen. Von der sich ergebenden AL [1,25 µg/µl] sind 2 µl pro g KG auf das entsprechende Gesamtvolumen mit 0,9 % NaCl aufzufüllen (s. II.2.1.).

II.2.2.10. GW 501516 (PPARδ-Agonist)
Die SL (1 mg GW + 500 µl DMSO) ist 1:5 mit Ethanol zu verdünnen. 0,5 µl pro g KG der resultierenden AL [400 ng/µl] sind auf das entsprechende Gesamtvolumen mit 0,9 % NaCl aufzufüllen (s. II.2.1.).

II.2.2.11. Rofecoxib (COX-2-Inhibitor) (Tränke)
Die SL (25 mg/5 ml Suspension) wird 1:10 mit H₂O verdünnt. Die sich ergebende AL [500 µg/ml] ist in eine Tränke zu füllen.

II.2.2.12. SC-236 (COX-2-Inhibitor) (Tränke)
Für diesen Versuch muss die Stammlösung (5 mg SC + 1,5 ml PEG 200 + 83 µl TWEEN 20) im Verhältnis 1:250 bzw. 1:100 mit H₂O verdünnt werden. So ergeben sich Arbeitslösungen von 12 µg/ml bzw. 30 µg/ml. Diese sind in Tränken zu füllen.

II.2.2.13. Spermine NONOate (NO-Donator) (Tränke)
40 µl der SL (1 mg Spermine + 1 ml NaOH 0,1 M) sind mit 20 ml H₂O zu mischen und in eine Tränke zu geben.
II.2.3. Verabreichen der Medikamente

II.2.3.1. Spritzen der Mäuse

Bis auf wenige Ausnahmen (s. II.2.3.2.) bekamen die Tiere alle Präparate i.p. bzw. s.c. verabreicht. Dazu wurden die Mäuse meist gegen 8 Uhr morgens das erste Mal, und ca. 10 Stunden später am Abend das zweite Mal gespritzt. Hierzu wurden die Jungen für diese Zeit von der Mutter getrennt und direkt nach erfolgtem Spritzvorgang wieder zurückgesetzt.

Auf Grundlage des oben aufgeführten Schemas (s II.2.1.) wurde den Mäusen an den jeweiligen Tagen das entsprechende Gesamtvolumen gespritzt.

II.2.3.2. Versuche über die Tränke

Neben Versuchen, bei denen die Präparate direkt den Jungen injiziert wurden, erfolgten auch Versuche, bei denen die Präparate über die Tränke in das Muttermilch und weiter über die Muttermilch in die Jungtiere gelangte.

SC-236 und Rofecoxib wurden in den oben angegebenen Konzentrationen in eine lichtschutzverpackte Trinkflasche gegeben und alle 3 Tage erneuert. Um die Suspension des Rofecoxibs aufrechtzuerhalten, musste zusätzlich ein Magnetrührer eingesetzt werden, der dauerhaft lief.

Da Spermine NONOate in wässrigem Milieu eine relativ kurze Halbwertszeit ($t_{1/2} = 230\text{ min}$) hat, wurden diese Tränken täglich sowohl morgens als auch abends erneuert. Im Unterschied zu SC-236 und Rofecoxib bekam hier das Muttermilch bereits ab Tag E6 bis Tag P21 die mit Spermine NONOate versetzte Tränke.
II.2.4. Genotypisierung

II.2.4.1. Isolation der DNA

1a) Zunächst werden die Gewebeproben in jeweils einem 1,5 ml Eppendorf-Cup mit 500 µl Schwanz-Lyse-Puffer versetzt

<table>
<thead>
<tr>
<th></th>
<th>auf 100 ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 mM Tris-HCl (pH 8,5)</td>
<td>1,576 g</td>
</tr>
<tr>
<td>5 mM EDTA</td>
<td>0,1461 g</td>
</tr>
<tr>
<td>0,2 % SDS</td>
<td>0,2 g</td>
</tr>
<tr>
<td>200 mM NaCl</td>
<td>1,1688 g</td>
</tr>
</tbody>
</table>

1b) Zugabe von 5 µl 1/100 vol. Proteinase K (10 mg/ml)

2) Nun wird das Ganze bei 55°C über Nacht in einem Thermomixer geschüttelt

3) Am nächsten Tag entnimmt man die Cups dem Thermomixer und zentrifugiert sie 10 Minuten bei Raumtemperatur und 13000 rpm

4) Währenddessen Vorbereiten neuer Eppendorf-Cups und Befüllen mit 500 µl ISOpropanol

5) Entnahme der Cups aus der Zentrifuge (s. Schritt 3). Der Überstand, der sich hier gebildet hat, wird abpipettiert und in das jeweilige neue Eppendorf-Cup aus Schritt 4 gegeben

6) Die Cups werden nun solange auf einem Mini-Shaker gedreht, bis das DNA-Pellet sichtbar wird

7) Bei 12000 rpm 10 - 20 Sekunden die Cups abzentrifugieren
8) Der Überstand, der hierbei entsteht, wird abpipettiert und verworfen. Das zurückbleibende DNA-Pellet wird durch Zugabe von 500 µl 70 %igen Ethanol und durch Drehen mit dem Mini-Shaker gewaschen

9) Erneutes Zentrifugieren des Cups für 5 Minuten bei 4°C und 13000 rpm

10) Der entstandene Überstand ist ebenfalls zu verwerfen und das DNA-Pellet mindestens 10 Minuten, bis alles Ethanol verdampft ist, an der Luft zu trocknen

11) Abschließend muss das Pellet in 250 µl TE durch Drehen auf dem Mini-Shaker bei Raumtemperatur gelöst werden, um es dann für 1 - 2 Stunden bei 55°C im Thermomixer zu schütteln

II.2.4.2. Die Polymerase-Kettenreaktion (PCR)

1) Zunächst werden entsprechende PCR-Cups beschriftet und mit jeweils 2 µl DNA befüllt

2) Ansetzen des Mastermixes auf Eis bzw. Kühlplatte (n+1)

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Menge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taq-Puffer</td>
<td>2 µl</td>
</tr>
<tr>
<td>2 mM dNTP</td>
<td>2 µl</td>
</tr>
<tr>
<td>F-Primer (1:10)</td>
<td>1 µl</td>
</tr>
<tr>
<td>R-Primer (1:10)</td>
<td>1 µl</td>
</tr>
<tr>
<td>Neo-Primer (1:10)</td>
<td>1 µl</td>
</tr>
<tr>
<td>RNase-freies Wasser</td>
<td>10 µl</td>
</tr>
<tr>
<td>Taq-Polymerase</td>
<td>1 µl</td>
</tr>
</tbody>
</table>

3) Zugabe von 18 µl Mastermix zur DNA in die Cups
4) PCR-Ansatz auf Kühlplatte stehen lassen und Programm am Thermocycler starten. Wenn die Blocktemperatur 95°C erreicht hat, können die Cups in den Thermocycler gestellt und der Deckel geschlossen werden. Die PCR startet nun mit folgendem Programm:

94°C 5 Minuten
95°C 30 Sekunden
58°C 30 Sekunden
72°C 30 Sekunden
72°C 5 Minuten
4°C Pause
35 Zyklen

II.2.4.3. Gelzubereitung

Zum Gießen eines Gels von mittlerer Größe fügt man zu 75 ml 1x TAE, 1 g Agarose hinzu. Nun kocht man die Mischung solange in der Mikrowelle, bis keine Schlieren mehr zu erkennen sind und die Lösung völlig klar ist. Anschließend sind noch 0,75 µl Ethidiumbromid hinzuzufügen, bevor man dazu übergeht, es in eine entsprechende Form zu gießen und einen passenden Probenkamm einzustecken. Nach ca. 30 Minuten ist das Gel erstarrt und kann befüllt werden, um die Gelelektrophorese zu starten.

50x TAE
Tris-Base 242 g
100% Eisessig 57,1 ml
0,5 M EDTA (pH 8) 100 ml
ad ddH₂O 1000 ml

II.2.4.4. Gelelektrophorese

Das vollkommen erstarrte Gel wird nun in die Trennkammer gelegt, wobei auf die korrekte Ausrichtung des Gels zu achten ist. Die Trennkammer wird dann solange mit 1x TAE befüllt, bis das Gel leicht damit bedeckt ist.
Die fertigen PCR-Produkte sind, ehe sie für die Elektrophorese verwendet werden können, noch mit jeweils 4 µl eines 6x Probenpuffers zu versetzen.

Bevor die Elektrophorese gestartet werden kann, müssen zuerst die mit dem Probenkamm geschaffenen Taschen befüllt werden. Dazu gibt man mit einer Pipette in die beiden äußeren Geltaschen 10 µl 100 Base-Pair-Ladder und in die dazwischen liegenden Taschen 7 µl des PCR-Produkts. Jetzt kann der Deckel der Trennkammer geschlossen und der Vorgang mit 140 V und 100 mA gestartet werden. Nach 30 - 40 Minuten sollten die Banden soweit gelaufen sein, dass sie ein verwertbares Bild ergeben.

6x Probenpuffer

<table>
<thead>
<tr>
<th>Stoff</th>
<th>Menge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bromophenol blue 0,25%</td>
<td>0,025 g</td>
</tr>
<tr>
<td>Xylene cyanol ff 0,25%</td>
<td>0,025 g</td>
</tr>
<tr>
<td>Sucrose (w/v)</td>
<td>4 g</td>
</tr>
<tr>
<td>ad ddH$_2$O</td>
<td>100 ml</td>
</tr>
</tbody>
</table>

Abb. 1; Bild der Gelelektrophorese von drei COX-2$^+$-Tieren mit Doppelbande und von drei COX-2$^-$-Tieren mit Einzelbande
Dieses Bild wird nun unter UV-Licht mit der Dokumentationseinrichtung der Firma Vilber Lourmat dokumentiert und ausgewertet.
Dabei stellt das Bild mit einer Bande bei 905 bp ein COX-2⁻/⁻-Tier, bzw. eine Bande bei 905 bp und bei 760 bp das Bild eines COX-2⁺/⁻-Tieres dar. (s. Abb. 1)

II.2.5. Präparation der Mäuse

Am Tag P22 erfolgte die Präparation der Tiere. Dazu wurden die Mäuse zunächst mit Forene® durch Inhalation narkotisiert. Anschließend wurden sie mit ca. 20 µl eines 1:1 Gemisches aus Ketavet® und Rompun® anästhesiert bzw. sediert.
Um die Ratio aus Nieren- und Körpergewicht zu bestimmen, wurden die Organe mit einer Analysenfeinwaage direkt abgewogen. Die Kadaver wurden der entsprechenden Verwertung zugeführt.

II.2.6. Fixieren der Organe

Während die kryofixierten Organe anschließend direkt bei -80°C gelagert werden können, lässt man die Organe in Paraformaldehyd bzw. Carnoy über Nacht fixieren, ehe sie am nächsten Tag in Alkohol umgebettet werden. Dabei gibt man die mit Paraformaldehyd fixierten Präparate in mit 70% Ethanol gefüllte Eppendorf-Cups, mit
Carnoy fixierte in mit 100% Ethanol gefüllte Cups. Nun können auch diese Präparate auf Dauer im Kühlschrank gelagert oder zur weiteren Bearbeitung in Parafin eingebettet werden.

Carnoy’s Fix

<table>
<thead>
<tr>
<th>Material</th>
<th>Menge</th>
</tr>
</thead>
<tbody>
<tr>
<td>100% Ethanol</td>
<td>150 ml</td>
</tr>
<tr>
<td>Chloroform</td>
<td>75 ml</td>
</tr>
<tr>
<td>100% Essigsäure</td>
<td>25 ml</td>
</tr>
</tbody>
</table>

4% Paraformaldehyd

<table>
<thead>
<tr>
<th>Material</th>
<th>Menge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paraformaldehyd</td>
<td>4g</td>
</tr>
<tr>
<td>PBS</td>
<td>100 ml</td>
</tr>
</tbody>
</table>

bei 70°C

II.2.7. Parafineinbetten der Organe

Zum Parafineinbetten und demnach zur weiteren Auswertung wurden die mit Paraformaldehyd fixierten linken Nierenhälfiten verwendet. Da diese in 70% Ethanol lagerten, zum Parafineinbetten jedoch frei von Wasser sein müssen, erfolgte zunächst eine aufsteigende Alkoholreihe. Dabei wurden sie jeweils in Falcon-Tubes hin und her geschwenkt.

1) Einlegen der Nieren für 1 Stunde in 80% Ethanol
2) Einlegen der Nieren für 1 Stunde in 95% Ethanol
3) Einlegen der Nieren für 1 Stunde in 100% Ethanol
4) Einlegen der Nieren für 1 Stunde in neues 100% Ethanol (Schritt 3 wiederholen)
5) Einlegen der Nieren für 1 Stunde Xylol
6) Einlegen der Nieren für 1 Stunde neues Xylol (Schritt 5 wiederholen)
7) Nun werden die Nieren aus den Falcon-Tubes geholt und in entsprechende Einbettkästen gelegt. Jetzt werden alle Kästen in ein Gefäß mit 62°C heißem Parafin gegeben und für eine Stunde in einem Ofen mit ebenfalls 62°C gestellt
8) Nach dieser Zeit holt man das Gefäß mit den Kästen wieder aus dem Ofen, nimmt die Kästen nacheinander aus dem Gefäß und gibt diese in ein zweites, mit
frischem, 62°C heißem Parafin gefülltes Gefäß. Auch dieses neue Gefäß mit den Kästen darin wird für 1 Stunde bei 62°C in den Ofen gestellt

II.2.8. Schneiden der Organe

II.2.9. Färben der Organe

Bevor die Schnitte jedoch gefärbt werden können, müssen sie zunächst einmal in einem Trockenschrank bei 37°C über Nacht getrocknet werden. Am folgenden Tag sind die Präparate dann in mehreren Schritten zu färben. Zuerst befreit man sie vom
Parafin. Dazu stellt man die Objektträger in eine spezielle Halterung, mit deren Hilfe mehrere Träger in die entsprechenden Medien getaucht werden können.

1) Eintauchen der Schnitte für 5 Minuten in Xylol
2) Eintauchen der Schnitte für 5 Minuten in neues Xylol
 Das Xylol aus den jeweiligen Schritten kann mehrfach verwendet werden
3) Eintauchen der Schnitte für 2 Minuten in Methanol
4) Eintauchen der Schnitte für 2 Minuten in frisches Methanol
 Die 2 Minuten sind genau einzuhalten
5) Eintauchen der Schnitte für 2 Minuten in Leitungswasser
6) Eintauchen der Schnitte für 2 Minuten in neues Leitungswasser

Es erfolgt nun der eigentliche Färbeschritt.

1) Eintauchen der Präparate für 50 Sekunden in Hematoxylin Gill № 1
2) Präparate 1 - 2 Minuten unter fließendem Wasser bläuen
3) Eintauchen der Präparate für 30 Sekunden in Eosin Y
4) Präparate in ein leeres Gefäß stellen und dieses 3 - 4 mal mit Leitungswasser ausspülen

Es schließt sich die Entwässerung der Schnitte in einer aufsteigenden Alkoholreihe an.

1) Eintauchen der Schnitte für 1 Minute in 50% Ethanol
2) Eintauchen der Schnitte für 1 Minute in 70% Ethanol
3) Eintauchen der Schnitte für 1 Minute in 95% Ethanol
4) Eintauchen der Schnitte für 1 Minute in 100% Ethanol
5) Eintauchen der Schnitte für 3 Minute in frischen 100% Ethanol
6) Eintauchen der Schnitte für 1 Minute in Xylol
Abschließend werden die Objektträger noch mit einem Deckglas versehen, das mit Entellan®-Kleber befestigt wurde. Sobald der Kleber getrocknet ist, können die Schnitte unter dem Mikroskop betrachtet werden.

II.2.10. Mikroskopieren der Organe

Die Nieren wurden bei 200 facher Vergrößerung mit einem Mikroskop der Firma Leica betrachtet, wobei das Mikroskop an eine Kamera angeschlossen war, die wiederum mit einem Computer verbunden wurde. Über diesen Computer erfolgte anhand des Bilds der Kamera und mit Hilfe der Software SPOT Advanced V.3.4.5. die Auswertung der Schnitte. Dazu habe ich durch Fällen des Lots die einzelnen Durchmesser der Glomeruli und deren radiären Abstand von der Nierenkapsel bestimmt und dokumentiert. Hierbei gingen allerdings nur Abstände kleiner 58 µm in die Auswertung mit ein. Auf Grundlage der Formel \(V = 0,5236 \times d^3 \) wurden die Volumina der einzelnen Glomeruli errechnet.

Mit Hilfe der erwähnten Apparatur wurden auch Photos zur weiteren Dokumentation angefertigt.

II.2.11. Statistische Auswertung

Die statistische bzw. graphische Auswertung der gewonnenen Daten erfolgte mittels der Software PRISM 4. Wie bereits erwähnt, flossen hier alle Kapseldistanzen kleiner 58 µm in die Berechnung ein.

Der Vergleich der Glomerulumvolumina und der Glomerulumdistanzen von der Nierenkapsel erfolgte mit Hilfe des U-Tests nach Whitney-Mann, der deshalb gewählt wurde, weil weder symmetrische noch Normalverteilung für die Durchführbarkeit gefordert wird. Der U-Test vergleicht die zentrale Tendenz zweier unabhängiger Stichproben. Ist er signifikant, ist davon auszugehen, dass sich die Medianen der zugrunde liegenden Populationen unterscheiden. Im 95% - Konfidenzintervall mit einer Irrtumswahrscheinlichkeit von 5% im zweiseitigen Test.
III. Ergebnisse

III.1. COX-2⁻/⁻

Die Nieren der COX-2⁻/⁻-Mäuse zeigen am Tag P22 eine Ratio des Gesamtnierengewichts zum Körpergewicht von durchschnittlich $8,5 \times 10^{-3} \pm 0,6 \times 10^{-3}$. Der Wildtyp weist eine Ratio von $14,2 \times 10^{-3} \pm 0,9 \times 10^{-3}$ auf.

Die histomorphologische Analyse der Nieren ergab Volumina von $16600 \pm 1045 \mu m^3$ für die unbehandelten COX-2⁻/⁻-Tiere und $25440 \pm 1422 \mu m^3$ für die Wildtyp-Tiere ($p < 0,001$, $N = 330$) (s. Abb. 1-4).

Bezüglich der Distanzen der einzelnen Glomeruli von der Nierenkapsel zeigte sich ein im Mittel signifikanter Unterschied zwischen beiden Gruppen: unbehandelte COX-2⁻/⁻-Tiere $22,39 \pm 1,38 \mu m$, Wildtyp-Tiere $50,42 \pm 1,48 \mu m$ ($p < 0,001$, $N = 330$) (s. Abb. 1-4).

*Abb. 1; Balkendiagramm der Glomerulumvolumina einer COX-2⁻/⁻-Niere gegenüber einer WT-Niere, * $p < 0,05$ versus Wildtyp

*Abb. 2; Balkendiagramm der Kapseldistanzen einer COX-2⁻/⁻-Niere gegenüber einer WT-Niere, * $p < 0,05$ versus Wildtyp
Abb. 3; Ausschnitt der 200x vergrößerten Niere einer COX-2⁻/⁻-Maus in H.E.-Färbung am Tag P22. Zu sehen sind die deutlich verkleinerten Glomeruli, die subkapsulär liegen und damit einen zu geringen Kapselabstand aufweisen. Im Organinneren ein gut entwickeltes Glomerulum; ↓ Glomerulumdurchmesser, ↑ Kapseldistanz

Abb. 4; Ausschnitt der 200x vergrößerten Niere einer Wildtyp-Maus in H.E.-Färbung am Tag P22. Zu sehen sind gut entwickelte Glomeruli mit ausreichendem Kapselabstand; ↓ Glomerulumdurchmesser, ↑ Kapseldistanz
Trägt man die erhobenen Daten in einen Graphen mit dem Durchmesser auf der x-Achse und der relativen Häufigkeit auf der y-Achse auf, so ergibt sich für das unbehandelte COX-2⁻/⁻-Tier ein charakteristisches Bild mit einem Peak bei 29,08 µm und einem zweiten bzw. einer „Schulter“ bei 40,71 µm. Beim Wildtyp-Tier zeigt sich nur ein Peak bei 40,71 µm (s. Abb. 5).

III.1.1. Zusammenfassung der histomorphologischen Daten

<table>
<thead>
<tr>
<th></th>
<th>COX-2⁻⁻</th>
<th>Wildtyp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glomerulumvolumen (µm³)</td>
<td>16600 ± 1045</td>
<td>25440 ± 1422</td>
</tr>
<tr>
<td>Kapseldistanz (µm)</td>
<td>22,39 ± 1,38</td>
<td>50,42 ± 1,48</td>
</tr>
<tr>
<td>% Glomeruli innerhalb 58µm</td>
<td>49 %</td>
<td>6 %</td>
</tr>
</tbody>
</table>
| Ratio (Niere : Körper) (⁻⁻ßen

Abb. 5: Relative Häufigkeit der Glomerulumdurchmesser einer COX-2⁻⁻⁻~-~-
III.2. COX-2-Inhibitoren

III.2.1.1. Applikation von SC-236 über die Tränke

In einer Konzentration von 12 µg/ml in der Wassertränke ergab sich nach Entnahme der Nieren am Tag P22 eine Ratio des Gesamt nierengewichts zum Körpergewicht von durchschnittlich 12,87 • 10⁻³ ± 0,57 • 10⁻³. Die histomorphologische Untersuchung der Nieren ergab für die Glomerulumvolumina Werte von: 22460 ± 1273 µm³ (behandelte Wildtyp-Tiere), 25440 ± 1422 µm³ (unbehandelte Wildtyp-Tiere) und 16600 ± 1045 µm³ (COX-2^{-/-}-Tiere). Dies ergibt eine signifikante Differenz sowohl zwischen behandelten Wildtyp-Tieren und COX-2^{-/-}-Tieren (p < 0,001, N = 340) als auch zwischen den behandelten und den unbehandelten Wildtyp-Tieren (p < 0,001, N = 340) (s. Abb. 6, 16, 17).

Bei der histomorphologische Auswertung der Glomerulumdistanzen von der Nierenskapsel misst man folgende Werte: 20,49 ± 1,01 µm (behandelte Wildtyp-Tiere), 50,42 ± 1,48 µm (unbehandelte Wildtyp-Tiere) und 22,39 ± 1,38 µm (COX-2^{-/-}-Tiere). Damit zeigt sich zwischen den unbehandelten und den behandelten Wildtyp-Tieren ein signifikanter Unterschied (p < 0,001, N = 136) (s. Abb. 6, 16, 17).

Trägt man die erhobenen Daten in einen Graphen mit dem Durchmesser auf der x-Achse und der relativen Häufigkeit auf der y-Achse auf, so zeigt sich für die behandelten Wildtyp-Tiere ein sowohl vom COX-2^{-/-}-Tier als auch vom unbehandelten Wildtyp-Tier abweichendes Bild. Die Verteilungskurve verläuft zudem deutlich niedriger (s. Abb. 7).
Abb. 6: Ausschnitt der 200x vergrößerten Niere einer Wildtyp-Maus, behandelt mit 12 µg/ml SC-236 über Wassertränke, in H.E.-Färbung am Tag P22. Die Abb. zeigt verkleinerte Glomeruli, teils subkapsular gelegen mit zu geringem Kapselabstand. Im Inneren ein gut entwickeltes Glomerulum; † Glomerulumdurchmesser, † Kapseldistanz

Abb. 7: Relative Häufigkeit der Glomerulumdurchmesser der Niere einer WT-Maus, behandelt mit 12 µg/ml SC-236 (Tränke), im Vergleich zu WT-Kontrolle und COX-2⁻/⁻
In einer Konzentration von **30 µg/ml** in der Wassertränke ergab sich nach Entnahme der Nieren am Tag P22 eine Ratio des Gesamtnierengewichts zum Körpergewicht von im Schnitt $11,2 \cdot 10^{-3} \pm 0,5 \cdot 10^{-3}$.

Die Analyse der Histomorphologie der Nieren in diesem Versuchsansatz ergab für die Glomerulumvolumina: $17620 \pm 446 \mu m^3$ (behandelte Wildtyp-Mäuse), $25440 \pm 1422 \mu m^3$ (unbehandelte Wildtyp-Mäuse) und $16600 \pm 1045 \mu m^3$ (COX-2⁻/⁻-Mäuse).

Dies stellt einen signifikanten Unterschied sowohl zwischen behandelten und unbehandelten Tieren dar ($p < 0,001$, $N = 372$) als auch zwischen den behandelten und den COX-2⁻/⁻-Tieren ($p < 0,001$, $N = 372$) (s. Abb. 8, 16, 17).

Bei der histomorphologische Untersuchung der Nieren zeigte sich für die Distanzen der Glomeruli von der Nierenkapsel: $16,06 \pm 1,32 \mu m$ (behandelte Wildtyp-Tiere), $50,42 \pm 1,48 \mu m$ (unbehandelte Wildtyp-Tiere) und $22,39 \pm 1,38 \mu m$ (COX-2⁻/⁻-Tiere). Damit unterscheiden sich die behandelten Tiere sowohl signifikant von den unbehandelten ($p < 0,001$, $N = 153$) als auch von den COX-2⁻/⁻-Tieren ($p = 0,001$, $N = 153$) (s. Abb. 8, 16, 17).

Abb. 8: Ausschnitt der 200x vergrößerten Niere einer Wildtyp-Maus, behandelt mit 30 µg/ml SC-236 über Wassertränke, in H.E.-Färbung am Tag P22. Die Abb. zeigt deutlich verkleinerte Glomeruli, teils subkapsulär gelegen mit zu geringem Kapselabstand. Im Inneren ein gut entwickeltes Glomerulum; † Glomerulumdurchmesser, ‡ Kapseldistanz.
Auftragen der erhobenen Daten in einen Graphen mit dem Durchmesser auf der x-Achse und der relativen Häufigkeit auf der y-Achse ergibt für die behandelten Wildtyp-Tiere ein sowohl vom COX-2\(^{+/−}\)-Tier als auch vom unbehandelten Wildtyp-Tier abweichendes Bild. (s. Abb. 9)

Abb. 9: Relative Häufigkeit der Glomerulumdurchmesser der Niere einer WT-Maus, behandelt mit 30 µg/ml SC-236 (Tränke), im Vergleich zu WT-Kontrolle und COX-2\(^{+/−}\).

III.2.1.2. Applikation von SC-236 intraperitoneal

In einem weiteren Versuchsansatz wurde die Wirkung des i.p. verabreichten COX-2-Hemmers SC-236 untersucht.

In einer Konzentration von 2,5 µg/g KG zeigte sich nach Entnahme der Nieren am Tag P22 eine Ratio des Gesamtnierengewichts zum Körpergewicht von durchschnittlich \(12,73 \pm 0,11 \times 10^{-3}\).

Die Auswertung der histomorphologischen Daten der Glomeruli ergab Volumina von: 19450 ± 503 µm\(^3\) (behandelte Wildtyp-Mäuse), 25440 ± 1422 µm\(^3\) (unbehandelte Wildtyp-Mäuse) und 16600 ± 1045 µm\(^3\) (COX-2\(^{+/−}\)-Mäuse). Daraus ergibt sich sowohl ein signifikanter Unterschied zwischen den behandelten und den unbehandelten...
Tieren (p < 0,001, N = 321) als auch zwischen den behandelten und den COX-2⁻/⁻-Tieren (p < 0,001, N = 321) (s. Abb. 10, 16, 17).

Untersuchungen zur Histomorphologie der Glomerulumdistanzen von der Nieren kapsel ergaben: 40,18 ± 1,48 µm (behandelte Wildtyp-Mäuse), 50,42 ± 1,48 µm (unbehandelte Wildtyp-Mäuse) und 22,39 ± 1,38 µm (COX-2⁻/⁻-Mäuse). Auch hier ergibt sich daraus sowohl ein signifikanter Unterschied zwischen den behandelten und den unbehandelten Tieren (p = 0,001, N = 57) als auch zwischen den behandelten und den COX-2⁻/⁻-Tieren (p < 0,001, N = 57) (s. Abb. 10, 16, 17).

Trägt man die erhobenen Daten in einen Graphen mit dem Durchmesser auf der x-Achse und der relativen Häufigkeit auf der y-Achse auf, so zeigt sich für die behandelten Wildtyp-Mäuse ein sowohl von den COX-2⁻/⁻-Mäusen als auch von den unbehandelten Wildtyp-Mäusen abweichendes Bild. (s. Abb. 11)
III.2.1.3. Zusammenfassung der histomorphologischen Daten

<table>
<thead>
<tr>
<th>COX-2-Hemmer</th>
<th>SC-236 (Tränke)</th>
<th>SC-236 (Tränke)</th>
<th>SC-236 (i.p.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(12 µg/ml)</td>
<td>(30 µg/ml)</td>
<td>(2,5 µg/g KG)</td>
</tr>
<tr>
<td>Glomerulumvolumen (µm³)</td>
<td>22460 ± 1273</td>
<td>17620 ± 446</td>
<td>19450 ± 503</td>
</tr>
<tr>
<td>Kapseldistanz (µm)</td>
<td>20,49 ± 1,01</td>
<td>16,06 ± 1,32</td>
<td>40,18 ± 1,48</td>
</tr>
<tr>
<td>% Glomeruli innerhalb 58µm</td>
<td>37 %</td>
<td>45 %</td>
<td>18 %</td>
</tr>
<tr>
<td>Ratio (Niere : Körper) (• 10⁻³)</td>
<td>12,87 ± 0,57</td>
<td>11,2 ± 0,5</td>
<td>12,73 ± 0,11</td>
</tr>
</tbody>
</table>

III.2.2. Applikation von Parecoxib

Im Folgenden wurde die differenzierungsstörende Wirkung zweier klinisch genutzter COX-2-Inhibitoren, Parecoxib und Rofecoxib, untersucht. Nach Applikation von Parecoxib in einer Konzentration von 2,5 µg/g KG ergab sich nach Entnahme der Nieren am Tag P22 eine Ratio des Gesamtnierengewichts zum Körpergewicht von durchschnittlich $14,27 \cdot 10^{-3} \pm 0,8 \cdot 10^{-3}$.

\[\text{Abb. 11: Relative Häufigkeit der Glomerulumdurchmesser der Niere einer WT-Maus, behandelt mit 2,5 µg/g KG SC-236 (i.p.), im Vergleich zu WT-Kontrolle und COX-2⁻} \]
Die histomorphologische Untersuchung der Nieren ergab für die Glomerulumvolumina Werte von: 17520 ± 377 µm³ (behandelte Wildtyp-Tiere), 25440 ± 1422 µm³ (unbehandelte Wildtyp-Tiere) und 16600 ± 1045 µm³ (COX-2⁻/⁻-Tiere). Dies ergibt eine signifikante Differenz sowohl zwischen behandelten Tieren und unbehandelten Tieren (p < 0,001, N = 373) als auch zwischen den behandelten und den COX-2⁻/⁻-Tieren (p < 0,001, N = 373) (s. Abb. 12, 16, 17).

Abb. 12: Ausschnitt der 200x vergrößerten Niere einer Wildtyp-Maus, behandelt mit 2,5 µg/g KG Parecoxib, in H.E.-Färbung am Tag P22. Zu sehen sind verkleinerte Glomeruli, mit mäßigem Kapselabstand; † Glomerulumdurchmesser, ‡ Kapseldistanz

Bei der histomorphologischen Auswertung der Glomerulumdistanzen von der Nierenkapsel misst man folgende Werte: 42,02 ± 0,93 µm (behandelte Wildtyp-Tiere), 50,42 ± 1,48 µm (unbehandelte Wildtyp-Tiere) und 22,39 ± 1,38 µm (COX-2⁻/⁻-Tiere). Neben einer signifikanten Differenz zwischen behandelten und unbehandelten Tieren (p = 0,003, N = 59), bedeutet dies zudem einen signifikanten Unterschied zwischen behandelten und COX-2⁻/⁻-Tieren (p < 0,001, N = 59) (s. Abb. 12, 16, 17).
Auftragen der erhobenen Daten in einen Graphen mit dem Durchmesser auf der x-Achse und der relativen Häufigkeit auf der y-Achse ergibt für die behandelten Wildtyp-Tiere ein sowohl von den COX-2$^{-/-}$-Tieren als auch von den unbehandelten Wildtyp-Tieren abweichendes Bild. (s. Abb. 13)

Abb. 13: Relative Häufigkeit der Glomerulumdurchmesser der Niere einer WT-Maus, behandelt mit 2,5 µg/g KG Parecoxib, im Vergleich zu WT-Kontrolle und COX-2$^{-/-}$

III.2.3. Applikation von Rofecoxib

In einer weiteren Versuchsserie wurde Rofecoxib hinsichtlich seiner Wirkung auf die Nephrogenese untersucht. Rofecoxib wurde in einer Konzentration von 500 µg/ml der Wassertränke zugefügt.

Nach Entnahme der Nieren am Tag P22 ergab sich eine Ratio des Gesamt nierengewichts zum Körpergewicht von durchschnittlich $12,92 \pm 0,43 \times 10^{-3}$.

Die Auswertung der Histomorphologie der Nieren in diesem Versuchsansatz ergab folgende Glomerulumvolumina: $17250 \pm 717 \ \mu m^3$ (behandelte Wildtyp-Tiere), $25440 \pm 1422 \ \mu m^3$ (unbehandelte Wildtyp-Tiere) und $16600 \pm 1045 \ \mu m^3$ (COX-2$^{-/-}$-Tiere). Daraus folgt eine signifikante Differenz sowohl von behandelterm versus un-
behandeltem Tier (p < 0,001, N = 352) als auch von behandlten versus COX-2⁻/⁻-Tieren (p < 0,001, N = 352) (s. Abb. 14, 16, 17).

Bei der histomorphologische Untersuchung der Nieren zeigte sich für die Distanzen der Glomeruli von der Nierenkapsel: 31,52 ± 1,3 µm (behandelte Wildtyp-Tiere), 50,42 ± 1,48 µm (unbehandelte Wildtyp-Tiere) und 22,39 ± 1,38 µm (COX-2⁻/⁻-Tiere). Damit unterscheiden sich die behandelten Tiere sowohl signifikant von den unbehandelten (p = 0,001, N = 118) als auch von den COX-2⁻/⁻-Tieren (p < 0,001, N = 118) (s. Abb. 14, 16, 17).

Abb. 14: Ausschnitt der 200x vergrößerten Niere einer Wildtyp-Maus, behandelt mit 500 µg/ml Rofecoxib über Wassertränke, in H.E.-Färbung am Tag P22. Die Abb. zeigt verkleinerte Glomeruli, teils subkapsulär gelegen mit zu geringem Kapselabstand. Im Inneren ein gut entwickeltes Glomerulum; † Glomerulumdurchmesser, ‡ Kapsel-
"distantz

Trägt man die erhobenen Daten in einen Graphen mit dem Durchmesser auf der x-Achse und der relativen Häufigkeit auf der y-Achse auf, so zeigt sich für die behandelten Wildtyp-Mäuse ein gering von den COX-2⁻/⁻-Mäusen abweichendes Bild. Jedoch ist die charakteristische „Schulter“ bei 40 µm nicht ausgeprägt. (s. Abb. 15)
III.2.4. Zusammenfassung der histomorphologischen Daten

<table>
<thead>
<tr>
<th>COX-2-Hemmer</th>
<th>Parecoxib (2,5 µg/g KG i.p.)</th>
<th>Rofecoxib (500 µg/ml im Trinkwasser)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glomerulumvolumen (µm³)</td>
<td>17520 ± 377</td>
<td>17250 ± 717</td>
</tr>
<tr>
<td>Kapseldistanz (µm)</td>
<td>42,02 ± 0,93</td>
<td>31,52 ± 1,3</td>
</tr>
<tr>
<td>% Glomeruli innerhalb 58µm</td>
<td>16 %</td>
<td>34 %</td>
</tr>
<tr>
<td>Ratio (Niere : Körper) (• 10⁻³)</td>
<td>14,27 ± 0,8</td>
<td>12,92 ± 0,43</td>
</tr>
</tbody>
</table>

III.2.5. Vergleichende Zusammenstellung

Im Folgenden sind jeweils alle Glomerulumvolumina und Kapseldistanzen der Glomeruli in einem Balkendiagramm dargestellt.
Abb. 16: Balkendiagramm der Glomerulumvolumina, * p < 0,05 versus Wildtyp, - p < 0,05 versus COX-2\(^{-/-}\).

Abb. 17: Balkendiagramm der Kapseldistanzen, * p < 0,05 versus Wildtyp, - p < 0,05 versus COX-2\(^{-/-}\).
III.3. PGE$_2$-Rezeptoren

Zunächst wurden die Effekte des EP-2-Agonisten ONO-AE1-259-01 in zwei verschiedenen Konzentrationen, 40 ng/g KG und 160 ng/g KG, auf die Entwicklung der Niere untersucht. Auf die phänotypische Vitalität der Versuchstiere hatte die Substanzgabe über 21 Tage keinen Einfluss. Alle Tiere überlebten.

In einer Konzentration von 40 ng/g KG ergab sich nach Entnahme der Nieren am Tag P22 eine Ratio des Gesamtnierengewichts zum Körpergewicht von durchschnittlich $10 \cdot 10^{-3} \pm 0,42 \cdot 10^{-3}$.

Die histomorphologische Analyse der Glomerulumvolumina ergab einen signifikanten Unterschied zwischen den behandelten COX-2$^{-/-}$-Tieren und Wildtyp-Tieren ($p < 0,001$, $N = 628$): 12920 ± 304 µm3 (behandelte COX-2$^{-/-}$-Tiere), 25440 ± 1422 µm3 (Wildtyp-Tiere) und 16600 ± 1045 µm3 (unbehandelte COX-2$^{-/-}$-Tiere) (s. Abb. 20, 32, 33).

Bei der histomorphologischen Untersuchung der Glomerulumdistanzen von der Nierenkapsel zeigte sich, dass sich das behandelte COX-2$^{-/-}$-Tier signifikant vom Wildtyp-Tier unterscheidet ($p < 0,001$, $N = 304$): $20,12 \pm 0,67$ µm (behandelte COX-2$^{-/-}$-Tiere), $50,42 \pm 1,48$ µm (Wildtyp-Tiere) und $22,39 \pm 1,38$ µm (unbehandelte COX-2$^{-/-}$-Tiere) (s. Abb. 20, 32, 33).

Trägt man diese Daten in einen Graphen mit dem Durchmesser auf der x-Achse und der relativen Häufigkeit auf der y-Achse auf, so zeigt sich für die behandelten COX-2$^{-/-}$-Mäuse ein kaum vom unbehandelten COX-2$^{-/-}$-Tier abweichendes Bild. Jedoch verschwindet die charakteristische „Schulter“ bei 40 µm. (s. Abb. 21)
Abb. 20: Ausschnitt der 200x vergrößerten Niere einer COX-2-/--Maus, behandelt mit 40 ng/g KG ONO-AE1-259-01, in H.E.-Färbung am Tag P22. Die Abb. zeigt deutlich verkleinerte Glomeruli, teils subkapsulär gelegen mit zu geringem Kapselabstand. Im Organinneren ein gut entwickeltes Glomerulum; † Glomerulumdurchmesser, ‡ Kapsel-distanz

Abb. 21: Relative Häufigkeit der Glomerulumdurchmesser der Niere einer WT-Maus, behandelt mit 40 ng/g KG ONO-AE1-259-01, im Vergleich zu WT-Kontrolle und COX-2-/-
In einer Konzentration von **160 ng/g KG** ergab sich nach Entnahme der Nieren am Tag P22 eine Ratio des Gesamt-Nierengewichts zum Körpergewicht von durchschnittlich **11,8 \cdot 10^{-3} \pm 0,15 \cdot 10^{-3}**.

Beim Vergleich der histomorphologischen Daten bezüglich der Glomerulumvolumina zeigen sich keine signifikanten Differenzen zwischen den behandelten COX-2^{-/-}-Tieren und den Wildtyp-Tieren (p = 0,108, N = 418): **26700 \pm 484 \mu m^3** (behandelte COX-2^{-/-}-Tiere), **25440 \pm 1422 \mu m^3** (Wildtyp-Tiere) und **16600 \pm 1045 \mu m^3** (unbehandelte COX-2^{-/-}-Tiere) (s. Abb. 22, 32, 33).

Abb. 22: Ausschnitt der 200x vergrößerten Niere einer COX-2^{-/-}-Maus, behandelt mit 160 ng/g KG ONO-AE1-259-01, in H.E.-Färbung am Tag P22. Zu sehen sind gut entwickelte Glomeruli, aber mit zu geringem Kapselabstand; † Glomerulumdurchmesser, ‡ Kapseldistanz

Es finden sich aber signifikante histomorphologische Unterschiede zwischen den behandelten COX-2^{-/-}-Tieren und den Wildtyp-Tieren in Bezug auf die Distanzen der Glomeruli von der Nierenkapsel (p < 0,001, N = 191): **22,43 \pm 0,79 \mu m** (behandelte COX-2^{-/-}-Tiere), **50,42 \pm 1,48 \mu m** (Wildtyp-Tiere) und **22,39 \pm 1,38 \mu m** (unbehandelte COX-2^{-/-}-Tiere) (s. Abb. 22, 32, 33).
Das Auftragen der Daten in einen Graphen mit dem Durchmesser auf der x-Achse und der relativen Häufigkeit auf der y-Achse, zeigt ein für die behandelten COX-2\(^{-/-}\)-Mäuse kaum vom Wildtyp-Tier abweichendes Bild. (s. Abb. 23)

Abb. 23: Relative Häufigkeit der Glomerulumdurchmesser der Niere einer WT-Maus, behandelt mit 160 ng/g KG ONO-AE1-259-01, im Vergleich zu WT-Kontrolle und COX-2\(^{+/-}\)

III.3.1.1. Zusammenfassung der histomorphologischen Daten

<table>
<thead>
<tr>
<th>Agonist</th>
<th>EP-2A ONO-AE1-259-01 (40 ng/g KG)</th>
<th>EP-2A ONO-AE1-259-01 (160 ng/g KG)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glomerulumvolumen (µm(^3))</td>
<td>12920 ± 304</td>
<td>26700 ± 484</td>
</tr>
<tr>
<td>Kapseldistanz (µm)</td>
<td>20,12 ± 0,67</td>
<td>22,43 ± 0,79</td>
</tr>
<tr>
<td>% Glomeruli innerhalb 58µm</td>
<td>48 %</td>
<td>46 %</td>
</tr>
<tr>
<td>Ratio (Niere : Körper) (* 10(^{-3}))</td>
<td>10 ± 0,42</td>
<td>11,8 ± 0,15</td>
</tr>
</tbody>
</table>
III.3.2. Applikation eines EP-4-Rezeptor-Agonisten

Auch die Effekte des EP-4-Agonisten ONO-AE1-329 wurden hinsichtlich der Nie-rerentwicklung in zwei verschiedenen Konzentrationen, 40 ng/g KG und 160 ng/g KG, untersucht.

In einer Konzentration von 40 ng/g KG ergab sich nach Entnahme der Nieren am Tag P22 eine Ratio des Gesamtnierengewichts zum Körpergewicht von durchschnittlich 12,1 \(\cdot 10^{-3} \pm 0,16 \cdot 10^{-3} \).

Die Auswertung der histomorphologischen Daten der Glomeruli zeigt keinen signifikanten Unterschied von behandelten COX-2\(^{-/-}\)-Tieren versus Wildtyp-Tieren bezüglich ihrer Volumina (\(p = 0.836, N = 333 \)): 24570 \(\pm 440 \, \mu m^3 \) (behandelte COX-2\(^{-/-}\)-Tiere), 25440 \(\pm 1422 \, \mu m^3 \) (Wildtyp-Tiere) und 16600 \(\pm 1045 \, \mu m^3 \) (unbehandelte COX-2\(^{-/-}\)-Tiere) (s. Abb. 24, 32, 33).

Abb. 24: Ausschnitt der 200x vergrößerten Niere einer COX-2\(^{-/-}\)-Maus, behandelt mit 40 ng/g KG ONO-AE1-329, in H.E.-Färbung am Tag P22. Zu sehen sind gut entwickelte Glomeruli, aber mit mäßigem Kapselabstand; \(\dagger \) Glomerulumdurchmesser, \(\ddagger \) Kapsel- Distanz

Das Auftragen der erhobenen Daten in einen Graphen mit dem Durchmesser auf der x-Achse und der relativen Häufigkeit auf der y-Achse zeigt für die behandelten COX-2⁻/⁻-Mäuse ein kaum von den Wildtyp-Mäusen abweichendes Bild. (s. Abb. 25)

Ergebnisse

In einer Konzentration von 160 ng/g KG ergab sich nach Entnahme der Nieren am Tag P22 eine Ratio des Gesamtnierengewichts zum Körpergewicht von durchschnittlich $12,2 \cdot 10^{-3} \pm 0,8 \cdot 10^{-3}$.

Die Analyse der Histomorphologie der Nieren in diesem Versuchsansatz ergab für die Glomerulumvolumina: 29680 \pm 637 μm3 (behandelte COX-2$^{-/-}$-Tiere), 25440 \pm 1422 μm3 (Wildtyp-Tiere) und 16600 \pm 1045 μm3 (unbehandelte COX-2$^{-/-}$-Tiere). Damit besitzen die behandelten COX-2$^{-/-}$-Mäuse ein signifikant höheres Glomerulumvolumen als die Wildtyp-Mäuse ($p < 0,001$, $N = 325$) (s. Abb. 26, 32, 33).

Abb. 26: Ausschnitt der 200x vergrößerten Niere einer COX-2$^{-/-}$-Maus, behandelt mit 160 ng/g KG ONO-AE1-329, in H.E.-Färbung am Tag P22. Die Abb. zeigt gut entwickelte Glomeruli, mit großem Kapselabstand; Glomerulumdurchmesser, Kapsel-

distanz

Bei der histomorphologische Untersuchung der Nieren ergaben sich für die Distanzen der Glomeruli von der Nierenkapsel: 34,67 \pm 1,06 μm (behandelte COX-2$^{-/-}$-Tiere), 50,42 \pm 1,48 μm (Wildtyp-Tiere) und 22,39 \pm 1,38 μm (unbehandelte COX-2$^{-/-}$-Tiere). Damit unterscheiden sich die behandelten COX-2$^{-/-}$-Mäuse sowohl signifikant von den Wildtyp-Mäusen ($p < 0,001$, $N = 73$) als auch von den unbehandelten COX-2$^{-/-}$-Mäusen ($p < 0,001$, $N = 73$) (s. Abb. 26, 32, 33).
Trägt man die erhobenen Daten in einen Graphen mit dem Durchmesser auf der x-Achse und der relativen Häufigkeit auf der y-Achse auf, so zeigt sich für die behandelten COX-2\(^{-/-}\)-Mäuse ein kaum von der Wildtyp-Maus abweichenden Bild. (s. Abb. 27)

Abb. 27: Relative Häufigkeit der Glomerulumdurchmesser der Niere einer WT-Maus, behandelt mit 160 ng/g KG ONO-AE1-329, im Vergleich zu WT-Kontrolle und COX-2\(^{-/-}\)

III.3.2.1. Zusammenfassung der histomorphologischen Daten

<table>
<thead>
<tr>
<th>Agonist</th>
<th>EP-4A ONO-AE1-329 (40 ng/g KG)</th>
<th>EP-4A ONO-AE1-329 (160 ng/g KG)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glomerulumvolumen (µm³)</td>
<td>24570 ± 440</td>
<td>29680 ± 637</td>
</tr>
<tr>
<td>Kapseldistanz (µm)</td>
<td>35,44 ± 0,77</td>
<td>34,67 ± 1,06</td>
</tr>
<tr>
<td>% Glomeruli innerhalb 58µm</td>
<td>31 %</td>
<td>23 %</td>
</tr>
<tr>
<td>Ratio (Niere : Körper) ((\cdot 10^{-3}))</td>
<td>12,1 ± 0,16</td>
<td>12,2 ± 0,8</td>
</tr>
</tbody>
</table>

Es ergab sich nach Entnahme der Nieren am Tag P22 eine Ratio des Gesamtnierengewichts zum Körpergewicht von durchschnittlich $12 \cdot 10^{-3} \pm 0,26 \cdot 10^{-3}$.

Die histomorphologische Untersuchung der Nieren zeigte Glomeruli mit einem Volumen von: $28750 \pm 1172 \, \mu m^3$ (behandelte COX-2$^{-/-}$-Tiere), $25440 \pm 1422 \, \mu m^3$ (Wildtyp-Tiere) und $16600 \pm 1045 \, \mu m^3$ (unbehandelte COX-2$^{-/-}$-Tiere). Damit ergibt sich kein signifikanter Unterschied zwischen den behandelten COX-2$^{-/-}$-Tieren und den Wildtyp-Tieren ($p = 0,354$, $N = 289$) (s. Abb. 28, 32, 33).

Analysiert man die Nieren auf die Distanzen der Glomeruli von der Nierenkapsel ergeben sich folgende Werte: $24,44 \pm 1,66 \, \mu m$ (behandelte COX-2$^{-/-}$-Tiere), $50,42 \pm 1,48 \, \mu m$ (Wildtyp-Tiere) und $22,39 \pm 1,38 \, \mu m$ (unbehandelte COX-2$^{-/-}$-Tiere). Dies stellt jedoch einen signifikanten Unterschied zwischen den behandelten COX-2$^{-/-}$-Tieren und den Wildtyp-Tieren dar ($p = 0,001$, $N = 98$) (s. Abb. 28, 32, 33).

Trägt man diese Daten in einen Graphen mit dem Durchmesser auf der x-Achse und der relativen Häufigkeit auf der y-Achse auf, so zeigt sich für die behandelten COX-2$^{-/-}$-Tiere ein fast mit dem Wildtyp-Tier identisches Bild. (s. Abb. 29)
Abb. 28: Ausschnitt der 200x vergrößerten Niere einer COX-2⁻⁻-Maus, behandelt mit 640 ng/g KG ONO-AE1-259-01 und 160 ng/g KG ONO-AE1-329, in H.E.-Färbung am Tag P22. Die Abb. zeigt gut entwickelte Glomeruli, aber mit zu geringem Kapselabstand; ↑ Glomerulumdurchmesser, ↑ Kapseldistanz

Abb. 29: Relative Häufigkeit der Glomerulumdurchmesser der Niere einer WT-Maus, behandelt mit 640 ng/g KG ONO-AE1-259-01 und 160 ng/g KG ONO-AE1-329, im Vergleich zu WT-Kontrolle und COX-2⁻⁻
III.3.3.1. Zusammenfassung der histomorphologischen Daten

<table>
<thead>
<tr>
<th>Agonist</th>
<th>EP-2A ONO-AE1-259-01 (640 ng/g KG)</th>
<th>EP-4A ONO-AE1-329 (160 ng/g KG)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glomerulumvolumen (µm³)</td>
<td>28750 ± 1172</td>
<td></td>
</tr>
<tr>
<td>Kapseldistanz (µm)</td>
<td>24,44 ± 1,66</td>
<td></td>
</tr>
<tr>
<td>% Glomeruli innerhalb 58µm</td>
<td>34 %</td>
<td></td>
</tr>
<tr>
<td>Ratio (Niere : Körper) (• 10⁻³)</td>
<td>12 ± 0,26</td>
<td></td>
</tr>
</tbody>
</table>

III.3.4. Applikation eines EP-4-Rezeptor-Antagonisten

In einer Konzentration von 400 ng/g KG ergab sich nach Entnahme der Nieren am Tag P22 eine Ratio des Gesamtnierengewichts zum Körpergewicht von durchschnittlich 11,21 • 10⁻³ ± 0,4 • 10⁻³.

Die Glomerulumdistanzen von der Nierenkapsel beliefen sich nach histomorphologischer Untersuchung auf Werte von: 41,07 ± 1,07 µm (behandelte EP-2⁺⁻-Tiere), 50,42 ± 1,48 µm (Wildtyp-Tiere) und 22,39 ± 1,38 µm (COX-2⁺⁻-Tiere). Auch hierin unterscheidet sich das EP-2⁺⁻-Tier sowohl signifikant vom Wildtyp-Tier (p = 0,047, N = 124) als auch signifikant vom COX-2⁺⁻-Tier (p < 0,001, N = 124) (s. Abb. 30, 32, 33).
Abb. 30: Ausschnitt der 200x vergrößerten Niere einer EP-2+/−-Maus, behandelt mit 400 ng/g KG ONO-AE3-208, in H.E.-Färbung am Tag P22. Zu sehen sind mäßig entwickelte Glomeruli, mit mäßigem Kapselabstand; † Glomerulumdurchmesser, † Kapsel-Distanz.

Abb. 31: Relative Häufigkeit der Glomerulumdurchmesser der Niere einer WT-Maus, behandelt mit 400 ng/g KG ONO-AE3-208, im Vergleich zu WT-Kontrolle und COX-2−/−.
Auftragen der erhobenen Daten in einen Graphen mit dem Durchmesser auf der x-Achse und der relativen Häufigkeit auf der y-Achse zeigt für die behandelten EP-2\(^{-/-}\)-Tiere ein sowohl von den COX-2\(^{-/-}\)-Tieren als auch von den Wildtyp-Tieren abweichendes Bild. (s. Abb. 31)

III.3.4.1. Zusammenfassung der histomorphologischen Daten

<table>
<thead>
<tr>
<th>EP-4-Antagonist</th>
<th>ONO-AE3-208 (400 ng/g KG)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glomerulumvolumen ((\mu\text{m}^3))</td>
<td>20270 ± 761</td>
</tr>
<tr>
<td>Kapseldistanz ((\mu\text{m}))</td>
<td>41,07 ± 1,07</td>
</tr>
<tr>
<td>% Glomeruli innerhalb 58(\mu\text{m})</td>
<td>25 %</td>
</tr>
<tr>
<td>Ratio (Niere : Körper) ((* 10^{-3}))</td>
<td>11,21 ± 0,4</td>
</tr>
</tbody>
</table>

III.3.5. Vergleichende Zusammenstellung

Im Folgenden sind jeweils alle Glomerulumvolumina und Kapseldistanzen der Glomeruli in einem Balkendiagramm dargestellt.
Abb. 32: Balkendiagramm der Glomerulumvolumina, * p < 0,05 versus Wildtyp, - p < 0,05 versus COX-2⁺⁻

Abb. 33: Balkendiagramm der Kapseldistanzen, * p < 0,05 versus Wildtyp, - p < 0,05 versus COX-2⁺⁻
III.4. NO-Substanzen

Da Prostaglandin E_2 auch eine gefäßdilatierende und durchblutungssteigernde Wirkung hat, sollte die Hypothese, dass dies zur normalen Nierenentwicklung beiträgt, durch NO freisetzende Substanzen untersucht werden. Diese spalten ihre NO-Gruppe in wässrigem Milieu ab und können hierdurch eine gefäßdilatierende Wirkung auslösen. Es wurden zwei verschiedene Präparate verwendet: Spermine NONOate (NOC-22) und NOC-12. Diese Unterscheiden sich in ihrer Halbwertszeit in wässrigem Milieu: 230 min (Spermine NONOate) und 327 min (NOC-12).

III.4.1. Applikation von Spermine NONOate (NOC-22)

Zunächst wurden die Effekte der NO-Substanz Spermine NONOate (NOC-22) in zwei verschiedenen Konzentrationen, 250 µg/ml und 1000 µg/ml, auf die Entwicklung der Niere untersucht.

In einer Konzentration von 250 µg/ml bzw. 1 µl/g KG ergab sich nach Entnahme der Nieren am Tag P22 eine Ratio des Gesamtnierengewichts zum Körpergewicht von durchschnittlich $8,97 \times 10^{-3} \pm 0,25 \times 10^{-3}$.

Bei der histomorphologischen Untersuchung der Nieren auf ihre Glomerulumvolumina zeigte sich bei den behandelten COX-2$^{-/-}$-Tieren mit $17690 \pm 1158 \, \mu m^3$ ein signifikant geringeres Volumen gegenüber den Wildtyp-Tieren mit $25440 \pm 1422 \, \mu m^3$ ($p < 0,001, N = 301$). Jedoch gibt es zu den unbehandelten COX-2$^{-/-}$-Tieren mit $16600 \pm 1045 \, \mu m^3$ keinen signifikanten Unterschied ($p = 0,105, N = 301$) (s. Abb. 35, 44, 45).

Auch in Bezug auf die Distanzen der einzelnen Glomeruli von der Nierenkapsel unterscheiden sich die behandelten COX-2$^{-/-}$-Tiere mit $19,17 \pm 1,33 \, \mu m$ signifikant vom Wildtyp-Tier mit $50,42 \pm 1,48 \, \mu m$ ($p < 0,001, N = 178$). Jedoch gibt es zu den unbehandelten COX-2$^{-/-}$-Tieren mit $22,39 \pm 1,38 \, \mu m$ keinen signifikanten Unterschied ($p = 0,075, N = 178$) (s. Abb. 35, 44, 45).

Trägt man die erhobenen Daten in einen Graphen mit dem Durchmesser auf der x-Achse und der relativen Häufigkeit auf der y-Achse auf, so zeigt sich für die behan-

Abb. 35: Ausschnitt der 200x vergrößerten Niere einer COX-2⁻/⁻-Maus, behandelt mit 250 µg/ml Spermine NONOate, in H.E.-Färbung am Tag P22. Die Abb. zeigt deutlich verkleinerte Glomeruli, teils subkapsulär gelegen mit zu geringem Kapselabstand; ↑ Glomerulumdurchmesser, ↑ Kapseldistanz

Abb. 36: Relative Häufigkeit der Glomerulumdurchmesser der Niere einer WT-Maus, behandelt mit 250 µg/ml Spermine NONOate, im Vergleich zu WT-Kontrolle und COX-2⁻/⁻
In einer Konzentration von **1000 µg/ml bzw. 1 µl/g KG** ergab sich nach Entnahme der Nieren am Tag P22 eine Ratio des Gesamt nierengewichts zum Körpergewicht von durchschnittlich $9,52 \times 10^{-3} \pm 0,16 \times 10^{-3}$.

Die histomorphologische Analyse der Nieren zeigte für die Glomeruli der behandelten COX-2$^{-/-}$-Mäuse mit $15440 \pm 529 \, \mu m^3$ ein signifikant geringeres Volumen als für die Wildtyp-Mäuse mit $25440 \pm 1422 \, \mu m^3$ ($p < 0,001, N = 214$), sowie ein signifikant geringeres Volumen als für die unbehandelten COX-2$^{-/-}$-Mäuse mit $16600 \pm 1045 \, \mu m^3$ ($p < 0,001, N = 214$) (s. Abb. 37, 44, 45).

Abb. 37: Ausschnitt der 200x vergrößerten Niere einer COX-2$^{-/-}$-Maus, behandelt mit 1000 µg/ml Spermine NONOate, in H.E.-Färbung am Tag P22. Die Abb. zeigt deutlich verkleinerte Glomeruli, teils subkapsulär gelegen mit zu geringem Kapselabstand. Im Inneren ein großes Glomerulum; † Glomerulumdurchmesser, ‡ Kapseldistanz

Bei der histomorphologischen Auswertung der Glomerulumdistanzen von der Nierenkapsel findet sich für die behandelten COX-2$^{-/-}$-Mäuse mit $18,78 \pm 1,16 \, \mu m$ ein signifikanter Unterschied gegenüber der Wildtyp-Maus mit $50,42 \pm 1,48 \, \mu m$ ($p < 0,001, N = 115$) (s. Abb. 37, 44, 45).

Abb. 38: Relative Häufigkeit der Glomerulumdurchmesser der Niere einer WT-Maus, behandelt mit 1000 µg/ml Spermine NONOate, im Vergleich zu WT-Kontrolle und COX-2⁻⁻⁻

III.4.1.1. Applikation von NOC-22 ab Tag E6

In einem weiteren Versuchsansatz wurde versucht, die NO-Substanz Spermine NONOate (NOC-22) den Jungtieren bzw. Feten schon im Mutterleib über die Tränke und der Aufnahme der Mutter zu verabreichen. Dies geschah ab dem Tag E6. Die Konzentration lag bei diesem Versuch bei 1000 µg/ml bzw. 500 ng/g KG. Nach Entnahme der Nieren am Tag P22 ergab sich eine Ratio des Gesamtnierengewichts zum Körpergewicht von durchschnittlich $8.22 \pm 0.59 \cdot 10^{-3}$.

Bei der histomorphologischen Untersuchung der Nieren auf ihre Glomerulumvolumina zeigte sich bei den behandelten COX-2⁻⁻⁻-Tieren mit $18910 \pm 1590 \mu m^3$ ein signifikant kleineres Volumen als bei den Wildtyp-Tieren mit $25440 \pm 1422 \mu m^3$ (p <
0,001, N = 201). Zu den unbehandelten COX-2/-Tieren mit 16600 ± 1045 µm³ gibt es jedoch keinen signifikanten Unterschied (p = 0,089, N = 201) (s. Abb. 39, 44, 45).

Die histomorphologische Analyse der einzelnen Glomeruli von der Nierenkapsel ergab für die behandelten COX-2/-Mäuse mit 17,13 ± 1,61 µm einen signifikanten Unterschied, sowohl gegenüber der Wildtyp-Maus mit 50,42 ± 1,48 µm (p < 0,001, N = 126) als auch gegenüber der unbehandelten COX-2/-Maus mit 22,39 ± 1,38 µm (p = 0,007, N = 126) (s. Abb. 39, 44, 45).

Abb. 39: Ausschnitt der 200x vergrößerten Niere einer COX-2/-Maus, behandelt mit 1000 µg/ml Spermine NONOate ab E6, in H.E.-Färbung am Tag P22. Zu sehen sind verkleinerte Glomeruli, teils subkapsulär gelegen mit zu geringem Kapselabstand; † Glomerulumdurchmesser; ‡ Kapseldistanz

III.4.1.2. Zusammenfassung der histomorphologischen Daten

<table>
<thead>
<tr>
<th>NO-Substanz</th>
<th>Spermine NONOate (250 µg/ml)</th>
<th>Spermine NONOate (1000 µg/ml)</th>
<th>Spermine NONOate (1000 µg/ml) ab E6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glomerulumvolumen (µm³)</td>
<td>17690 ± 1158</td>
<td>15440 ± 529</td>
<td>18910 ± 1590</td>
</tr>
<tr>
<td>Kapseldistanz (µm)</td>
<td>19,17 ± 1,33</td>
<td>18,78 ± 1,16</td>
<td>17,13 ± 1,61</td>
</tr>
<tr>
<td>% Glomeruli innerhalb 58µm</td>
<td>59 %</td>
<td>54 %</td>
<td>63 %</td>
</tr>
<tr>
<td>Ratio (Niere : Körper) (• 10⁻³)</td>
<td>8,97 ± 0,25</td>
<td>9,52 ± 0,16</td>
<td>8,22 ± 0,59</td>
</tr>
</tbody>
</table>

III.4.2. Applikation von NOC-12

Spermine NONOate zeigte keine protektive Wirkung bezüglich der Glomerulumvolumina bzw. der Distanzen der Glomeruli von der Nierenkapsel. Daher wurde ein zweites Präparat aus Gruppe der NO-Substanzen erprobt, das NOC-12. Dies besitzt mit $t_{1/2} = 327$ min eine längere Halbwertszeit in wässrigem Milieu als Spermine NONOate mit $t_{1/2} = 230$ min.
Dieser Versuch wurde mit einer Konzentration von 200 µg/ml bzw. 1 µl/g KG durchgeführt.

Nach Entnahme der Nieren am Tag P22 ergab sich eine Ratio des Gesamtnierengewichts zum Körpergewicht von durchschnittlich $10,01 \times 10^{-3} \pm 0,39 \times 10^{-3}$.

Die histomorphologische Auswertung der Nieren ergab bei den behandelten COX-2⁻/⁻-Mäusen mit 19750 ± 599 µm³ ein signifikant geringeres Glomerulumvolumen als bei den Wildtyp-Mäusen mit 25440 ± 1422 µm³ ($p < 0,001$, $N = 318$). Zudem gibt es aber auch zu den unbehandelten COX-2⁻/-Mäusen mit 16600 ± 1045 µm³ eine signifikante Differenz ($p < 0,001$, $N = 318$) (s. Abb. 41, 44, 45).

Abb. 41: Ausschnitt der 200x vergrößerten Niere einer COX-2⁻/--Maus, behandelt mit 200 µg/ml NOC-12, in H.E.-Färbung am Tag P22. Die Abb. zeigt verkleinerte Glomeruli, teils subkapsulär gelegen mit zu geringem Kapselabstand; † Glomerulumdurchmesser, ‡ Kapseldistanz

Bei den Distanzen der einzelnen Glomeruli von der Nierenkapsel weisen die behandelten COX-2⁻/--Mäuse mit 16,49 ± 0,94 µm eine signifikant geringere Distanz, zum einen als die Wildtyp-Mäuse mit 50,42 ± 1,48 µm ($p < 0,001$, $N = 155$), und zum anderen als die unbehandelten COX-2⁻/--Mäuse mit 22,39 ± 1,38 µm ($p = 0,006$, $N = 155$), auf (s. Abb. 41, 44, 45).
Trägt man die erhobenen Daten in einen Graphen mit dem Durchmesser auf der x-Achse und der relativen Häufigkeit auf der y-Achse auf, so zeigt sich für die behandelten COX-2^{−/−}-Mäuse ein sowohl vom unbehandelten COX-2^{−/−}-Tier als auch vom Wildtyp-Tier abweichendes Bild (s. Abb. 42).

Abb. 42: Relative Häufigkeit der Glomerulumdurchmesser der Niere einer WT-Maus, behandelt mit 200 µg/ml NOC-12, im Vergleich zu WT-Kontrolle und COX-2^{−/−}.

III.4.2.1. Zusammenfassung der histomorphologischen Daten

<table>
<thead>
<tr>
<th>NO-Substanz</th>
<th>NOC-12 (200 µg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glomerulumvolumen (µm³)</td>
<td>19750 ± 599</td>
</tr>
<tr>
<td>Kapseldistanz (µm)</td>
<td>16,49 ± 0,94</td>
</tr>
<tr>
<td>% Glomeruli innerhalb 58µm</td>
<td>49 %</td>
</tr>
<tr>
<td>Ratio (Niere : Körper) (• 10⁻³)</td>
<td>10,01 ± 0,39</td>
</tr>
</tbody>
</table>

III.4.3. Vergleichende Zusammenstellung

Im Folgenden sind jeweils alle Glomerulumvolumina und Kapseldistanzen der Glomeruli in einem Balkendiagramm dargestellt.
Abb. 44: Balkendiagramm der Glomerulumvolumina, * p < 0,05 versus Wildtyp, - p < 0,05 versus COX-2⁻/⁻

Abb. 45: Balkendiagramm der Kapseldistanzen, * p < 0,05 versus Wildtyp, - p < 0,05 versus COX-2⁻/⁻
III.5. PPAR-Agonisten

III.5.1. Applikation des PPARγ-Agonisten Troglitazone

In einer Konzentration von 200 ng/g KG Troglitazone ergab sich nach Entnahme der Nieren am Tag P22 eine Ratio des Gesamtnierengewichts zum Körpergewicht von durchschnittlich $9,28 \cdot 10^{-3} \pm 0,37 \cdot 10^{-3}$.

Die Analyse der Histomorphologie der Nieren in diesem Versuchsansatz ergab für die behandelten COX-2⁻/⁻-Mäuse mit $10930 \pm 375 \, \mu m^3$ ein signifikant kleineres Glomerulumvolumen, sowohl gegenüber den Wildtyp-Mäusen mit $25440 \pm 1422 \, \mu m^3$ ($p < 0,001, N = 337$) als auch gegenüber den unbehandelten COX-2⁻/⁻-Mäusen mit $16600 \pm 1045 \, \mu m^3$ ($p = 0,005, N = 337$) (s. Abb. 46, 50, 51).

Abb. 46: Ausschnitt der 200x vergrößerten Niere einer COX-2⁻/⁻-Maus, behandelt mit 200 ng/g KG Troglitazone, in H.E.-Färbung am Tag P22. Zu sehen sind deutlich verkleinerte Glomeruli, teils subkapsulär gelegen mit zu geringem Kapselabstand. Im Inneren ein gut entwickeltes Glomerulum; ↑ Glomerulumdurchmesser, ↑ Kapselabstand

Für die Distanzen der einzelnen Glomeruli von der Nierenkapsel findet sich bei den behandelten COX-2⁻/⁻-Mäusen mit $16,65 \pm 0,83 \, \mu m$ eine signifikant geringere Distanz.
Ergebnisse 75

...sowohl gegenüber den Wildtyp-Mäusen mit 50,42 ± 1,48 µm (p < 0,001, N = 181) als auch gegenüber den unbehandelten COX-2⁻/⁻-Mäusen mit 22,39 ± 1,38 µm (p = 0,007, N = 181) (s. Abb. 46, 50, 51).

Abb. 47: Relative Häufigkeit der Glomerulumdurchmesser der Niere einer WT-Maus, behandelt mit 200 ng/g KG Troglitazone, im Vergleich zu WT-Kontrolle und COX-2⁻/⁻

III.5.2. Applikation des PPARd-Agonisten GW501516

In einer Konzentration von 200 ng/g KG GW501516 ergab sich nach Entnahme der Nieren am Tag P22 eine Ratio des Gesamtnerengewichts zum Körpergewicht von durchschnittlich 10,95 • 10⁻³ ± 0,18 • 10⁻³.

Die Auswertung der histomorphologischen Daten der Nieren zeigte bei den behandelten COX-2⁻/⁻-Tieren mit 7951 ± 292 µm³ ein signifikant kleineres Glomerulumvolumen, sowohl gegenüber den Wildtyp-Tieren mit 25440 ± 1422 µm³ (p < 0,001, N = 275) als auch gegenüber den unbehandelten COX-2⁻/⁻-Tieren mit 16600 ± 1045 µm³ (p < 0,001, N = 275) (s. Abb. 48, 50, 51).
Untersuchungen zu den Glomerulumdistanzen von der Nierenkapsel ergaben bei den behandelten COX-2\(^{-/-}\)-Tieren mit 23,81 ± 0,89 µm eine signifikant geringere Distanz als bei den Wildtyp-Tieren mit 50,42 ± 1,48 µm (p < 0,001, N = 135). Jedoch gibt es zu den unbehandelten COX-2\(^{-/-}\)-Tieren mit 22,39 ± 1,38 µm keinen signifikanten Unterschied (p = 0,198, N = 135) (s. Abb. 48, 50, 51).

Trägt man die erhobenen Werte in einen Graphen mit dem Durchmesser auf der x-Achse und der relativen Häufigkeit auf der y-Achse auf, so zeigt sich für die behandelten COX-2\(^{-/-}\)-Tiere ein in der Form der COX-2\(^{-/-}\)-Maus fast identisches, jedoch nach links verschobenes Bild (s. Abb. 49).

Abb. 48: Ausschnitt der 200x vergrößerten Niere einer COX-2\(^{-/-}\)-Maus, behandelt mit 200 ng/g KG GW501516, in H.E.-Färbung am Tag P22. Die Abb. zeigt deutlich verkleinerte Glomeruli, teils subkapsulär gelegen mit zu geringem Kapselabstand. Im Inneren ein gut entwickeltes Glomerulum; † Glomerulumdurchmesser, ‡ Kapseldistanz
III.5.3. Zusammenfassung der histomorphologischen Daten

<table>
<thead>
<tr>
<th>Agonist</th>
<th>PPARγ-Agonist Troglitazone (200 ng/g KG)</th>
<th>PPARδ-Agonist GW501516 (200 ng/g KG)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glomerulumvolumen (µm³)</td>
<td>10930 ± 375</td>
<td>7951 ± 292</td>
</tr>
<tr>
<td>Kapseldistanz (µm)</td>
<td>16,65 ± 0,83</td>
<td>23,81 ± 0,89</td>
</tr>
<tr>
<td>% Glomeruli innerhalb 58µm</td>
<td>54 %</td>
<td>49 %</td>
</tr>
<tr>
<td>Ratio (Niere : Körper) (× 10⁻³)</td>
<td>9,28 ± 0,37</td>
<td>10,95 ± 0,18</td>
</tr>
</tbody>
</table>

III.5.4. Vergleichende Zusammenstellung

Im Folgenden sind jeweils alle Glomerulumvolumina und Kapseldistanzen der Glomeruli in einem Balkendiagramm dargestellt.
Abb. 50: Balkendiagramm der Glomerulumvolumina, *p < 0,05 versus Wildtyp, -p < 0,05 versus COX-2−/−

Abb. 51: Balkendiagramm der Kapseldistanzen, *p < 0,05 versus Wildtyp, -p < 0,05 versus COX-2−/−
IV. Diskussion

Der genaue Mechanismus, für den das COX-2^{+/−}-Protein benötigt wird, um die gezeigten Veränderungen abzuwenden, blieb bislang allerdings unklar.

IV.1. Einfluss von COX-2-Inhibitoren auf die Nephrogenese

IV.2. Einfluss von EP-Agonisten auf die Nephrogenese

Im Laufe der Nierenentwicklung kommt es zu einer zentripetalen Wanderung der Nephrone in Richtung Mark, sodass die juxtamedullär gelegenen Nephrone denen der zuerst synthetisierten entsprechen und die subkapsulär gelegenen die zuletzt entwickelten sind. Eine subkapsuläre Anhäufung der Glomeruli stellt eine Entwicklungsretardierung dar [Dinchuk et al., 1995; Morham et al., 1995; Norwood et al., 2000].

IV.3. Einfluss eines EP-4-Antagonisten auf die Nephrogenese

IV.2. Einfluss von NO-Substanzen auf die Nephrogenese

Den Aspekt einer Vasodilatation und dessen Auswirkung auf die Nephrogenese zu untersuchen, war das nächste Ziel. Hinreichend bekannt war bislang, dass geringe

Allerdings konnten in dieser Studie keine protektiven Effekte einer Vasodilatation auf die Nephrogenese durch Gabe von systemisch wirksamen NO-Substanzen gezeigt werden, weder beim Glomerulumvolumen, noch bei der Distanz der Glomeruli von der Nierenkapsel. Beim letzten zeigte sich eher noch ein schädigender Effekt. Einzig die mit NOC-12 behandelten Tiere wiesen einen geringen, aber signifikant positiven Effekt auf das Glomerulumvolumen auf.

Insgesamt bleibt die Bedeutung einer Vasodilatation für die Nephrogenese jedoch fraglich. Trotzdem sollte, um diesen Aspekt völlig auszuschließen, mit weiteren unterschiedlichen bzw. niedrigeren Konzentrationen experimentiert werden.

IV.3. Einfluss von PPAR-Agonisten auf die Nephrogenese

Da weder durch eine Vasodilatation, noch durch Agonisten an Plasmamembranrezeptoren ein vollkommener nephroprotaktiver Effekt, speziell was die Distanzen der Glomeruli von der Nierenkapsel angeht, erreicht wurde, wurden die Auswirkungen von Liganden an Kernrezeptoren untersucht. Es ist bekannt, dass Prostaglandine auch Liganden an Kernrezeptoren, speziell an PPAR\(\gamma\) und PPAR\(\delta\), sind [Forman et al., 1995; Kliwer et al., 1995; Mital et al., 2002]. Des Weiteren konnten durch den selektiven Knockout des Gens der PGE\(_2\)-Rezeptoren EP-1 bis EP-4 histologisch keine Nierenveränderungen festgestellt werden [Narumiya und FitzGerald, 2001]. Eine Verbindung zum Cyclooxygenaseweg konnten Lim et al. [1999] herstellen, indem sie beobachteten, dass die reproduktiven Probleme der COX-2\(^{-/}\)-Maus durch Gabe eines PPAR\(\delta\)-Liganden behoben werden konnten. Den Hinweis darauf, dass PPAR\(\gamma\)
und PPARδ auch bei der Organentwicklung eine entscheidende Rolle zu spielen scheinen, gaben Yang et al. [1999] dadurch, dass sie erhöhte PPARδ mRNA Signale zum Ende der Schwangerschaft und eine Progression der PPARγ mRNA Expression während der Entwicklung, mit konstant hohen Levels auch nach der Geburt, gemessen haben.

Leider konnten diese Erwartungen durch den Einsatz von Troglitazone als PPARγ-Agonist und von GW501516 als PPARδ-Agonist in keiner Weise erfüllt werden. Ganz im Gegenteil, sie sind sogar weiter schädigend. So liegen die gemessenen Werte signifikant unter denen der unbehandelten COX-2-/--Maus sowohl was die Glomerulumvolumina angeht als auch die Distanzen der Glomeruli von der Nierenkapsel. Einzig die mit GW501516 behandelten Tiere weisen bei den Kapseldistanzen der Glomeruli ähnliche Werte auf wie das unbehandelte COX-2-/--Tier, jedoch keinen nephroprotectiven Effekt.

Die Glomerulumvolumina und die Distanzen der Glomeruli von der Nierenkapsel wurden als die entscheidenden bzw. spezifischen „Marker“ der regelgerechten Nephrogenese angesehen. Dabei soll die Angabe des prozentualen Anteils der Glomeruli innerhalb einer 58 µm Zone die Nephrodysgenese bzw. deren Rescue unterstreichen. Die jeweils erhobene Ratio aus Gesamtnierengewicht zum Körpergewicht korrelierte selten mit dem beobachteten histologischen Nierenschaden. Sie erwies sich als sehr fehleranfällig, was an einer unpräzisen Arbeitsweise bei der Nierenpräparation liegen kann. Daher wurden diese Werte zwar mit in die Arbeit aufgenommen, sollen aber nicht weiter diskutiert werden.

Zusammenfassend lässt sich sagen, dass nach meinen Untersuchungen die regelgerechte Nephrogenese scheinbar auf eine direkte Prostaglandin E2-Wirkung zurückzuführen ist. Hier haben sich speziell die PGE2-Rezeptoren EP-2 und EP-4 als besonders wichtig für diesen Prozess erwiesen. Vor allem, was die Volumen der Glomeruli
V. Zusammenfassung

Auch die Ergebnisse der PPARγ- bzw. PPARδ-Agonisten sind durchweg ernüchternd. Keine der eingesetzten Substanzen, Troglitazone und GW 501516, konnte ein positives Ergebnis, was die Glomerulumvolumina und die Distanzen der Glomeruli von der Nierenkapsel angeht, aufweisen. Vielmehr zeigen sie sich noch über das COX-2\(^{-/-}\)-Bild hinaus schädigend. Einzig das mit GW501516 behandelte Tier war von einem unbehandelten COX-2\(^{-/-}\)-Tier, in Bezug auf die Distanzen der Glomeruli von der Nierenkapsel, nicht signifikant zu unterscheiden.

VI. Literaturverzeichnis

Kume T, Deng K, Hogan BL: Murine forkhead/winged helix genes Foxc1 (Mf1) and Foxc2 (Mfh1) are required for early organogenesis of the kidney and urinary tract. Development 127: 1387-1395, 2000

Mital A, Vats RK, Ramachandran U: PPARs: Nuclear Receptors for Antidiabetics. Crips 3-1: 5-8, 2002

Schoonjans K, Steals B, Auwerx J: The peroxisome proliferator activated receptors (PPARs) and their effects on lipid metabolism and adipocyte differentiation. Biochim Biophys Acta 1302: 93-109, 1996

VII. Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Erläuterung</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Ampère</td>
</tr>
<tr>
<td>AA</td>
<td>Arachidonic acid (Arachidonsäure)</td>
</tr>
<tr>
<td>Abb.</td>
<td>Abbildung</td>
</tr>
<tr>
<td>AL</td>
<td>Arbeitslösung</td>
</tr>
<tr>
<td>ASS</td>
<td>Acetylsalicylsäure</td>
</tr>
<tr>
<td>bp</td>
<td>Basenpaare</td>
</tr>
<tr>
<td>cAMP</td>
<td>cyclisches Adenosinmonophosphat</td>
</tr>
<tr>
<td>COX</td>
<td>Cyclooxygenase</td>
</tr>
<tr>
<td>d</td>
<td>Durchmesser</td>
</tr>
<tr>
<td>ddH$_2$O</td>
<td>doppelt destilliertes Wasser (zweifach entionisiertes Wasser)</td>
</tr>
<tr>
<td>DMF</td>
<td>Dimethylformamid</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethylsulfoxid</td>
</tr>
<tr>
<td>DNA</td>
<td>Desoxyribonucleic acid (Desoxyribonukleinsäure)</td>
</tr>
<tr>
<td>dNTP</td>
<td>Desoxynucleosidtriphosphat</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylen Diamin Tetra-Acetat</td>
</tr>
<tr>
<td>FSH</td>
<td>Follikelstimulierendes Hormon</td>
</tr>
<tr>
<td>g</td>
<td>Gramm</td>
</tr>
<tr>
<td>GFR</td>
<td>glomeruläre Filtrationsrate</td>
</tr>
<tr>
<td>h</td>
<td>Stunde</td>
</tr>
<tr>
<td>HCG</td>
<td>Human Chorionic Gonadotropin</td>
</tr>
<tr>
<td>HCl</td>
<td>Salzsäure</td>
</tr>
<tr>
<td>i.p.</td>
<td>intraperitoneal</td>
</tr>
<tr>
<td>KG</td>
<td>Körpergewicht</td>
</tr>
<tr>
<td>l</td>
<td>Liter</td>
</tr>
<tr>
<td>LH</td>
<td>Luteinisierendes Hormon</td>
</tr>
<tr>
<td>m</td>
<td>Meter</td>
</tr>
<tr>
<td>M</td>
<td>molar, Mol</td>
</tr>
<tr>
<td>min</td>
<td>Minuten</td>
</tr>
<tr>
<td>MM</td>
<td>Metanephrogenes Mesenchym</td>
</tr>
<tr>
<td>mRNA</td>
<td>messenger Ribonukleinsäure</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Deutscher Begriff</td>
</tr>
<tr>
<td>-----------</td>
<td>------------------</td>
</tr>
<tr>
<td>NaCl (0,9%)</td>
<td>(isotonische) Kochsalzlösung</td>
</tr>
<tr>
<td>NO</td>
<td>Nitric Oxide (Stickoxid)</td>
</tr>
<tr>
<td>NSAID</td>
<td>Non steroidal anti-inflammatory drug (nichtsteroidale Antirheumatika)</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate Buffered Saline (Phosphat-gepufferte Salzlösung)</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase chain reaction (Polymerase Kettenreaktion)</td>
</tr>
<tr>
<td>PEG</td>
<td>Polyethylenglykol</td>
</tr>
<tr>
<td>PFA</td>
<td>Paraformaldehyd</td>
</tr>
<tr>
<td>PGI₂</td>
<td>Prostacyclin</td>
</tr>
<tr>
<td>PGₓᵧ</td>
<td>Prostaglandin xᵧ</td>
</tr>
<tr>
<td>PPAR</td>
<td>Peroxisome proliferator activated receptor</td>
</tr>
<tr>
<td>RAAS</td>
<td>Renin-Angiotensin-Aldosteron-System</td>
</tr>
<tr>
<td>RBF</td>
<td>Renaler Blutfluss</td>
</tr>
<tr>
<td>RNase</td>
<td>Ribonuclease</td>
</tr>
<tr>
<td>rpm</td>
<td>rounds per minute (Umdrehungen pro Minute)</td>
</tr>
<tr>
<td>S</td>
<td>Stromazelle</td>
</tr>
<tr>
<td>s.c.</td>
<td>subcutan</td>
</tr>
<tr>
<td>SDS</td>
<td>Dodecylschwefelsäure Natriumsalz</td>
</tr>
<tr>
<td>SL</td>
<td>Stammlösung</td>
</tr>
<tr>
<td>T</td>
<td>Tränke</td>
</tr>
<tr>
<td>Tab.</td>
<td>Tabelle</td>
</tr>
<tr>
<td>TAE</td>
<td>Tris-Acetat-EDTA Puffer</td>
</tr>
<tr>
<td>Taq</td>
<td>Thermus aquaticus</td>
</tr>
<tr>
<td>TE</td>
<td>Tris-EDTA</td>
</tr>
<tr>
<td>TPA</td>
<td>12-O-tetradecanoylphorbol-13-acetat</td>
</tr>
<tr>
<td>TRIS</td>
<td>Tris-(hydroxymethyl)aminomethan</td>
</tr>
<tr>
<td>TXA₂</td>
<td>Thromboxan A₂</td>
</tr>
<tr>
<td>UK</td>
<td>Ureterknospe</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolett</td>
</tr>
<tr>
<td>V</td>
<td>Volt, Volumen</td>
</tr>
<tr>
<td>WT</td>
<td>Wildtyp</td>
</tr>
</tbody>
</table>
VIII. Anhang

VIII.1. Verzeichnis der akademischen Lehrer

Meine akademischen Lehrer in Marburg waren die Damen und Herren Arnold, Aumüller, Barth, Basler, Baum, Becker, Boudriot, Cetin, Christiansen, Czubayko, Daut, Dünne, Feuser, Gerdes, Geus, Göke, Görg, Griss, Gudermann, Hasilik, Herzum, Hofbauer, Hofmann, Jungclas, Klenk, Klose, Koolman, Krause, Kretschmer, Krieg, Kroll, Kuni, Lang, Lill, Maier, Maisch, Moll, Moosdorf, Müller, Mutters, Oertel, Remschmidt, Renz, Richter, Röhm, Rothmund, Schäfer, Schmidt, Schnabel, Seitz, Seyberth, Steiniger, Studer, Wagner, Westermann, Zielke

VIII.2. Danksagung

Ich bedanke mich herzlich bei Herrn Prof. Dr. R.M. Nüsing, Zentrum für Kinder- und Jugendmedizin, für die Bereitstellung des Themas, die fachliche und kollegiale Betreuung, sowie für die kritische Durchsicht der Arbeit.

Weiterer Dank gilt den Tierpflegerinnen und -pflegern des Mausstalls für die fachgerechte Betreuung und Versorgung der Mäuse.

Außerdem möchte ich mich bei allen Kollegen des Labors für molekulare und experimentelle Pharmakologie für die nette Einarbeitung und den gehabten Spaß, während der auch oftmals stressigen Arbeit, bedanken.

Nicht minderer Dank gilt meinen Korrekturlesern Patrick und meiner lieben Freundin Tina. Ich weiß, dass es für beide nicht leicht war sich durch dieses Werk zu arbeiten.

Allerdings der größte Dank gebührt meinen Eltern für ihre in jeder Lage großartige Unterstützung, ohne die ich jetzt nicht hier sitzen würde, um diese Zeilen zu schreiben.