Strahlenexpositionswerte in der Röntgendiagnostik -
eine Analyse ausgewählter Untersuchungsverfahren nach Einführung
von diagnostischen Referenzwerten.

Inaugural-Dissertation zur Erlangung des Doktorgrades der gesamten Humanmedizin
dem Fachbereich Medizin der Philipps-Universität Marburg

vorgelegt von

Christopher Franz Randolf Peter Bliemel

aus

Landshut

Marburg 2008
Angenommen vom Fachbereich Medizin der

Gedruckt mit Genehmigung des Fachbereichs.

Dekan: Univ.-Prof. Dr. med. Matthias Rothmund
Referent: Univ.-Prof. Dr. med. Klaus Jochen Klose
1. Korreferent: Prof. Dr. med. Martin Gotthardt
Meinen Großvätern

Herrn Dr. med. Franz Bliemel

und

Herrn Dr. med. Randolf Riedl

gewidmet.
Inhaltsverzeichnis

1 Einleitung ...1
 1.1 Entwicklung der Röntgendiagnostik und des Strahlenschutzes1
 1.2 Bestandsaufnahme diagnostisch radiologischer Untersuchungsverfahren2
 1.3 Physikalische und technische Grundlagen der Röntgenstrahlung und Bilderzeugung ...4
 1.3.2 Wechselwirkung von Strahlung mit Materie ..5
 1.3.3 Schwächung von Röntgenstrahlung in Materie ...6
 1.3.4 Dosimetrische Begriffe und Einheiten ..7
 1.4 Dosisflächenprodukt ...9
 1.5 Radiologische Untersuchungsgeräte ..10
 1.5.1 Analoge und digitale Projektionsradiografie ..10
 1.5.1.1 Digitale Projektionsradiografie in Bildverstärkertechnik12
 1.5.1.2 Digitale Projektionsradiografie mit Flat Panel Detektoren13
 1.6 Zielsetzungen der Promotionsarbeit ...14

2 Material und Methoden ...15
 2.1 Experimentelle Untersuchungen ..15
 2.1.1 Das Schädelphantom ..15
 2.1.3 Messungen am Schädelphantom mit dem Flat Panel Detektor19
 2.2 Bestimmung des Dosisflächenprodukts bei Röntgenaufnahmen des Thorax 21
 2.2.1 Charakterisierung des Patientenkollektivs ...21
 2.2.1.1 Ablauf der Messungen ...23
 2.3 Datenerfassung und Auswertung ...25
 2.3.1 Anwendung statistischer Verfahren ...25
 2.3.2 Zur Datenerfassung und Auswertung angewandte Computerprogramme26

3 Ergebnisse ...27
 3.1 Ergebnisse der experimentellen Untersuchungen ...27
 3.1.1 Entwicklung des Dosisflächenprodukts am Schädelphantom unter Verwendung des Röntgenbildverstärkers27
 3.1.1.1 Messergebnisse am Schädelphantom im a.p. Strahlengang27
 3.1.1.2 Zusammenfassende Bewertung der Schädel a.p. Aufnahmen33
 3.1.1.3 Messergebnisse am Schädelphantom im lateralen Strahlengang34
 3.1.1.4 Zusammenfassende Bewertung der lateralen Schädelaufnahmen40
3.1.2 Entwicklung des Dosisflächenprodukts am Schädelphantom unter Verwendung des Flat Panel Detektors ...41
 3.1.2.1 Messergebnisse am Schädelphantom im a.p. Strahlengang41
 3.1.2.2 Zusammenfassende Bewertung der Schädel a.p. Aufnahmen47
 3.1.2.3 Messergebnisse am Schädelphantom im lateralen Strahlengang48
 3.1.2.4 Zusammenfassende Bewertung der lateralen Schädelaufnahmen53

3.2 Entwicklung des Dosisflächenprodukts bei Röntgenaufnahmen der Thoraxorgane ..54
 3.2.1 Messergebnisse des männlichen Patientenkollektivs54
 3.2.1.1 Zusammenfassende Bewertung der Thoraxaufnahmen der männlichen Patienten ...57
 3.2.2 Messergebnisse des weiblichen Patientenkollektivs57
 3.2.2.1 Zusammenfassende Bewertung der Thoraxaufnahmen der weiblichen Patienten ...61

4 Diskussion ..62
 4.1 Messergebnisse bei Röntgenaufnahmen am Schädelpphantom62
 4.2 Messergebnisse bei Röntgenaufnahmen der Thoraxorgane66

5 Zusammenfassung ..71

6 Anhang ...72
 6.1 Literaturverzeichnis ...72
 6.2 Lebenslauf ..78
 6.3 Verzeichnis der akademischen Lehrer ...79
 6.4 Danksagung ..79
 6.5 Ehrenwörtliche Erklärung ..80
Abbildungsverzeichnis

<table>
<thead>
<tr>
<th>Abbildung</th>
<th>Titel</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbildung 1</td>
<td>Schematischer Aufbau einer Röntgenröhre (Berger et al., 2001)</td>
<td>4</td>
</tr>
<tr>
<td>Abbildung 2</td>
<td>Graphische Darstellung des Photoeffekts (Assert, 2005)</td>
<td>6</td>
</tr>
<tr>
<td>Abbildung 3</td>
<td>Grafische Darstellung des Compton Effekts (Assert, 2005)</td>
<td>7</td>
</tr>
<tr>
<td>Abbildung 4</td>
<td>Strahlengeometrie einer diagnostischen Röntgenanlage (Drexler et al. 1993)</td>
<td>10</td>
</tr>
<tr>
<td>Abbildung 5</td>
<td>Aufbau der Röntgenfilmkassette mit Film (Laubenberger et al. 1999)</td>
<td>11</td>
</tr>
<tr>
<td>Abbildung 6</td>
<td>Aufbau eines Bildverstärkers (Stieve et al., 2003)</td>
<td>12</td>
</tr>
<tr>
<td>Abbildung 7</td>
<td>Schema eines Festkörper-Detektors (Herrmann et al., 2000)</td>
<td>13</td>
</tr>
<tr>
<td>Abbildung 8</td>
<td>Schädelphantom für die experimentellen Untersuchung</td>
<td>15</td>
</tr>
<tr>
<td>Abbildung 9</td>
<td>Darstellung der 18 Messreihen mit dem Röntgenbildverstärker</td>
<td>17</td>
</tr>
<tr>
<td>Abbildung 10</td>
<td>Darstellung des Schädelphantoms im a.p. Strahlendurchgang mit</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>entsprechender Röntgenaufnahme</td>
<td></td>
</tr>
<tr>
<td>Abbildung 11</td>
<td>Darstellung des Schädelphantoms im lateralen Strahlendurchgang mit</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>entsprechender Röntgenaufnahme</td>
<td></td>
</tr>
<tr>
<td>Abbildung 12</td>
<td>Darstellung der 12 Messreihen mit dem Flat Panel Detektor</td>
<td>20</td>
</tr>
<tr>
<td>Abbildung 13</td>
<td>Darstellung des Messzirkels mit Zentimeterskalierung</td>
<td>23</td>
</tr>
<tr>
<td>Abbildung 14</td>
<td>Lagerung eines Patienten bei der Anfertigung einer Röntgenaufnahme in</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>p.a. Durchleuchtung</td>
<td></td>
</tr>
<tr>
<td>Abbildung 15</td>
<td>Lagerung eines Patienten bei der Anfertigung einer Röntgenaufnahme in</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>lateraler Durchleuchtung</td>
<td></td>
</tr>
<tr>
<td>Abbildung 16</td>
<td>Röntgenaufnahmen des Schädelphantoms bei 0,1mm Filterung mit</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>unterschiedlichen Feldgrößen</td>
<td></td>
</tr>
<tr>
<td>Abbildung 17</td>
<td>Röntgenaufnahmen des Schädelphantoms bei 0,1mm Filterung mit</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>unterschiedlichen Feldgrößen</td>
<td></td>
</tr>
</tbody>
</table>
Tabellenverzeichnis

<table>
<thead>
<tr>
<th>Tabelle</th>
<th>Titel</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tabelle 1</td>
<td>Röntgenuntersuchungen im internationalen Vergleich</td>
<td>3</td>
</tr>
<tr>
<td>Tabelle 2</td>
<td>Relative Häufigkeiten von Röntgenuntersuchungsarten bzw. Organsystemen</td>
<td>3</td>
</tr>
<tr>
<td>Tabelle 3</td>
<td>Diagnostische Referenzwerte für Röntgenaufnahmen bei Erwachsenen (Brix 2003)</td>
<td>14</td>
</tr>
<tr>
<td>Tabelle 4</td>
<td>Zeigt die exakten Typbezeichnungen der einzelnen Bestandteile des verwendeten Röntgenbildverstärkers (AXIOM ICONOS R200 FLC)</td>
<td>16</td>
</tr>
<tr>
<td>Tabelle 5</td>
<td>Zeigt die exakten Typbezeichnungen der einzelnen Bestandteile des verwendeten Flat Panel Röntgengeräts AXIOM ARISTOS VX</td>
<td>19</td>
</tr>
<tr>
<td>Tabelle 6</td>
<td>Entwicklung des DFP (cGy x cm²) bei 0,1mm Zusatzfilterung mit steigender Röhrenspannung (kV) und unterschiedlichen Kassettenformaten bzw. Einblendenungen</td>
<td>28</td>
</tr>
<tr>
<td>Tabelle 7</td>
<td>Darstellung des DFP (cGy x cm²) bei 0,1mm Kupferfilterung mit variierender Röhrenspannung (kV) und unterschiedlichen Kassettenformaten bzw. Einblendenungen</td>
<td>28</td>
</tr>
<tr>
<td>Tabelle 8</td>
<td>Entwicklung des DFP (cGy x cm²) bei steigenden kV Werten und 0,2mm Zusatzfilterungen. Verwendung unterschiedlicher Kassettenformate und Einblendenungen</td>
<td>30</td>
</tr>
<tr>
<td>Tabelle 9</td>
<td>Darstellung des DFP (cGy x cm²) bei 0,2mm Kupferfilterung mit variierender Röhrenspannung (kV) und unterschiedlichen Kassettenformaten bzw. Einblendenungen</td>
<td>30</td>
</tr>
<tr>
<td>Tabelle 10</td>
<td>Entwicklung des DFP (cGy x cm²) bei steigenden kV Werten und 0,3mm Zusatzfilterungen. Verwendung unterschiedlicher Kassettenformate und Einblendenungen</td>
<td>32</td>
</tr>
<tr>
<td>Tabelle 11</td>
<td>Darstellung des DFP (cGy x cm²) bei 0,3mm Kupferfilterung mit variierender Röhrenspannung (kV) und unterschiedlichen Kassettenformaten bzw. Einblendenungen</td>
<td>32</td>
</tr>
<tr>
<td>Tabelle 12</td>
<td>Entwicklung des DFP (cGy x cm²) bei 0,1mm Zusatzfilterung mit steigender Röhrenspannung (kV) und unterschiedlichen Kassettenformaten bzw. Einblendenungen</td>
<td>35</td>
</tr>
<tr>
<td>Tabelle 13</td>
<td>Darstellung des DFP (cGy x cm²) bei 0,1mm Kupferfilterung mit variierender Röhrenspannung (kV) und unterschiedlichen Kassettenformaten bzw. Einblendenungen</td>
<td>36</td>
</tr>
<tr>
<td>Tabelle 14</td>
<td>Entwicklung des DFP (cGy x cm²) bei 0,2mm Zusatzfilterung mit steigender Röhrenspannung (kV) und unterschiedlichen Kassettenformaten bzw. Einblendenungen</td>
<td>37</td>
</tr>
<tr>
<td>Tabelle 15</td>
<td>Darstellung des DFP (cGy x cm²) bei 0,2mm Kupferfilterung mit variierender Röhrenspannung (kV) und unterschiedlichen Kassettenformaten bzw. Einblendenungen</td>
<td>38</td>
</tr>
<tr>
<td>Tabelle 16</td>
<td>Entwicklung des DFP (cGy x cm²) bei 0,3mm Zusatzfilterung mit steigender Röhrenspannung (kV) und unterschiedlichen Kassettenformaten bzw. Einblendenungen</td>
<td>39</td>
</tr>
<tr>
<td>Tabelle 17</td>
<td>Darstellung des DFP (cGy x cm²) bei 0,3mm Kupferfilterung mit variierender Röhrenspannung (kV) und unterschiedlichen Kassettenformaten bzw. Einblendenungen</td>
<td>39</td>
</tr>
<tr>
<td>Tabelle</td>
<td>Beschreibung</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>--------------</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Entwicklung des DFP (cGy x cm²) bei 0,1mm Zusatzfilterung mit steigender Röhrenspannung (kV) und unterschiedlichen Einblendungsformaten</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Darstellung des DFP (cGy x cm²) bei 0,1mm Kupferfilterung mit variierender Röhrenspannung (kV) und unterschiedlichen Einblendungsformaten</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Entwicklung des DFP (cGy x cm²) bei 0,2mm Zusatzfilterung mit steigender Röhrenspannung (kV) und unterschiedlichen Einblendungsformaten</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Darstellung des DFP (cGy x cm²) bei 0,2mm Kupferfilterung mit variierender Röhrenspannung (kV) und unterschiedlichen Einblendungsformaten</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Entwicklung des DFP (cGy x cm²) bei 0,3mm Zusatzfilterung mit steigender Röhrenspannung (kV) und unterschiedlichen Einblendungsformaten</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Darstellung des DFP (cGy x cm²) bei 0,3mm Kupferfilterung mit variierender Röhrenspannung (kV) und unterschiedlichen Einblendungsformaten</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Entwicklung des DFP (cGy x cm²) bei 0,1mm Zusatzfilterung mit steigender Röhrenspannung (kV) und unterschiedlichen Einblendungsformaten</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Darstellung des DFP (cGy x cm²) bei 0,1mm Kupferfilterung mit variierender Röhrenspannung (kV) und unterschiedlichen Einblendungsformaten</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Entwicklung des DFP (cGy x cm²) bei 0,2mm Zusatzfilterung mit steigender Röhrenspannung (kV) und unterschiedlichen Einblendungsformaten</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Darstellung des DFP (cGy x cm²) bei 0,2mm Kupferfilterung mit variierender Röhrenspannung (kV) und unterschiedlichen Einblendungsformaten</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Entwicklung des DFP (cGy x cm²) bei 0,3mm Zusatzfilterung mit steigender Röhrenspannung (kV) und unterschiedlichen Einblendungsformaten</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Darstellung des DFP (cGy x cm²) bei 0,3mm Kupferfilterung mit variierender Röhrenspannung (kV) und unterschiedlichen Einblendungsformaten</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Patientenspezifische Parameter der männlichen Patienten</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Korrelation des DFP (cGy x cm²) mit klinischen Merkmalen bei Thoraxaufnahmen im p.a. Strahlengang anhand des zweiseitigen Korrelationskoeffizienten nach Pearson (r)</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>Korrelation des DFP (cGy x cm²) mit klinischen Merkmalen bei Thoraxaufnahmen im lateralen Strahlengang anhand des zweiseitigen Korrelationskoeffizienten nach Pearson (r)</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>Patientenspezifische Parameter der weiblichen Patienten</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>Korrelation des DFP (cGy x cm²) mit klinischen Merkmalen bei Thoraxaufnahmen im p.a. Strahlengang anhand des zweiseitigen Korrelationskoeffizienten nach Pearson (r)</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>Korrelation des DFP (cGy x cm²) mit klinischen Merkmalen bei Thoraxaufnahmen im lateralen Strahlengang anhand des zweiseitigen Korrelationskoeffizienten nach Pearson (r)</td>
<td></td>
</tr>
</tbody>
</table>
Diagrammverzeichnis

Diagramm 1 Geschlechterverteilung des bei der Röntgen-Thorax Untersuchung protokolierten Patientenkollektivs...22
Diagramm 2 Altersverteilung des untersuchten Patientenkollektivs...22
Diagramm 3 Darstellung des DFP (cGy x cm²) in Abhängigkeit von der Röhrenspannung (kV) bei Verwendung des Röntgen-BV mit 0,1mm Zusatzfilterung29
Diagramm 4 Darstellung des DFP (cGy x cm²) in Abhängigkeit von der Röhrenspannung (kV) bei Verwendung des Röntgen-BV mit 0,2mm Zusatzfilterung31
Diagramm 5 Darstellung des DFP (cGy x cm²) in Abhängigkeit von der Röhrenspannung (kV) bei Verwendung des Röntgen-BV mit 0,3mm Zusatzfilterung33
Diagramm 6 Darstellung des DFP (cGy x cm²) in Abhängigkeit von der Röhrenspannung (kV) bei Verwendung des Röntgen-BV mit 0,1mm Zusatzfilterung36
Diagramm 7 Darstellung des DFP (cGy x cm²) in Abhängigkeit von der Röhrenspannung (kV) bei Verwendung des Röntgen-BV mit 0,2mm Zusatzfilterung38
Diagramm 8 Darstellung des DFP (cGy x cm²) in Abhängigkeit von der Röhrenspannung (kV) bei Verwendung des Röntgen-BV mit 0,3mm Zusatzfilterung40
Diagramm 9 Darstellung des DFP (cGy x cm²) in Abhängigkeit von der Röhrenspannung (kV) bei Verwendung des Flat Panel Detektors mit 0,1mm Zusatzfilterung ...43
Diagramm 10 Darstellung des DFP (cGy x cm²) in Abhängigkeit von der Röhrenspannung (kV) bei Verwendung des Flat Panel Detektors mit 0,2mm Zusatzfilterung ...45
Diagramm 11 Darstellung des DFP (cGy x cm²) in Abhängigkeit von der Röhrenspannung (kV) bei Verwendung des Flat Panel Detektors mit 0,3mm Zusatzfilterung ...47
Diagramm 12 Darstellung des DFP (cGy x cm²) in Abhängigkeit von der Röhrenspannung (kV) bei Verwendung des Flat Panel Detektors mit 0,1mm Zusatzfilterung ...49
Diagramm 13 Darstellung des DFP (cGy x cm²) in Abhängigkeit von der Röhrenspannung (kV) bei Verwendung des Flat Panel Detektors mit 0,2mm Zusatzfilterung ...51
Diagramm 14 Darstellung des DFP (cGy x cm²) in Abhängigkeit von der Röhrenspannung (kV) bei Verwendung des Flat Panel Detektors mit 0,3mm Zusatzfilterung ...53
Diagramm 15 Dosisflächenprodukt der männlichen Patienten (Fallnummer 1-24) bei Röntgenaufnahmen der Thoraxorgane im p.a. Strahlengang ..55
Diagramm 16 Dosisflächenprodukt der männlichen Patienten (Fallnummer 1-24) bei Röntgenaufnahmen der Thoraxorgane im lateralen Strahlengang55
Diagramm 17 Dosisflächenprodukt der weiblichen Patienten (Fallnummer 1-17) bei Röntgenaufnahmen der Thoraxorgane im p.a. Strahlengang59
Diagramm 18 Dosisflächenprodukt der weiblichen Patienten (Fallnummer 1-17) bei Röntgenaufnahmen der Thoraxorgane im lateralen Strahlengang59
Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Erklärung</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>anno (Jahr)</td>
</tr>
<tr>
<td>Abb.</td>
<td>Abbildung</td>
</tr>
<tr>
<td>a.p.</td>
<td>anterior posterior</td>
</tr>
<tr>
<td>BMI</td>
<td>Body Mass Index</td>
</tr>
<tr>
<td>BV</td>
<td>Bildverstärker</td>
</tr>
<tr>
<td>bzgl.</td>
<td>bezüglich</td>
</tr>
<tr>
<td>c</td>
<td>Konstante der Lichtgeschwindigkeit (c = 300.000 \text{ km/s})</td>
</tr>
<tr>
<td>cGy x cm²</td>
<td>Centigray mal Quadratzentimeter, Einheit des Dosis Flächen Produkts</td>
</tr>
<tr>
<td>cm</td>
<td>Zentimeter</td>
</tr>
<tr>
<td>Diag.</td>
<td>Diagramm</td>
</tr>
<tr>
<td>DFP</td>
<td>Dosisflächenprodukt</td>
</tr>
<tr>
<td>FFA</td>
<td>Film Fokus Abstand</td>
</tr>
<tr>
<td>FFS</td>
<td>Film Folien System</td>
</tr>
<tr>
<td>HWK</td>
<td>Hals Wirbel Körper</td>
</tr>
<tr>
<td>Inch</td>
<td>Engl. für Zoll entspricht 2,54 Zentimeter</td>
</tr>
<tr>
<td>kg</td>
<td>Kilogramm</td>
</tr>
<tr>
<td>kV</td>
<td>Kilovolt</td>
</tr>
<tr>
<td>lat.</td>
<td>lateral</td>
</tr>
<tr>
<td>m</td>
<td>Meter</td>
</tr>
<tr>
<td>mAs</td>
<td>Milliamperesekunde, Einheit des Strom-Zeit-Produkts</td>
</tr>
<tr>
<td>mm</td>
<td>Millimeter</td>
</tr>
<tr>
<td>ms</td>
<td>Millisekunde</td>
</tr>
<tr>
<td>MTAR</td>
<td>Medizinisch technische(r) Röntgenassistent(in)</td>
</tr>
<tr>
<td>o.g.</td>
<td>oben genannt(en)</td>
</tr>
<tr>
<td>ORDZ</td>
<td>Ordnungszahl</td>
</tr>
<tr>
<td>p.a.</td>
<td>posterior anterior</td>
</tr>
<tr>
<td>PTCA</td>
<td>Percutane transluminale coronare Angioplastie</td>
</tr>
<tr>
<td>RBV</td>
<td>Röntgenbildverstärker</td>
</tr>
<tr>
<td>SD</td>
<td>Standardabweichung</td>
</tr>
<tr>
<td>UKGuM</td>
<td>Universitätsklinikum Gießen und Marburg</td>
</tr>
</tbody>
</table>
Einleitung

1 Entwicklung der Röntgendiagnostik und des Strahlenschutzes

Am 8. November 1895 beobachtete der Physikprofessor Wilhelm Conrad Röntgen erst-
mals „eine neue Art von Strahlung“, die er als X-Strahlung bezeichnete (Mould 1995). Es
war ihm gelungen, mit einer Kathodenstrahlröhre scheinbar unsichtbare Strahlen auf einer
mit Barium-Platincyanid beschichteten Platte darzustellen. Als erste medizinische Auf-
nahme fertigte er am 22. Dezember 1895 ein Röntgenbild der Hand seiner Frau an. Am
28. Dezember 1895 konnte Professor Röntgen seine Entdeckungen als vorläufige Mittei-
lung der Physikalisch-medicinischen Gesellschaft zu Würzburg berichten (Fölsing 1995).

Diagnostische Untersuchungen des Skeletts begannen noch im selben Jahr, u.a. durch den
Frankfurter Physiker W. König. Der unbedarfte Umgang mit dieser neuen Strahlung blieb
jedoch nicht folgenlos. 1896 berichtete der Ingenieur O. Leppin von der ersten Radioder-
matitis seiner eigenen Hand. Sonnenbrand ähnliche Hautreaktionen wurden im selben
Jahr auch von L.G. Stevens mitgeteilt (Kaufmann et al. 2001). Vorfälle wie diese, sowie
das allgemein wachsende Bewusstsein für mögliche Gefahren durch Röntgenstrahlung,
veranlassten den Amerikaner Wolfram Fuchs im Dezember 1896 eine Empfehlung für
den Umgang mit Röntgenstrahlung zu publizieren. Diese gilt als die erste weltweit. Er
empfahl folgende drei Punkte zu berücksichtigen (Clarke et al. 2005):

- Die Expositionszeit sollte so kurz wie möglich gehalten werden.

- Der Abstand des Patienten zur Röntgenröhre sollte größer 30 cm sein.

- Die Haut des Patienten sollte mit Vaseline eingerieben werden. Auf die am
 stärksten exponierten Stellen sollte eine Extraschicht aufgetragen werden.

In der Folgezeit wurden in vielen Ländern Veröffentlichungen zum Schutz vor unsach-
gemäßer Verwendung der Röntgenstrahlung publiziert, u.a. durch die Deutsche Röntgen
Gesellschaft 1913 und die British Roentgen Society 1915.

1928 wurde auf dem internationalen Röntgenkongress in Stockholm die International
Commission on Radiological Protection (ICRP) ins Leben gerufen (Clarke et al. 2005),
welche mittlerweile weltweit eine führende Organisation im Strahlenschutz darstellt
(Sowby et al. 2003). Durch die International Commission on Radiological Protection
(ICRP) wurde 1934 erstmals eine Dosisgrenze festgelegt, unter der ein gefahrenloses Ar-
beiten ermöglicht werden sollte (Clarke et al. 2005). In den folgenden Jahrzehnten kam es immer wieder zu neuen Empfehlungen der ICRP, die eine schrittweise Senkung der Dosisgrenze ermöglichten (Clarke et al. 2005).

1.2 Bestandsaufnahme diagnostisch radiologischer Untersuchungsverfahren

Im internationalen Vergleich wird deutlich, dass das vorherrschende Gesundheitssystem einen erheblichen Einfluss auf die Anzahl diagnostischer Röntgenuntersuchungen ausübt. In Ländern mit ähnlichen Gesundheitssystemen, wie z. B. der Schweiz, Luxemburg oder Belgien, sind Anzahl und Dosis medizinischer Strahlenexpositionen nach aktuellen Stellungnahmen von ähnlicher Größenordnung wie in Deutschland (Brix et al. 2005).

Tabelle 1 Röntgenuntersuchungen im internationalen Vergleich

<table>
<thead>
<tr>
<th>Land</th>
<th>Anzahl der Röntgenuntersuchungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bundesrepublik Deutschland 2004</td>
<td>1,6</td>
</tr>
<tr>
<td>Schweiz 2003</td>
<td>1,3</td>
</tr>
<tr>
<td>Luxemburg 2002</td>
<td>1,3</td>
</tr>
<tr>
<td>Belgien 1999</td>
<td>1,2</td>
</tr>
<tr>
<td>Vereinigtes Königreich 2001</td>
<td>0,7</td>
</tr>
</tbody>
</table>

Tabelle 2 Relative Häufigkeiten von Röntgenuntersuchungsarten bzw. Organsystemen.

Prozentualer Anteil verschiedener Untersuchungsarten an der Gesamthäufigkeit aller radiologischer Untersuchungen in Deutschland für das Jahr 2004 (*Bundesministerium für Umwelt 2007b*)

<table>
<thead>
<tr>
<th>Organsystem</th>
<th>Prozentualer Anteil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zahnmundgrotische Aufnahmen</td>
<td>35,5 %</td>
</tr>
<tr>
<td>Skelettaufnahmen</td>
<td>34,3 %</td>
</tr>
<tr>
<td>Thoraxaufnahmen</td>
<td>13,0 %</td>
</tr>
<tr>
<td>Computertomografie</td>
<td>6,9 %</td>
</tr>
<tr>
<td>Mammografie</td>
<td>3,9 %</td>
</tr>
<tr>
<td>Verdauungs-, Urogenital- und Gallenleistungsunters.</td>
<td>3,6 %</td>
</tr>
<tr>
<td>Angiographie / Intervention</td>
<td>2,0 %</td>
</tr>
<tr>
<td>Sonstige Aufnahmen</td>
<td>0,7 %</td>
</tr>
</tbody>
</table>
1.3 Physikalische und technische Grundlagen der Röntgenstrahlung und Bilderschaffung

1.3.1 Röntgenstrahlung und ihre Entstehung

Röntgenstrahlen werden mit Hilfe einer Röntgenröhre erzeugt, welche durch einen Generator gesteuert wird. Die Röntgenröhre besteht aus einer Glühkathode als Elektronenquelle sowie aus einer Anode als Bremskörper, die sich in einem Vakuumglaszyylinder befinden.

Abbildung 1 Schematischer Aufbau einer Röntgenröhre (Berger et al., 2001). Die an der Glühkathode K (Heizspannung U_H) freigesetzten Elektronen werden durch die Anodenhochspannung U_a beschleunigt. Beim Auftreffen auf der Anode A entsteht Röntgenstrahlung.

Die am Röntgengerät eingestellte Stromstärke (mA) regelt, wie viele Elektronen aus dem Wolframdraht der Kathode austreten und somit wie viel Röntgenstrahlung entsteht. Die Spannung (kV) ist für die Beschleunigung der Elektronen in der Röntgenröhre und die Energie, mit welcher sie auf den Brennpunkt aufprallen, verantwortlich. Je höher die eingestellte Spannung, desto energiereicher und damit kurzwelliger ist die erzeugte Röntgenstrahlung.
1.3.2 Wechselwirkung von Strahlung mit Materie

Im Sinne des Strahlenschutzes ist es wichtig, dass vor jeder radiologischen Untersuchung eine Abwägung des möglichen Strahlenrisikos gegenüber dem diagnostischen Nutzen stattfindet („rechtfertigende Indikation“). Mit Hilfe von neu eingeführten diagnostischen Referenzwerten wird versucht, eine Risikobegrenzung zu ermöglichen. Dies geschieht unter der Vorstellung, dass eine direkte Beziehung zwischen Dosis und Risiko besteht.
1.3.3 Schwächung von Röntgenstrahlung in Materie

Die diagnostische Radiologie macht es sich zu Nutze, dass Röntgenstrahlung beim Durchtritt durch Materie Energie verliert. Diese Schwächung ist von drei Variablen abhängig:

- Vom Patientendurchmesser im Hauptstrahlengang,
- Von der Körperdichte des exponierten Gewebes,
- Von der Ordnungszahl der Atome im durchstrahlten Gewebe (Kauffmann et al. 2001).

Bei einer Intensitätsabschwächung kommt es entweder zur vollständigen Absorption der applizierten Röntgenstrahlen (Photoeffekt) oder zur partiellen Abgabe der Energie an die durchstrahlte Materie (Compton Effekt). Beim Compton Effekt tritt die restliche nicht übertragene Energie als Streustrahlung wieder aus dem Körper aus.

In der Strahlendiagnostik trägt der Photoeffekt (Abbildung 2) entscheidend zur Bildgebung bei. Er ermöglicht, dass die applizierte Strahlung durch die exponierten Gewebestrukturen in unterschiedlichem Maße absorbiert wird. Auf diese Weise wird der Röntgenfilm in unterschiedlichem Ausmaß geschwärzt und ein Röntgenbild entsteht.

Abbildung 2 Graphische Darstellung des Photoeffekts (Assert, 2005).

Im Strahlenschutz findet der Photoeffekt ebenfalls Anwendung. Man nutzt die Absorptionseigenschaften schwerer Elemente wie Jod (ORDZ 53) oder Barium (ORDZ 56) bei der Verwendung als Kontrastmittel. Das Element Blei (ORDZ 82) ist vor allem ein wichtiger Bestandteil von Strahlenschutzbekleidung (Lasserre et al. 2003).

Die wichtigste Ursache von Streustrahlenbildung in den für die Röntgendiagnostik relevanten kV Bereichen ist der Compton-Effekt (Link et al. 1994). Entgegen dem Photoef-
Einleitung

Der Compton-Effekt (Abbildung 3) ist weitgehend unabhängig von der Ordnungszahl der Atome des exponierten Gewebes. Das Ausmaß der Streustrahlung wird im Wesentlichen durch die Dichte des untersuchten Gewebes und der exponierten Fläche (Feldgröße) bestimmt. Aufgrund von Streustrahlung kommt es zu einer homogenen Schwärzung des Filmes, was sich in einem Kontrast mindernden Schleier auf dem Röntgenfilm darstellt.

Abbildung 3

1.3.4 Dosimetrische Begriffe und Einheiten

Ziel der klinischen Dosimetrie ist die Messung der Strahlenwirkung durch ionisierende Strahlung in biologischem Gewebe. Dadurch soll eine Risikoabschätzung sowie eine zuverlässige und vergleichbare Anwendung ionisierender Strahlung in der Röntgendiagnostik ermöglicht werden.

Grundlage für eine quantitative Angabe der Strahlenwirkung ist die Bestimmung der Ionendosis. Die Ionendosis J bezeichnet die mit ionisierender Strahlung erzeugten Ionenpaare dQ, dividiert durch die exponierte Masse dm.

$$J = \frac{dQ}{dm}$$

\[\text{Energiedosis } D = \text{Ionendosis } J \times \text{Umrechnungsfaktor } f \]

Die Energiedosis D ist ein Maß für die physikalische Wirkung von Strahlung auf Materie. Sie ermöglicht eine Aussage über die durch ionisierende Strahlung auf eine Masse m übertragene Energie E.

\[D = \frac{dE}{dm} \]

Durch Multiplikation mit einem Qualitätsfaktor Q, der bei Röntgenstrahlung 1 beträgt, kann man bei bekannter Energiedosis D die Äquivalentdosis H bestimmen (Schlungbaum et al. 1993).

\[\text{Äquivalentdosis } H = \text{Energiedosis } D \times \text{Qualitätsfaktor } Q \]

Einzelne Organe oder Gewebe sind in Hinblick auf mögliche Strahlenschäden verschieden empfindlich. Um die Strahlenbelastungen unterschiedlicher Organe miteinander vergleichen zu können, wurde die effektive Dosis H_{eff} eingeführt. Diese ist nicht unmittelbar messbar, sondern muss mit Hilfe verschiedener Organdosen H_T (über einem Organ T gemittelte Äquivalentdosis H) unter Berücksichtigung von Gewebewichtungsfaktoren w_T errechnet werden.
Die effektive Dosis H_{eff} ermöglicht es, das Risiko für das Auftreten stochastischer Strahlenschäden bei der Strahlenexposition einzelner Organe oder Gewebe zu bewerten.

\[
\text{Effektive Dosis } H_{\text{eff}} = \sum \text{Organdosis } H_T \times \text{Gewebewichtungsfaktor } w_T
\]

Als Einheit trägt die effektive Dosis H_{eff} das Sievert Sv. Die für die Berechnung der effektive Dosis H_{eff} notwendigen Gewebewichtungsfaktoren w_T wurden für 12 verschiedene Organe definiert. Diese leiten sich aus epidemiologischen Untersuchungen ab und sind für Frauen und Männer wie auch alle Altersgruppen gemittelt.

1.4 Dosisflächenprodukt

Das Dosisflächenprodukt ergibt sich aus der Multiplikation der Energiedosis D in Luft sowie der Querschnittsfläche des Nutzstrahlenbündels an derselben Stelle im Strahlengang. Über eine an der Blende befindliche Ionisationskammer wird die ionisierende Strahlung gemessen. Das belichtete Untersuchungsareal wird durch die Öffnung der Blende bestimmt (Abbildung 4).

Da die in der Messkammer entstehende elektrische Ladung zur jeweiligen Dosisleistung, zur Querschnittsfläche des Nutzstrahlenbündels sowie zur Einschaltdauer proportional ist, gehen alle für die Strahlenexposition maßgebenden Parameter in die Messung mit ein (Lissner et al. 1992).

\[
\text{Dosisflächenprodukt} = \text{Energiedosis } D \text{ in Luft (cGy)} \times \text{Querschnittsfläche (cm}^2)\]

Das Dosisflächenprodukt ist eine Messgröße, die unabhängig vom Abstand zur Strahlenquelle ist. Unter der Annahme einer punktförmigen Strahlenquelle wächst die durchstrahlte Fläche mit steigender Entfernung quadratisch an, die Strahlenintensität und damit auch die Dosis nehmen in gleichem Maße ab.
Einleitung

Dadurch erhält man eine Messgröße, die auch bei wechselndem Anodenstrom (mA) und sich ändernder Einblendung proportional der im Körper absorbierten Energie ist (Schmid et al. 2002).

1.5 Radiologische Untersuchungsgeräte

1.5.1 Analoges und digitales Projektionsradiografie

Der photographische Effekt allein schärft den Film nur relativ gering. Der weitaus größte Teil der Filmschwärzung geht auf den Fluoreszenzeffekt so genannter Verstärkerfolien.
Einleitung

Zumeist sind in einer Röntgenfilmkassette jeweils eine Verstärkungsfolie an der Kassettenvorder- bzw. rückwand angebracht, zwischen denen sich der Film befindet. Folien und Film bilden dabei ein System, das Film-Folien-System (FFS). Die Spektralempfindlichkeiten von Verstärkungsfolie und Röntgenfilm müssen aufeinander abgestimmt sein (Abbildung 5).

Abbildung 5 Aufbau der Röntgenfilmkassette mit Film (Laubenberger et al. 1999).

Die Entwicklung leistungsfähiger Computer und Röntgendetektoren in der radiologischen Diagnostik hat den Weg von analoger Röntgenbilderzeugung zu digitalen Verfahren gegeben.

Mit Hilfe einer solchen Zahlenmatrix lassen sich digitale Bilder elektronisch speichern und nachbearbeiten (Hoxter et al. 1991). Durch die bessere Dosisausbeute digitaler Sys-
teme werden mehr Informationen aus dem erhaltenen Röntgenverteilungsspektrum herausgefiltert und darstellt (Schaefer-Prokop et al., 2003). Diese Erhöhung der Dosisausbeute ermöglicht in der diagnostischen Radiologie eine Dosisreduktion für den Patienten (Grampp et al. 2003).

1.5.1.1 Digitale Projektionsradiografie in Bildverstärkertechnik

Mit Hilfe des Röntgenbildverstärkers ist eine Dosiminimierung um das Fünffache verglichen mit Film-Folien-Systemen erreichbar (Lindner 2001).

Abbildung 6 Aufbau eines Bildverstärkers (Stiefe et al., 2003)

In der vorliegenden Dissertation wurde ein Röntgenbildverstärker des Fabrikats AXIOM ICONOS R200 FLC der Firma Siemens AG Medical Solutions verwendet. Dieses Gerät
ist mit einer CCD Kamera (Charge Coupled Devices) ausgestattet, die es ermöglicht die Bildqualität des RBV verlustfrei in digitale Bilder umzusetzen. Der verwendete CCD-Chip hat eine Matrix von 1024 x 1024.

1.5.1.2 Digitale Projektionsradiografie mit Flat Panel Detektoren

1.6 Zielsetzungen der Promotionsarbeit

Zielsetzung der vorliegenden Promotionsarbeit ist die Untersuchung, in welchem Maße europaweit neu eingeführte diagnostische Referenzwerte (Tabelle 3) an der Klinik für Strahlendiagnostik der UKGuM, Standort Marburg, eingehalten werden. Dies wurde anhand von Röntgenthoraxaufnahmen evaluiert. Als geeignete Messgröße wurde das vom Bundesamt für Strahlenschutz empfohlene Dosisflächenprodukt in cGy x cm² angewandt.

Mit Hilfe dieser Thoraxübersichtsaufnahmen wurde zudem analysiert, ob eine Korrelation zwischen anthropometrischen Merkmalen (Alter, Geschlecht, Körpergröße, Körpergewicht, Body Mass Index, Patientendurchmesser im Hauptstrahlengang) und der gemessenen Strahlenexposition in cGy x cm² bestand.

Tabelle 3 Diagnostische Referenzwerte für Röntgenaufnahmen bei Erwachsenen (Bröx 2003)

<table>
<thead>
<tr>
<th>Aufnahme</th>
<th>Dosisflächenprodukt [cGy x cm²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schädel a.p./p.a.</td>
<td>110</td>
</tr>
<tr>
<td>Schädel lateral</td>
<td>100</td>
</tr>
<tr>
<td>Thorax p.a.</td>
<td>20</td>
</tr>
<tr>
<td>Thorax lateral</td>
<td>100</td>
</tr>
</tbody>
</table>
2 Material und Methoden

2.1 Experimentelle Untersuchungen

2.1.1 Das Schädelphantom

Die experimentellen Messreihen der vorliegenden Dissertation wurden an einem Schädelphantom der staatlichen Lehranstalt für medizinisch-technische Assistenz Marburg/Lahn durchgeführt (Abbildung 8).

2.1.2 Bestimmung des Dosisflächenprodukts am Schädelphantom unter Verwendung des Röntgenbildverstärkers

Die Untersuchungen am Schädelphantom mit dem Röntgenbildverstärker erfolgten in den Räumlichkeiten der Kinderklinik des UKGuM, Standort Marburg.

Bei dem zur Untersuchung verwendeten Gerät handelte es sich um ein Fabrikat der Firma Siemens AG Medical Solutions mit der Typenbezeichnung AXIOM ICONOS R200 FLC. Exakte Angaben zum verwendeten Röntgengerät können aus der nachfolgenden Tabelle entnommen werden.

<table>
<thead>
<tr>
<th>Geräteeigenschaften – Spezifikation</th>
<th>Bezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strahlengeometrie – Anwendungsgerät 1</td>
<td>Iconos R200 90</td>
</tr>
<tr>
<td>Strahlenerzeugendes System - Generator</td>
<td>Polydoros SX 80</td>
</tr>
<tr>
<td>Strahlenerzeugendes System – Strahlersystem 1</td>
<td>OptiTOP 150/40/80 HC-100 3Ph</td>
</tr>
<tr>
<td>Bildempfängersysteme – Film-Folien-System 1</td>
<td>Agfa-Gevaert/Curix Ortho Medium</td>
</tr>
<tr>
<td>Empfindlichkeit des FFS</td>
<td>400</td>
</tr>
<tr>
<td>Bildempfängersysteme – Film-Folien-System 2</td>
<td>Agfa-Gevaert/Curix Ortho Regular</td>
</tr>
<tr>
<td>Empfindlichkeit des FFS</td>
<td>200</td>
</tr>
<tr>
<td>Bildempfängersysteme – Anwendungsgerät 1</td>
<td>Iconos R200 90</td>
</tr>
</tbody>
</table>

Anhand des oben genannten Studienprotokolls wurde der Einfluss von systematischer Variation der Belichtungsparameter (kV, Filterung, Feldgröße) auf die Entwicklung des DFP untersucht und anschließend interpretiert.
Material und Methoden

<table>
<thead>
<tr>
<th>Richtung des Strahlengang</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filterung</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>Feldgröße</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Anzahl der Messungen</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

Abbildung 9 Darstellung der 18 Messreihen mit dem Röntgenbildverstärker.

Bei der Strahlenexpositionsrichtung wurde zwischen einer Messreihe im a.p. Strahlengang sowie einer Messreihe in lateralem Strahlengang unterschieden. Die Filterung wechselte zwischen Kupferplatten der Dicke 0,1, 0,2 und 0,3mm. Das Format variierte zwischen Filmformaten von 35 x 43cm und 24 x 30cm. Beim Filmformat von 24 x 30cm wurde nochmals zwischen einem Messdurchgang mit Einblendung auf das Filmformat und einem Messdurchgang mit organangepasster Einblendung unterschieden.

In der Versuchsreihe im a.p. Strahlengang wurden Messungen mit kV Werten von 70kV bis 79kV durchgeführt. Die Messungen wurden bei 70kV, 71,5kV sowie 73kV vorgenommen und erfolgten anschließend in 2kV Schritten mit einem Höchstwert bei 79kV. Auf diese Weise wurde der Effekt einer systematischen Veränderung der Röhrenspannung auf die Entwicklung des Dosisflächenprodukts untersucht. Der Fokus Film Abstand (FFA) lag bei 115cm und wurde in allen Versuchsdurchgängen konstant gehalten.

Die Eigenfilterung des Gerätes betrug 2,5mm Aluminium. Des Weiteren wurde eine Zusatzfilterung aus Kupfer verwendet. Durch Variation der Kupferfilterung in den Stärken 0,1, 0,2 und 0,3mm wurde der Effekt zusätzlicher Strahlenfilterung auf die Entwicklung des DFP bestimmt.

Durch unterschiedliche Filmformatgrößen sowie Variation der Einblendung wurde der Einfluss dieser Variablen auf die Entwicklung des DFP ermittelt. Alle Aufnahmen erfolgten unter Verwendung eines Streustrahlenrasters, konform den Leitlinien der Bundesärztekammer (Bundesärztekammer 1995).

Die Messreihe im lateralen Strahlengang erfolgte bei Röhrenspannungen von 70kV bis 85kV. Die Messschritte wurden wie in der Messreihe in a.p. Exposition gewählt. Der Fokus Film Abstand wurde auf 115cm eingestellt (Bundesärztekammer 1995).
Material und Methoden

Abbildung 11 Darstellung des Schädelphantoms im lateralen Strahlendurchgang mit entsprechender Röntgenaufnahme.

Neben der Eigenfilterung des Gerätes mit 2,5mm Aluminium wurden 3 Kupferplatten der Dicke 0,1, 0,2 und 0,3mm als Zusatzfilterung verwendet. In der Messreihe im lateralen Strahlengang wurden entsprechend den Aufnahmen in a.p. Exposition unterschiedliche Filmformate verwendet sowie die Einblendungsformate variiert. Auf diese Weise wurde der Effekt von Formatänderungen und Variation der Einblendung auf das DFP beurteilt. Konform den Leitlinien der Bundesärztekammer wurden alle Aufnahmen unter Verwendung eines Streustrahlenrasters vorgenommen (Bundesärztekammer 1995).

2.1.3 Messungen am Schädelphantom mit dem Flat Panel Detektor

Die zweite Versuchsreihe wurde an einem Flat Panel Detektor Röntgengerät durchgeführt. Entsprechend den Messungen am RBV wurde der Einfluss von Änderungen der Aufnahmebedingungen auf die Entwicklung des DFP an einem Schädelphantom untersucht. Anschließend wurden die Messergebnisse dieser beiden Aufnahmegeräte miteinander verglichen.

Die Messreihen am Flat Panel Detektor wurden in der Klinik für Strahlendiagnostik des UKGuM, Standort Marburg, durchgeführt. Das für die Untersuchungen verwendete Gerät war ein Fabrikat der Firma Siemens AG Medical Solutions mit der Typenbezeichnung AXIOM ARISTOS VX. Exakte Angaben zum eingesetzten Aufnahmegerät sind in der nachfolgenden Tabelle dargestellt.

<table>
<thead>
<tr>
<th>Geräteeigenschaften – Spezifikation</th>
<th>Bezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strahlengeometrie – Anwendungsgerät 1</td>
<td>Vertix FD</td>
</tr>
<tr>
<td>Strahlenerzeugendes System – Generator</td>
<td>Polydoros LX Lite</td>
</tr>
<tr>
<td>Strahlenerzeugendes System – Strahlersystem 1</td>
<td>Optilix 150/30/50 HC-100 3Ph</td>
</tr>
<tr>
<td>Bildempfängersysteme – Anwendungsgerät 1</td>
<td>Vertix FD</td>
</tr>
<tr>
<td>Streustrahlenraster des Aufnahmetisches</td>
<td>Freistehend; Pb 15/80</td>
</tr>
<tr>
<td></td>
<td>Fokus: fo =115 cm</td>
</tr>
<tr>
<td>Streustrahlenraster des Aufnahmestativs</td>
<td>Freistehend; Pb 15/80</td>
</tr>
<tr>
<td></td>
<td>Fokus: fo = 180 cm, optional</td>
</tr>
<tr>
<td></td>
<td>fo = 115 cm oder fo = 150 cm</td>
</tr>
</tbody>
</table>
Material und Methoden

<table>
<thead>
<tr>
<th>Richtung des Strahlengang</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filterung</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feldgröße</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Anzahl der Messungen</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

Abbildung 12 Darstellung der 12 Messreihen mit dem Flat Panel Detektor.

Anhand der vorliegenden Untersuchungen wurde der Effekt einer systematischen Variation der Belichtungsparameter (kV, Filterung, Feldgröße) auf die Entwicklung des DFP analysiert.

In den Messreihen am Flat Panel Detektor wurde das Schädelphantom in a.p. und in lateraler Strahlenrichtung untersucht. In den einzelnen Messreihen variierte die Filterung zwischen Kupferplatten der Stärke 0,1, 0,2 und 0,3mm. Das verwendete Filmformat betrug 24 x 30cm. Es wurde zwischen einem Messdurchgang mit Einblendung auf das Filmformat und einem Messdurchgang mit objektangepasster Einblendung unterschieden.

In der Versuchsreihe im a.p. Strahlengang wurden Messungen bei Röhrenspannungen von 70kV bis 79kV durchgeführt und der Einfluss steigender kV Werte auf die Entwicklung des Dosisflächenprodukts bestimmt. Die Messungen wurden bei 70kV, 71,5kV sowie 73kV vorgenommen und erfolgten anschließend in 2kV Schritten mit einem Höchstwert bei 79kV.

Der Fokus Film Abstand (FFA) wurde mit 115cm festgelegt und konstant belassen (Bundesärztekammer 1995). Die Eigenfilterung des Flat Panel Detektors betrug 2,5mm Aluminium. Die Zusatzfilterung des Gerätes bestand aus Kupferplatten, welche in den Stärken 0,1, 0,2 und 0,3mm variiert wurden.
Material und Methoden

Für die lateralen Schädelübersichtsaufnahmen wurde ein FFA von 115cm gewählt (Bundesärztekammer 1995). Bei einer vom Gerät vorgegebenen Eigenfilterung von 2,5mm Aluminium wurde die Zusatzfilterung durch Kupferplatten der Stärke 0,1, 0,2 und 0,3mm variiert. Das Filmformat betrug 24 x 30cm.

Es wurde zwischen einem Messdurchgang mit Einblendung auf das Filmformat (24 x 30cm) und einem Messdurchgang mit objektangepasster Einblendung (20,40 x 23,30cm) unterschieden. Durch die Variation von Filterung und Einblendung wurde der Effekt dieser Variablen auf die Entwicklung des DFP analysiert.

2.2 Bestimmung des Dosisflächenprodukts bei Röntgenaufnahmen des Thorax

2.2.1 Charakterisierung des Patientenkollektivs

Diagramm 1 Geschlechterverteilung des bei der Röntgen-Thorax Untersuchung protokollierten Patientenkollektivs.

Die Altersverteilung der für die Erhebung dieser Messreihe protokollierten Patienten wird nachfolgend dargestellt (Diagramm 2).

Diagramm 2 Altersverteilung des untersuchten Patientenkollektivs.

Die Altersverteilung des untersuchten Patientenkollektivs stimmt mit Messreihen groß angelegter Studien überein. Ein vom Bundesministerium für Umwelt gefördertes Forschungsvorhaben ermittelte im Jahr 2002 altersspezifische Daten für den Krankenhausbereich. Es zeigte sich, dass mehr als 60% der Röntgenaufnahmen im Krankenhausbereich

2.2.1.1 Ablauf der Messungen

Vor Anfertigung der Röntgenaufnahmen der Thoraxorgane wurden die Patienten gebeten, sich am Oberkörper bis auf die Unterwäsche zu entkleiden und ihren Schmuck abzulegen, um mögliche Fremdkörperschatten auf der Röntgenaufnahme zu verhindern. Vor der Protokollierung ihrer Daten wurden die in die Messreihe aufgenommenen Patienten befragt, ob sie an einer klinischen Datenerhebung zur Messung des Dosisflächenprodukts teilnehmen würden. Weibliche Patienten im gebärfähigen Alter wurden vor der Röntgenuntersuchung zur Möglichkeit einer bestehenden Schwangerschaft befragt.

Abbildung 13 Darstellung des Messzirkels mit Zentimeterskalierung (Fa. Holzhauer Orthopädieotechnik Marburg/Lahn).

Die Messung des Thoraxdurchmessers erfolgte unmittelbar vor der Aufnahme am stehenden Patienten mit einem Messzirkel der Firma Holzhauer Orthopädieotechnik Marburg/Lahn (Abbildung 13). Mit der an diesem Messzirkel angebrachten Zentimeterskalierung wurde der Patientendurchmesser im Hauptstrahlengang bestimmt. Mit diesem Zirkel wurde die Patientendicke sowohl im lateralen Durchmesser als auch im a.p. Durchmesser ermittelt. Dabei wurde als anatomischer Anhaltspunkt der Thoraxdurchmesser drei Quer-

Im Anschluss wurden das Körpergewicht und die Körpergröße der Patienten bestimmt, um nach der Formel Körpergewicht/Körpergröße² den Body Mass Index zu errechnen. Da sich der Body Mass Index aus der Körpergröße und dem Körpergewicht berechnet, konnte der Konstitutionstyp der Patienten genauer bewertet werden.

Im Anschluss an die Thorax p.a. Untersuchung wurde eine Aufnahme im lateralen Strahlengang angefertigt. Die Patienten wurden aufgefordert an das Aufnahmestativ heranzutreten, um anschließend durch die MTAR ordnungsgemäß gelagert zu werden (Abbildung 15).
Material und Methoden

2.3 Datenerfassung und Auswertung

2.3.1 Anwendung statistischer Verfahren

Die statistische Auswertung der experimentell erhobenen Daten erfolgte mit Hilfe der deskriptiven Statistik. Die Ergebnisse wurden sowohl tabellarisch als auch grafisch mittels Säulen- und Streudiagrammen dargestellt. Eine Auskunft über die zentrale Tendenz erfolgte mit Hilfe der Mittelwertbetrachtung. Als Maß für die Variabilität wurden zur
Beschreibung der Parameterspannweite Maximal- und Minimalwerte sowie die Standardabweichung (SD) angegeben.

Die Ergebnisse der klinischen Messreihe wurden zusätzlich mit Hilfe der schließenden Statistik explorativ ausgewertet. Zur Ermittlung von Zusammenhängen zwischen klinischen Merkmalen und Dosisflächenprodukt wurde eine Korrelationsanalyse durchgeführt. Die Quantifizierung des linearen Zusammenhangs wurde anhand des Korrelationskoeffizienten nach Pearson \(r \) berechnet. Das Signifikanzniveau \(p \) wurde stets zweiseitig angegeben. Statistische Signifikanz wurde bei einem \(p \)-Wert unter 0,05 (nominell) angenommen. In den Abbildungen steht * für \(p \leq 0,05 \) und ** für \(p \leq 0,01 \). Es erfolgte somit keine Korrektur für multiples Testen.

2.3.2 Zur Datenerfassung und Auswertung angewandte Computerprogramme

3 Ergebnisse

3.1 Ergebnisse der experimentellen Untersuchungen

3.1.1 Entwicklung des Dosisflächenprodukts am Schädelphantom unter Verwendung des Röntgenbildverstärkers

3.1.1.1 Messergebnisse am Schädelphantom im a.p. Strahlengang

In den Messreihen am Schädelphantom wurde der Einfluss von Änderungen der Belichtungsparameter (Filterung, Röhrenspannung, Einblendung) auf die Entwicklung des Dosisflächenprodukts systematisch untersucht. Zu Beginn erfolgten Messungen im a.p. Strahlengang. Der erste Versuchsdurchgang wurde mit 0,1mm Kupferfilterung bei ansteigender Röhrenspannung (kV) und wechselnden Kassetten- bzw. Einblendungsformaten durchgeführt (Tabelle 6).

Abbildung 16 Röntgenaufnahmen des Schädelphantoms bei 0,1mm Filterung mit unterschiedlichen Feldgrößen.

Wie der nachfolgenden Tabelle 7 zu entnehmen ist, wurden in den Versuchsdurchläufen mit 0,1mm Zusatzfilterung bei organangepasster Einblendung die niedrigsten Strahlenexpositionen gemessen. Bei organangepasster Einblendung betrug das DFP im Durchschnitt 37,93cGy x cm². Der Maximalwert lag bei 42,30cGy x cm², der Minimalwert bei 33,10cGy x cm².

Ohne Einblendung bei einem Filmformat von 24 x 30cm betrug das DFP durchschnittlich 44,05cGy x cm². Bei Einblendung auf ein großes Kassettenformat von 35 x 43cm erhöhte sich
das Dosisflächenprodukt im Mittel auf 59,40 cGy x cm² mit einem Maximalwert von 64,70 cGy x cm².

Als Ergebnis zeigt sich bei allen drei untersuchten Feldgrößen eine Reduktion des Dosisflächenprodukts bei steigender Röhrenspannung (kV). Während z. B. das DFP bei einer Röhrenspannung von 70 kV bei 42,30 cGy x cm² lag, zeigte sich bei einer Erhöhung der Röhrenspannung auf 79 kV eine Dosisreduktion auf 33,10 cGy x cm².

Tabelle 6 Entwicklung des DFP (cGy x cm²) bei 0,1mm Zusatzfilterung mit steigender Röhrenspannung (kV) und unterschiedlichen Kassettenformaten bzw. Einblendungen.

<table>
<thead>
<tr>
<th>Röhrenspannung [kV]</th>
<th>DFP bei organangepasster Einblendung [cGy x cm²]</th>
<th>DFP bei Einblendung auf Großformat [cGy x cm²]</th>
<th>DFP bei Einblendung auf Filmformat [cGy x cm²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>70</td>
<td>42,30</td>
<td>64,70</td>
<td>49,70</td>
</tr>
<tr>
<td>71,5</td>
<td>41,20</td>
<td>63,40</td>
<td>48,00</td>
</tr>
<tr>
<td>73</td>
<td>39,00</td>
<td>61,00</td>
<td>45,20</td>
</tr>
<tr>
<td>75</td>
<td>37,30</td>
<td>58,80</td>
<td>43,10</td>
</tr>
<tr>
<td>77</td>
<td>34,70</td>
<td>55,10</td>
<td>40,00</td>
</tr>
<tr>
<td>79</td>
<td>33,10</td>
<td>53,40</td>
<td>38,30</td>
</tr>
</tbody>
</table>

Tabelle 7 Darstellung des DFP (cGy x cm²) bei 0,1mm Kupferfilterung mit varierender Röhrenspannung (kV) und unterschiedlichen Kassettenformaten bzw. Einblendungen.

<table>
<thead>
<tr>
<th>Kassetten- bzw. Einblendungs- formate</th>
<th>Anzahl der Messungen</th>
<th>DFP Minimum [cGy x cm²]</th>
<th>DFP Maximum [cGy x cm²]</th>
<th>DFP Mittelwert [cGy x cm²]</th>
<th>Standardabweichung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organangepasste Einblendung</td>
<td>6</td>
<td>33,10</td>
<td>42,30</td>
<td>37,93</td>
<td>3,61</td>
</tr>
<tr>
<td>Großformat Einblendung</td>
<td>6</td>
<td>53,40</td>
<td>64,70</td>
<td>59,40</td>
<td>4,51</td>
</tr>
<tr>
<td>Filmformat Einblendung</td>
<td>6</td>
<td>38,30</td>
<td>49,70</td>
<td>44,05</td>
<td>4,45</td>
</tr>
</tbody>
</table>
Ergebnisse

Diagramm 3 Darstellung des DFP (cGy x cm²) in Abhängigkeit von der Röhrenspannung (kV) bei Verwendung des Röntgen-BV mit 0,1mm Zusatzfilterung.

Anschließend wurde ein Versuchsdurchlauf mit 0,2mm Kupferfilterung durchgeführt. Hierbei wurde das Schädelphantom in den drei bereits oben genannten Feldgrößen exponiert. Es wurden Messungen bei steigenden Röhrenspannungen (kV) und wechselnden Kassetten- bzw. Einblendungsformaten durchgeführt (Tabelle 8).

Im Versuchsdurchgang mit organangepasster Einblendung zeigten sich die niedrigsten Strahlenerohrenspannungen (kV) und wechselnden Kassetten- bzw. Einblendungsformaten durchgeführt (Tabelle 8).

Für den Versuchsdurchgang mit Einblendung auf ein Kassettenformat der Größe 24 x 30cm zeigten sich Strahlenexpositionswerte von durchschnittlich 34,38cGy x cm² (Tabelle 9).

Beim Verwendung des großen Kassettenformats wurden die höchsten Strahlenexpositionswerte gemessen. Der Maximalwert ergab sich bei einer Röhrenspannung von 70kV mit einem gemessenen DFP von 52,10cGy x cm² (Tabelle 9).

In den Messungen mit 0,2mm Kupferfilterung sank das Dosisflächenprodukt in allen drei Einblendungsformaten mit steigender Röhrenspannung. Je enger auf das exponierte Objekt eingeblendet wurde, desto geringer waren die Strahlenexpositionswerte (Diagramm 4). Bei steigen-
der Filterung von 0,1mm auf 0,2mm verringerte sich bei allen drei untersuchten Feldgrößen die Strahlenexposition.

Tabelle 8: Entwicklung des DFP (cGy x cm²) bei steigenden kV Werten und 0,2mm Zusatzfilterungen. Verwendung unterschiedlicher Kassettenformate und Einblendungen.

<table>
<thead>
<tr>
<th>Röhrenspannung [kV]</th>
<th>DFP bei organangepasster Einblendung [cGy x cm²]</th>
<th>DFP bei Einblendung auf Großformat [cGy x cm²]</th>
<th>DFP bei Einblendung auf Filmformat [cGy x cm²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>70</td>
<td>33,00</td>
<td>52,10</td>
<td>38,10</td>
</tr>
<tr>
<td>71,5</td>
<td>32,30</td>
<td>51,10</td>
<td>37,10</td>
</tr>
<tr>
<td>73</td>
<td>30,60</td>
<td>49,30</td>
<td>35,40</td>
</tr>
<tr>
<td>75</td>
<td>29,10</td>
<td>47,60</td>
<td>33,90</td>
</tr>
<tr>
<td>77</td>
<td>27,10</td>
<td>44,80</td>
<td>31,50</td>
</tr>
<tr>
<td>79</td>
<td>26,00</td>
<td>43,30</td>
<td>30,30</td>
</tr>
</tbody>
</table>

Tabelle 9: Darstellung des DFP (cGy x cm²) bei 0,2mm Kupferfilterung mit variierender Röhrenspannung (kV) und unterschiedlichen Kassettenformaten bzw. Einblendungen.

<table>
<thead>
<tr>
<th>Kassetten- bzw. Einblendungs- formate</th>
<th>Anzahl der Messungen</th>
<th>DFP Minimum [cGy x cm²]</th>
<th>DFP Maximum [cGy x cm²]</th>
<th>DFP Mittelwert [cGy x cm²]</th>
<th>Standardabweichung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organangepasste Einblendung</td>
<td>6</td>
<td>26,00</td>
<td>33,00</td>
<td>29,68</td>
<td>2,80</td>
</tr>
<tr>
<td>Großformat Einblendung</td>
<td>6</td>
<td>43,30</td>
<td>52,10</td>
<td>48,03</td>
<td>3,48</td>
</tr>
<tr>
<td>Filmformat Einblendung</td>
<td>6</td>
<td>30,30</td>
<td>38,10</td>
<td>34,38</td>
<td>3,08</td>
</tr>
</tbody>
</table>
Abschließend erfolgte ein Versuchsdurchgang mit 0,3mm Kupferfilterung. Der Versuchsaufbau entsprach den beiden vorhergehenden Messungen. Es wurde bei steigenden Röhrenspannungen (kV) und wechselnden Kassetten- bzw. Einblendungsformaten die Entwicklung des Dosisflächenprodukts untersucht (Tabelle 10).

Wie den Ergebnissen aus Tabelle 11 zu entnehmen ist, wurden bei organangepasster Einblendung die niedrigsten Strahlenexpositionen gemessen. Durchschnittlich lag das DFP bei 25,22cGy x cm². Der niedrigste Wert wurde bei einer Röhrenspannung von 79kV bestimmt (Tabelle 10).

Die Messungen mit Einblendung auf ein Kassettenformat der Größe 24 x 30cm ergaben Strahlenexpositionswerte von durchschnittlich 29,33cGy x cm². Bei einem großen Kassettenformat wurde ein Durchschnittswert von 41,78cGy x cm² festgestellt. Der größte gemessene Wert zeigte sich bei einer Röhrenspannung von 70kV mit 45,20cGy x cm² (Tabelle 11).
Tabelle 10 | Entwicklung des DFP (cGy x cm²) bei steigenden kV Werten und 0,3mm Zusatzfilternungen. Verwendung unterschiedlicher Kassettenformate und Einblendungen.

<table>
<thead>
<tr>
<th>Röhrenspannung [kV]</th>
<th>DFP bei organangepasster Einblendung [cGy x cm²]</th>
<th>DFP bei Einblendung auf Großformat [cGy x cm²]</th>
<th>DFP bei Einblendung auf Filmformat [cGy x cm²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>70</td>
<td>27,90</td>
<td>45,20</td>
<td>32,40</td>
</tr>
<tr>
<td>71,5</td>
<td>27,30</td>
<td>44,40</td>
<td>31,60</td>
</tr>
<tr>
<td>73</td>
<td>26,00</td>
<td>42,90</td>
<td>30,10</td>
</tr>
<tr>
<td>75</td>
<td>24,80</td>
<td>41,50</td>
<td>28,90</td>
</tr>
<tr>
<td>77</td>
<td>23,10</td>
<td>38,90</td>
<td>27,00</td>
</tr>
<tr>
<td>79</td>
<td>22,20</td>
<td>37,80</td>
<td>26,00</td>
</tr>
</tbody>
</table>

Tabelle 11 | Darstellung des DFP (cGy x cm²) bei 0,3mm Kupferfilterung mit variierender Röhrenspannung (kV) und unterschiedlichen Kassettenformaten bzw. Einblendungen.

<table>
<thead>
<tr>
<th>Kassetten- bzw. Einblendungs- formate</th>
<th>Anzahl der Messungen</th>
<th>DFP Minimum [cGy x cm²]</th>
<th>DFP Maximum [cGy x cm²]</th>
<th>DFP Mittelwert [cGy x cm²]</th>
<th>Standardabweichung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organangepasste Einblendung</td>
<td>6</td>
<td>22,20</td>
<td>27,90</td>
<td>25,22</td>
<td>2,28</td>
</tr>
<tr>
<td>Großformat Einblendung</td>
<td>6</td>
<td>37,80</td>
<td>45,20</td>
<td>41,78</td>
<td>2,97</td>
</tr>
<tr>
<td>Filmformat Einblendung</td>
<td>6</td>
<td>26,00</td>
<td>32,40</td>
<td>29,33</td>
<td>2,52</td>
</tr>
</tbody>
</table>
3.1.1.2 Zusammenfassende Bewertung der Schädel a.p. Aufnahmen

Die Untersuchungsergebnisse zeigten, dass ein Anstieg der Röhrenspannung (kV) zu einer Reduktion des Dosisflächenprodukts führte.

Hierzu wurde bei Filterungen von 0,1, 0,2 und 0,3mm die prozentuale Differenz des Dosisflächenprodukts bei einer Röhrenspannung von 79kV und 70kV bestimmt. Die Ergebnisse wurden addiert und anschließend gedrittelt. Nach dieser Berechnung ermöglichte objektangepasste Einblendung bei steigender Röhrenspannung eine Dosisreduktion von durchschnittlich 21,13%. Bei Einblendung auf ein Kassettenformat von 24 x 30cm zeigte sich eine DFP Reduktion um 21,05%, bei groß gewähltem Kassettenformat verringerte sich das DFP um 16,91%.

Als weiteres Ergebnis zeigte sich, dass steigende Filterung von 0,1mm auf 0,3mm zu einer Reduktion des Dosisflächenprodukts führte.

Hierfür wurde die prozentuale Differenz der Dosisflächenprodukte bei 0,3mm und 0,1mm Filterung in den einzelnen kV Messschritten ermittelt. Anschließend wurde aus der Summe der Einzelwerte der Mittelwert bestimmt. Die Ergebnisse verdeutlichten, dass steigende Filterung von 0,1mm auf 0,3mm bei organangepasster Einblendung eine durchschnittliche Dosisreduktion
von 33,50% ermöglichte. Bei Einblendung auf ein Kassettenformat der Größe 24 x 30cm verringerte sich das Dosisflächenprodukt um 33,32%, im Durchgang mit großem Kassettenformat um 29,64%.

Weiter zeigte die Messreihe, dass organangepasste Einblendung eine optimale Reduktion des Dosisflächenprodukts ermöglichte.

Hierzu wurde die Summe aller Dosisflächenprodukte mit organangepasster Einblendung durch die Summe aller Dosisflächenprodukte mit Einblendung auf ein Format von 24 x 30cm dividiert und der prozentuale Anteil daraus bestimmt. Nach derselben Berechnung wurden die Versuchsreihen mit organangepasster Einblendung mit den Versuchsreihen bei großem Kassettenformat verglichen. Entsprechend dieser Kalkulation verringert organangepasste Einblendung die durchschnittliche Strahlenexposition gegenüber Einblendung auf ein Kassettenformat von 24 x 30cm um 13,86%. Der Vergleich von organangepasster Einblendung mit Einblendung auf ein großes Kassettenformat der Größe 35 x 43cm zeigt eine Dosisreduktion von 37,79%.

3.1.1.3 Messergebnisse am Schädelphantom im lateralen Strahlengang

Im Anschluss an die Versuchsreihen in a.p. Strahlenrichtung erfolgte die Exposition des Schädelphantoms im lateralen Strahlengang. Dabei wurde der Einfluss von Änderungen der Belichtungsparameter (Filterung, Röhrenspannung, Einblendung (Abbildung 17)) auf die Entwicklung des Dosisflächenprodukts systematisch untersucht.

Der erste Versuchsdurchgang erfolgte mit 0,1mm Kupferfilterung bei ansteigender Röhrenspannung (kV) und wechselnden Kassetten- bzw. Einblendungsformaten (Tabelle 12). Bei organangepasster Einblendung wurden die niedrigsten Strahlenexpositionen gemessen. Im Durchschnitt betrug das Dosisflächenprodukt 19,86cGy x cm², das kleinste Dosisflächenprodukt lag bei 16,70cGy x cm².

Unter Einblendung auf ein Kassettenformat der Größe 24 x 30cm wurden durchschnittlich 24,16cGy x cm² gemessen. Bei Verwendung einer Filmkassette der Größe 35 x 43cm wurden die höchsten Dosisflächenprodukte gemessen. Durchschnittlich betrug das DFP 42,00cGy x cm². Der Maximalwert betrug 48,20cGy x cm² (Tabelle 13).

Die Untersuchungsergebnisse zeigten, dass die Strahlenexposition bei allen drei Feldgrößen mit steigender Röhrenspannung (kV) sank (Diagramm 6).
Ergebnisse

Organangepasste Einblendung
Format 24 x 30cm

Großformat Einblendung
Format 35 x 43cm

Filmformat Einblendung
Format 24 x 30cm

Abbildung 17 Röntgenaufnahmen des Schädelphantoms bei 0,1mm Filterung mit unterschiedlichen Feldgrößen.

Bei organangepasster Einblendung wurden die niedrigsten Dosisflächenprodukte erzielt. Die Strahlenbelastung war demnach bei objektangepasster Einblendung am geringsten.

Tabelle 12 Entwicklung des DFP (cGy x cm²) bei 0,1mm Zusatzfilterung mit steigender Röhrenspannung (kV) und unterschiedlichen Kassettenformaten bzw. Einblendungen.

<table>
<thead>
<tr>
<th>Röhrenspannung [kV]</th>
<th>DFP bei organangepasster Einblendung [cGy x cm²]</th>
<th>DFP bei Einblendung auf Großformat [cGy x cm²]</th>
<th>DFP bei Einblendung auf Filmformat [cGy x cm²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>70</td>
<td>23,20</td>
<td>48,20</td>
<td>28,10</td>
</tr>
<tr>
<td>71,5</td>
<td>22,60</td>
<td>47,40</td>
<td>27,50</td>
</tr>
<tr>
<td>73</td>
<td>21,60</td>
<td>45,60</td>
<td>26,40</td>
</tr>
<tr>
<td>75</td>
<td>20,80</td>
<td>43,80</td>
<td>25,30</td>
</tr>
<tr>
<td>77</td>
<td>19,50</td>
<td>41,20</td>
<td>23,60</td>
</tr>
<tr>
<td>79</td>
<td>18,70</td>
<td>39,90</td>
<td>22,70</td>
</tr>
<tr>
<td>81</td>
<td>18,10</td>
<td>38,60</td>
<td>22,10</td>
</tr>
<tr>
<td>83</td>
<td>17,50</td>
<td>37,60</td>
<td>21,30</td>
</tr>
<tr>
<td>85</td>
<td>16,70</td>
<td>35,70</td>
<td>20,40</td>
</tr>
</tbody>
</table>
Tabelle 13 Darstellung des DFP (cGy x cm²) bei 0,1mm Kupferfilterung mit variierender Röhrenspannung (kV) und unterschiedlichen Kassettenformaten bzw. Einblendungen.

<table>
<thead>
<tr>
<th>Kassetten- bzw. Einblendungs- formate</th>
<th>Anzahl der Messungen</th>
<th>DFP Minimum [cGy x cm²]</th>
<th>DFP Maximum [cGy x cm²]</th>
<th>DFP Mitteuwert [cGy x cm²]</th>
<th>Standardabweichung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organangepasste Einblendung</td>
<td>9</td>
<td>16,70</td>
<td>23,20</td>
<td>19,86</td>
<td>2,31</td>
</tr>
<tr>
<td>Großformat Einblendung</td>
<td>9</td>
<td>35,70</td>
<td>48,20</td>
<td>42,00</td>
<td>4,46</td>
</tr>
<tr>
<td>Filmformat Einblendung</td>
<td>9</td>
<td>20,40</td>
<td>28,10</td>
<td>24,16</td>
<td>2,78</td>
</tr>
</tbody>
</table>

Diagramm 6 Darstellung des DFP (cGy x cm²) in Abhängigkeit von der Röhrenspannung (kV) bei Verwendung des Röntgen-BV mit 0,1mm Zusatzfilterung.

Als nächstes erfolgten Messreihen mit 0,2mm Kupferfilterung. Das Schädelphantom wurde dafür in den oben genannten Kassetten- bzw. Einblendungsformaten bei steigenden Röhrenspannungen (kV) exponiert (Tabelle 14).

Bei organangepasster Einblendung wurden konstant die niedrigsten Strahlenexpositionen gemessen. Im Durchschnitt wurde für die Messreihe mit objektangepasster Einblendung ein DFP
von 15,72cGy x cm² bestimmt. Das niedrigste DFP wurde bei einer Röhrenspannung von 79kV gemessen, es lag bei 13,40cGy x cm² (Tabelle 15).

Bei Einblendung auf eine Filmkassette der Größe 24 x 30cm wurden Dosisflächenprodukte von durchschnittlich 18,18cGy x cm² gemessen (Tabelle 15).

Unter Verwendung eines Kassettenformats der Größe 35 x 43cm ergaben sich die höchsten Strahlenexpositionen. Das größte DFP wurde mit 38,60cGy x cm² bei einer Röhrenspannung von 70kV gemessen (Tabelle 14).

Die Messungen mit 0,2mm Filterung zeigten, dass bei jeder der drei untersuchten Feldgrößen die Strahlenexposition mit steigender Röhrenspannung (kV) sank. Die Messreihe mit organangepasster Einblendung auf das Schädelphantom erzielte konstant die niedrigsten Strahlenexpositionswerte. Eine Erhöhung der Filterung auf 0,2mm führte in jeder der drei Messreihen zu einer Reduktion des Dosisflächenprodukts und dadurch zu einer Verringerung der Strahlenexposition.

Tabelle 14 Entwicklung des DFP (cGy x cm²) bei 0,2mm Zusatzfilterung mit steigender Röhrenspannung (kV) und unterschiedlichen Kassettenformaten bzw. Einblendungen.

<table>
<thead>
<tr>
<th>Röhrenspannung [kV]</th>
<th>DFP bei organangepasster Einblendung [cGy x cm²]</th>
<th>DFP bei Einblendung auf Großformat [cGy x cm²]</th>
<th>DFP bei Einblendung auf Filmformat [cGy x cm²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>70</td>
<td>18,10</td>
<td>38,60</td>
<td>20,40</td>
</tr>
<tr>
<td>71,5</td>
<td>17,70</td>
<td>37,70</td>
<td>20,10</td>
</tr>
<tr>
<td>73</td>
<td>17,10</td>
<td>36,50</td>
<td>19,30</td>
</tr>
<tr>
<td>75</td>
<td>16,50</td>
<td>35,10</td>
<td>18,60</td>
</tr>
<tr>
<td>77</td>
<td>15,40</td>
<td>33,00</td>
<td>18,10</td>
</tr>
<tr>
<td>79</td>
<td>14,90</td>
<td>32,20</td>
<td>17,60</td>
</tr>
<tr>
<td>81</td>
<td>14,40</td>
<td>31,10</td>
<td>17,10</td>
</tr>
<tr>
<td>83</td>
<td>14,00</td>
<td>30,30</td>
<td>16,50</td>
</tr>
<tr>
<td>85</td>
<td>13,40</td>
<td>29,00</td>
<td>15,90</td>
</tr>
</tbody>
</table>
Tabelle 15 Darstellung des DFP (cGy x cm²) bei 0,2mm Kupferfilterung mit varierender Röhrenspannung (kV) und unterschiedlichen Kassettenformaten bzw. Einblendungen.

<table>
<thead>
<tr>
<th>Kassetten- bzw. Einblendungs-Formate</th>
<th>Anzahl der Messungen</th>
<th>DFP Minimum [cGy x cm²]</th>
<th>DFP Maximum [cGy x cm²]</th>
<th>DFP Mittelwert [cGy x cm²]</th>
<th>Standardabweichung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organangepasste Einblendung</td>
<td>9</td>
<td>13,40</td>
<td>18,10</td>
<td>15,72</td>
<td>1,69</td>
</tr>
<tr>
<td>Großformat Einblendung</td>
<td>9</td>
<td>29,00</td>
<td>38,60</td>
<td>33,72</td>
<td>3,41</td>
</tr>
<tr>
<td>Filmformat Einblendung</td>
<td>9</td>
<td>15,90</td>
<td>20,40</td>
<td>18,18</td>
<td>1,56</td>
</tr>
</tbody>
</table>

Diagramm 7 Darstellung des DFP (cGy x cm²) in Abhängigkeit von der Röhrenspannung (kV) bei Verwendung des Röntgen-BV mit 0,2mm Zusatzfilterung.

Abschließend erfolgten Messreihen mit 0,3mm Zusatzfilterung analog dem Versuchsaufbau der vorangehenden Messungen. Die Ergebnisse aus Tabelle 16 verdeutlichen, dass bei objektangepasster Einblendung die niedrigsten Dosisflächenprodukte gemessen wurden. Die geringste Strahlenexposition wurde bei einer Röhrenspannung von 85kV ermittelt. Sie lag bei 11,50cGy x cm².
Messungen mit Einblendung auf ein Kassettenformat der Größe 24 x 30cm zeigten im Durchschnitt ein Dosisflächenprodukt von 16,49cGy x cm² (Tabelle 17).

Bei Exposition auf ein großes Kassettenformat der Feldgröße 35 x 43cm wurden die höchsten Strahlenexpositionen gemessen. Das mittlere Dosisflächenprodukt bei großem Kassettenformat lag bei 29,22cGy x cm². Das größte DFP zeigte sich bei 70kV, es betrug 33,40cGy x cm² (Tabelle 17).

Tabelle 16 Entwicklung des DFP (cGy x cm²) bei 0,3mm Zusatzfilterung mit steigender Röhrenspannung (kV) und unterschiedlichen Kassettenformaten bzw. Einblendungen.

<table>
<thead>
<tr>
<th>Röhrenspannung [kV]</th>
<th>DFP bei organangepasster Einblendung [cGy x cm²]</th>
<th>DFP bei Einblendung auf Großformat [cGy x cm²]</th>
<th>DFP bei Einblendung auf Filmformat [cGy x cm²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>70</td>
<td>15,50</td>
<td>33,40</td>
<td>19,00</td>
</tr>
<tr>
<td>71,5</td>
<td>15,20</td>
<td>32,70</td>
<td>18,50</td>
</tr>
<tr>
<td>73</td>
<td>14,60</td>
<td>31,50</td>
<td>17,80</td>
</tr>
<tr>
<td>75</td>
<td>14,10</td>
<td>30,40</td>
<td>17,30</td>
</tr>
<tr>
<td>77</td>
<td>13,20</td>
<td>28,60</td>
<td>16,10</td>
</tr>
<tr>
<td>79</td>
<td>12,80</td>
<td>27,70</td>
<td>15,60</td>
</tr>
<tr>
<td>81</td>
<td>12,40</td>
<td>27,10</td>
<td>15,10</td>
</tr>
<tr>
<td>83</td>
<td>12,10</td>
<td>26,50</td>
<td>14,80</td>
</tr>
<tr>
<td>85</td>
<td>11,50</td>
<td>25,10</td>
<td>14,20</td>
</tr>
</tbody>
</table>

Tabelle 17 Darstellung des DFP (cGy x cm²) bei 0,3mm Kupferfilterung mit variierender Röhrenspannung (kV) und unterschiedlichen Kassettenformaten bzw. Einblendungen.

<table>
<thead>
<tr>
<th>Kassetten- bzw. Einblendungs- formate</th>
<th>Anzahl der Messungen</th>
<th>DFP Minimum [cGy x cm²]</th>
<th>DFP Maximum [cGy x cm²]</th>
<th>DFP Mittelwert [cGy x cm²]</th>
<th>Standardabweichung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organangepasste Einblendung</td>
<td>9</td>
<td>11,50</td>
<td>15,50</td>
<td>13,49</td>
<td>1,42</td>
</tr>
<tr>
<td>Großformat Einblendung</td>
<td>9</td>
<td>25,10</td>
<td>33,40</td>
<td>29,22</td>
<td>2,91</td>
</tr>
<tr>
<td>Filmformat Einblendung</td>
<td>9</td>
<td>14,20</td>
<td>19,00</td>
<td>16,49</td>
<td>1,72</td>
</tr>
</tbody>
</table>
3.1.1.4 Zusammenfassende Bewertung der lateralen Schädelaufnahmen

In der Auswertung zeigte sich, dass steigende Röhrenspannung (kV) zu einer Reduktion des Dosisflächenprodukts führte.

Hierzu wurde bei Filterungen von 0,1, 0,2 und 0,3mm die prozentuale Differenz des Dosisflächenprodukts bei Röhrenspannungen von 85kV und 70kV bestimmt. Die Ergebnisse wurden addiert und anschließend gedrittelt. Gemäß dieser Berechnung ermöglichte objektangepasste Einblendung bei steigender Röhrenspannung eine Dosisreduktion von durchschnittlich 26,60%. Bei Einblendung auf ein Kassettenformat von 24 x 30cm zeigte sich eine DFP Reduktion um 24,91%, bei groß gewähltem Kassettenformat verringerte sich das DFP um 25,22%.

Als weiteres Messergebnis zeigte sich, dass steigende Filterung von 0,1mm auf 0,3mm zu einer Reduktion des Dosisflächenprodukts führte.

Hierfür wurde die prozentuale Differenz der Dosisflächenprodukte bei 0,3mm und 0,1mm Filterung in den einzelnen kV Messschritten ermittelt. Anschließend wurde aus der Summe der Einzelwerte der Mittelwert errechnet. Die Ergebnisse zeigten, dass durch steigende Filterung von 0,1mm auf 0,3mm bei organangepasster Einblendung eine durchschnittliche Dosisreduktion

Diagramm 8 Darstellung des DFP (cGy x cm²) in Abhängigkeit von der Röhrenspannung (kV) bei Verwendung des Röntgen-BV mit 0,3mm Zusatzfilterung.
von 31,99% möglich wurde. Bei Einblendung auf ein Kassettenformat der Größe 24 x 30cm verringerte sich das Dosisflächenprodukt um 31,66%, im Durchgang mit großem Kassettenformat um 30,38%.

Als drittes Ergebnis verdeutlichten die Messreihen, dass organangepasste Einblendung eine optimale Reduktion des Dosisflächenprodukts ermöglichte.

Hierzu wurde die Summe aller Dosisflächenprodukte mit organangepasster Einblendung durch die Summe aller Dosisflächenprodukte mit Einblendung auf ein Format von 24 x 30cm dividiert und der prozentuale Anteil daraus ermittelt. Nach derselben Berechnung wurden die Versuchsreihen mit organangepasster Einblendung mit den Versuchsreihen bei großem Kassettenformat verglichen. Entsprechend dieser Kalkulation verringerte organangepasste Einblendung die durchschnittliche Strahlenexposition gegenüber Einblendung auf ein Kassettenformat von 24 x 30cm um 16,58%. Der Vergleich von organangepasster Einblendung mit Einblendung auf ein großes Kassettenformat der Größe 35 x 43cm zeigte eine Dosisreduktion von 53,25%.

3.1.2 Entwicklung des Dosisflächenprodukts am Schädelphantom unter Verwendung des Flat Panel Detektors

3.1.2.1 Messergebnisse am Schädelphantom im a.p. Strahlengang

Der erste Versuchsdurchgang erfolgte mit 0,1mm Kupferfilterung bei ansteigender Röhrenspannung (kV) und unter Verwendung von zwei unterschiedlichen Einblendungsformaten mit einem Kassettenformat der Größe 24 x 30cm. Es wurde zwischen einem Versuchsdurchlauf mit Einblendung auf ein Kassettenformat der Größe 24 x 30cm und einem Durchgang mit objektangepasster Einblendung auf ein Format von 18,60 x 28,70cm unterschieden (Tabelle 18).

Im Vergleich zur Einblendung auf das Kassettenformat zeigte der Versuchsdurchlauf mit objektangepasster Einblendung niedrigere Strahlenexpositionswerte. Das kleinste Dosisflächenprodukt wurde unter organangepasster Einblendung bei einer Röhrenspannung von 79kV gemessen. Es lag bei 15,70cGy x cm².

Als weiteres Ergebnis zeigte sich, dass steigende Röhrenspannung (kV) bei beiden Feldgrößen zu einer Reduktion der Strahlenexposition führte.
Ergebnisse

Tabelle 18 Entwicklung des DFP (cGy x cm²) bei 0,1mm Zusatzfilterung mit steigender Röhrenspannung (kV) und unterschiedlichen Einblendungsformaten.

<table>
<thead>
<tr>
<th>Röhrenspannung [kV]</th>
<th>DFP bei organangepasster Einblendung [cGy x cm²]</th>
<th>DFP bei Einblendung auf Filmformat [cGy x cm²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>70</td>
<td>21,90</td>
<td>23,10</td>
</tr>
<tr>
<td>71,5</td>
<td>21,30</td>
<td>22,40</td>
</tr>
<tr>
<td>73</td>
<td>19,00</td>
<td>20,20</td>
</tr>
<tr>
<td>75</td>
<td>17,90</td>
<td>17,50</td>
</tr>
<tr>
<td>77</td>
<td>16,40</td>
<td>17,30</td>
</tr>
<tr>
<td>79</td>
<td>15,70</td>
<td>17,20</td>
</tr>
</tbody>
</table>

Tabelle 19 Darstellung des DFP (cGy x cm²) bei 0,1mm Kupferfilterung mit variierender Röhrenspannung (kV) und unterschiedlichen Einblendungsformaten.

<table>
<thead>
<tr>
<th>Einblendungsformate</th>
<th>Anzahl der Messungen</th>
<th>DFP Minimum [cGy x cm²]</th>
<th>DFP Maximum [cGy x cm²]</th>
<th>DFP Mittelwert [cGy x cm²]</th>
<th>Standardabweichung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organangepasste Einblendung</td>
<td>6</td>
<td>15,70</td>
<td>21,90</td>
<td>18,70</td>
<td>2,53</td>
</tr>
<tr>
<td>Filmformat Einblendung</td>
<td>6</td>
<td>17,20</td>
<td>23,10</td>
<td>19,62</td>
<td>2,68</td>
</tr>
</tbody>
</table>
Diagramm 9 Darstellung des DFP (cGy x cm²) in Abhängigkeit von der Röhrenspannung (kV) bei Verwendung des Flat Panel Detektors mit 0,1mm Zusatzfilterung.

Als nächstes wurden Messungen mit 0,2mm Kupferfilterung durchgeführt. Für diesen Versuchsduurchlauf wurde das Schädelphantom in den bereits oben genannten Einblendungsformaten bei ansteigender Röhrenspannung (kV) exponiert und der Einfluss auf die Entwicklung des DFP analysiert (Tabelle 20).

Im Gegensatz zur Einblendung auf ein Kassettenformat der Größe 24 x 30cm ermöglichte objektangepasste Einblendung durchgehend niedrigere Strahlenexpositionswerte. Das kleinste gemessene Dosisflächenprodukt wurde mit 12,60cGy x cm² bei 79kV gemessen (Tabelle 20).

In den Messungen mit 0,2mm Kupferfilterung sank das Dosisflächenprodukt bei steigender Röhrenspannung (kV) in beiden Einblendungsformaten. Je enger auf das zu untersuchende Objekt eingeblendet war (objektangepasste Einblendung), desto geringer waren die gemessenen Dosisflächenprodukte. Bei steigender Filterung von 0,1mm auf 0,2mm verringerte sich bei beiden untersuchten Feldgrößen die Strahlenexposition.
Tabelle 20 Entwicklungs des DFP (cGy x cm²) bei 0,2mm Zusatzfilterung mit steigender Röhrenspannung (kV) und unterschiedlichen Einblendungsformaten.

<table>
<thead>
<tr>
<th>Röhrenspannung [kV]</th>
<th>DFP bei organangepasster Einblendung [cGy x cm²]</th>
<th>DFP bei Einblendung auf Filmformat [cGy x cm²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>70</td>
<td>17,70</td>
<td>18,20</td>
</tr>
<tr>
<td>71,5</td>
<td>17,10</td>
<td>17,70</td>
</tr>
<tr>
<td>73</td>
<td>15,30</td>
<td>16,00</td>
</tr>
<tr>
<td>75</td>
<td>14,40</td>
<td>15,20</td>
</tr>
<tr>
<td>77</td>
<td>13,20</td>
<td>14,10</td>
</tr>
<tr>
<td>79</td>
<td>12,60</td>
<td>13,60</td>
</tr>
</tbody>
</table>

Tabelle 21 Darstellung des DFP (cGy x cm²) bei 0,2mm Kupferfilterung mit variierender Röhrenspannung (kV) und unterschiedlichen Einblendungsformaten.

<table>
<thead>
<tr>
<th>Einblendungsformate</th>
<th>Anzahl der Messungen</th>
<th>DFP Minimum [cGy x cm²]</th>
<th>DFP Maximum [cGy x cm²]</th>
<th>DFP Mittelwert [cGy x cm²]</th>
<th>Standardabweichung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organangepasste Einblendung</td>
<td>6</td>
<td>12,60</td>
<td>17,70</td>
<td>15,05</td>
<td>2,06</td>
</tr>
<tr>
<td>Filmformat Einblendung</td>
<td>6</td>
<td>13,60</td>
<td>18,20</td>
<td>15,80</td>
<td>1,87</td>
</tr>
</tbody>
</table>
Diagramm 10 Darstellung des DFP (cGy x cm²) in Abhängigkeit von der Röhrenspannung (kV) bei Verwendung des Flat Panel Detektors mit 0,2mm Zusatzfilterung.

Tabelle 22 Entwicklung des DFP (cGy x cm²) bei 0,3mm Zusatzfilterung mit steigender Röhrenspannung (kV) und unterschiedlichen Einblendungsformaten.

<table>
<thead>
<tr>
<th>Röhrenspannung [kV]</th>
<th>DFP bei organangepasster Einblendung [cGy x cm²]</th>
<th>DFP bei Einblendung auf Filmformat [cGy x cm²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>70</td>
<td>14,50</td>
<td>15,40</td>
</tr>
<tr>
<td>71,5</td>
<td>14,10</td>
<td>15,00</td>
</tr>
<tr>
<td>73</td>
<td>12,60</td>
<td>13,50</td>
</tr>
<tr>
<td>75</td>
<td>12,00</td>
<td>12,90</td>
</tr>
<tr>
<td>77</td>
<td>11,10</td>
<td>12,00</td>
</tr>
<tr>
<td>79</td>
<td>10,50</td>
<td>11,50</td>
</tr>
</tbody>
</table>
Abschließend erfolgte ein Versuchsdurchgang mit 0,3mm Zusatzfilterung, analog den vorangehenden Messungen. Die Messergebnisse aus Tabelle 22 machen deutlich, dass bei objektangepasster Einblendung der niedrigste Strahlenexpositionswert erzielt wurde. Das kleinste Dosisflächenprodukt wurde mit 10,50cGy x cm² bei einer Röhrenspannung von 79kV gemessen (Tabelle 23).

Bei Einblendung auf ein Filmformat der Größe 24 x 30cm wurden durchschnittlich 13,38cGy x cm² gemessen. Bei 70kV wurde der Höchstwert von 15,40cGy x cm² bestimmt (Tabelle 23).

Tabelle 23 Darstellung des DFP (cGy x cm²) bei 0,3mm Kupferfilterung mit variierender Röhrenspannung (kV) und unterschiedlichen Einblendungsformaten.

<table>
<thead>
<tr>
<th>Einblendungsformate</th>
<th>Anzahl der Messungen</th>
<th>DFP Minimum [cGy x cm²]</th>
<th>DFP Maximum [cGy x cm²]</th>
<th>DFP Mittelwert [cGy x cm²]</th>
<th>Standardabweichung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organangepasste Einblendung</td>
<td>6</td>
<td>10,50</td>
<td>14,50</td>
<td>12,47</td>
<td>1,60</td>
</tr>
<tr>
<td>Filmformat Einblendung</td>
<td>6</td>
<td>11,50</td>
<td>15,40</td>
<td>13,38</td>
<td>1,57</td>
</tr>
</tbody>
</table>
Diagramm 11

Darstellung des DFP (cGy x cm²) in Abhängigkeit von der Röhrenspannung (kV) bei Verwendung des Flat Panel Detektors mit 0,3mm Zusatzfilterung.

3.1.2.2 Zusammenfassende Bewertung der Schädel a.p. Aufnahmen

Aus den Untersuchungsergebnissen ging hervor, dass ein Anstieg der Röhrenspannung (kV) zu einer Reduktion des Dosisflächenprodukts führte.

Hierzu wurde bei Filterungen von 0,1, 0,2 und 0,3mm die prozentuale Differenz des Dosisflächenprodukts bei einer Röhrenspannung von 79kV und 70kV ermittelt. Die Ergebnisse wurden addiert und anschließend gedrittelt. Auf diese Weise ermöglichte objektangepasste Einblendung bei steigender Röhrenspannung eine Dosisreduktion von durchschnittlich 28,24%. Bei Einblendung auf ein Kassettenfilmformat von 24 x 30cm zeigte sich eine DFP Reduktion um 25,38%. Als weiteres Ergebnis zeigte sich, dass zunehmende Filterung von 0,1mm auf 0,3mm eine Reduktion des Dosisflächenprodukts ermöglichte.

Hierfür wurde die prozentuale Differenz der Dosisflächenprodukte bei 0,3mm und 0,1mm Filterung in den einzelnen kV Messschritten ermittelt. Anschließend wurde aus der Summe der Einzelwerte der Mittelwert bestimmt. Die Ergebnisse zeigten, dass steigende Filterung von 0,1mm auf 0,3mm bei organangepasster Einblendung eine durchschnittliche Dosisreduktion von
Ergebnisse

33,28% ermöglichte. Bei Einblendung auf ein Kassettenformat der Größe 24 x 30cm wurde das Dosisflächenprodukt um 31,60% verringert.

Als ein drittes Ergebnis der Messreihen ließ sich festhalten, dass organangepasste Einblendung zur bestmöglichen Reduktion des Dosisflächenprodukts führte. Hierzu wurde die Summe aller Dosisflächenprodukte mit organangepasster Einblendung durch die Summe aller Dosisflächenprodukte mit Einblendung auf ein Format von 24 x 30cm dividiert und der prozentuale Anteil davon bestimmt. Danach verringert die organangepasste Einblendung die durchschnittliche Strahlenexposition gegenüber Einblendung auf ein Filmformat von 24 x 30cm um 5,29%.

3.1.2.3 Messergebnisse am Schädelphantom im lateralen Strahlengang

Nach den Versuchsreihen in a.p. Strahlenrichtung erfolgten Messungen im lateralen Strahlengang. Dabei wurde am Schädelphantom der Einfluss von Änderungen der Belichtungsparameter (Filterung, Röhrenspannung, Einblendung) auf die Entwicklung des Dosisflächenprodukts systematisch untersucht. Zu Beginn erfolgte ein Versuchsdurchgang mit 0,1mm Filterung bei steigender Röhrenspannung (kV) und einem Kassettenformat der Größe 24 x 30cm (Tabelle 24). Es wurde ein Versuchsdurchlauf mit Einblendung auf das Kassettenformat der Größe 24 x 30cm von einem Durchgang mit objektangepasster Einblendung auf ein Format 20,4 x 23,3cm unterschieden (Tabelle 24).

<table>
<thead>
<tr>
<th>Röhrenspannung [kV]</th>
<th>DFP bei organangepasster Einblendung [cGy x cm²]</th>
<th>DFP bei Einblendung auf Filmformat [cGy x cm²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>70</td>
<td>10,10</td>
<td>11,50</td>
</tr>
<tr>
<td>71,5</td>
<td>9,80</td>
<td>11,20</td>
</tr>
<tr>
<td>73</td>
<td>8,90</td>
<td>10,10</td>
</tr>
<tr>
<td>75</td>
<td>8,40</td>
<td>9,70</td>
</tr>
<tr>
<td>77</td>
<td>7,80</td>
<td>9,10</td>
</tr>
<tr>
<td>79</td>
<td>7,40</td>
<td>8,70</td>
</tr>
<tr>
<td>81</td>
<td>6,80</td>
<td>7,90</td>
</tr>
<tr>
<td>83</td>
<td>6,50</td>
<td>7,60</td>
</tr>
<tr>
<td>85</td>
<td>6,10</td>
<td>7,20</td>
</tr>
</tbody>
</table>
Im Vergleich zur Einblendung auf das Kassettenformat zeigte der Versuchsdurchlauf mit objektangepasster Einblendung niedrigere Strahlenexpositionswerte. Das kleinste Dosisflächenprodukt wurde unter organangepasster Einblendung bei einer Röhrenspannung von 85kV gemessen. Es betrug 6,10cGy x cm² (Tabelle 25).

Tabelle 25 Darstellung des DFP (cGy x cm²) bei 0,1mm Kupferfilterung mit variierender Röhrenspannung (kV) und unterschiedlichen Einblendungsformaten.

<table>
<thead>
<tr>
<th>Einblendungsformate</th>
<th>Anzahl der Messungen</th>
<th>DFP Minimum [cGy x cm²]</th>
<th>DFP Maximum [cGy x cm²]</th>
<th>DFP Mittelwert [cGy x cm²]</th>
<th>Standardabweichung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organangepasste Einblendung</td>
<td>9</td>
<td>6,10</td>
<td>10,10</td>
<td>7,98</td>
<td>1,43</td>
</tr>
<tr>
<td>Filmformat Einblendung</td>
<td>9</td>
<td>7,20</td>
<td>11,50</td>
<td>9,22</td>
<td>1,54</td>
</tr>
</tbody>
</table>

Diagramm 12 Darstellung des DFP (cGy x cm²) in Abhängigkeit von der Röhrenspannung (kV) bei Verwendung des Flat Panel Detektors mit 0,1mm Zusatzfilterung.

Im Anschluss wurden Messungen mit 0,2mm Kupferfilterung vorgenommen. Hierfür wurde das Schädelphantom in den beiden bereits oben beschriebenen Feldgrößen untersucht. Es wurden
Messungen bei steigenden Röhrenspannungen (kV) und wechselnden Einblendungsformaten durchgeführt (Tabelle 26).

Im Vergleich zur Einblendung auf ein Kassettenformat der Größe 24 x 30cm ermöglichte objektangepasste Einblendung niedrigere Strahlenexpositionswerte. Das kleinste Dosisflächenprodukt wurde mit 4,80cGy x cm² bei 85kV gemessen (Tabelle 27). In den Messungen mit 0,2mm Kupferfilterungen sank das Dosisflächenprodukt bei steigender Röhrenspannung (kV) in beiden Einblendungsformaten. Je genauer auf das zu untersuchende Objekt eingeblendet wurde (objektangepasste Einblendung), desto geringer war die gemessene Strahlenexposition. Bei steigender Filterung von 0,1mm auf 0,2mm verringerte sich jeweils die Strahlenexposition.

Tabelle 26
Entwicklung des DFP (cGy x cm²) bei 0,2mm Zusatzfilterung mit steigender Röhrenspannung (kV) und unterschiedlichen Einblendungsformaten.

<table>
<thead>
<tr>
<th>Röhrenspannung [kV]</th>
<th>DFP bei organangepasster Einblendung [cGy x cm²]</th>
<th>DFP bei Einblendung auf Filmformat [cGy x cm²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>70</td>
<td>7,80</td>
<td>8,90</td>
</tr>
<tr>
<td>71,5</td>
<td>7,60</td>
<td>8,80</td>
</tr>
<tr>
<td>73</td>
<td>6,90</td>
<td>7,90</td>
</tr>
<tr>
<td>75</td>
<td>6,50</td>
<td>7,60</td>
</tr>
<tr>
<td>77</td>
<td>6,00</td>
<td>7,00</td>
</tr>
<tr>
<td>79</td>
<td>5,70</td>
<td>6,80</td>
</tr>
<tr>
<td>81</td>
<td>5,30</td>
<td>6,10</td>
</tr>
<tr>
<td>83</td>
<td>5,10</td>
<td>5,90</td>
</tr>
<tr>
<td>85</td>
<td>4,80</td>
<td>5,70</td>
</tr>
</tbody>
</table>

Tabelle 27
Darstellung des DFP (cGy x cm²) bei 0,2mm Kupferfilterung mit variierender Röhrenspannung (kV) und unterschiedlichen Einblendungsformaten.

<table>
<thead>
<tr>
<th>Einblendungsformate</th>
<th>Anzahl der Messungen</th>
<th>DFP Minimum [cGy x cm²]</th>
<th>DFP Maximum [cGy x cm²]</th>
<th>DFP Mittelwert [cGy x cm²]</th>
<th>Standardabweichung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organangepasste Einblendung</td>
<td>9</td>
<td>4,80</td>
<td>7,80</td>
<td>6,19</td>
<td>1,08</td>
</tr>
<tr>
<td>Filmformat Einblendung</td>
<td>9</td>
<td>5,70</td>
<td>8,90</td>
<td>7,19</td>
<td>1,20</td>
</tr>
</tbody>
</table>
Die Schädeluntersuchungen am Flat Panel Detektor wurden durch Messreihen mit 0,3mm Zusatzfilterung abgeschlossen. Der Versuchsaufbau entsprach den vorangehenden Messungen.

Im Vergleich zur Einblendung auf das Kassettenformat der Größe 24 x 30cm wurden bei organangepasster Einblendung niedrigere Dosisflächenprodukte gemessen. Das kleinste DFP wurde bei einer Röhrenspannung von 85kV bestimmt. Es betrug 4,00 cGy x cm² (Tabelle 28).

In beiden Einblendungsformaten sank das Dosisflächenprodukt bei steigender Röhrenspannung (kV). Je enger auf das zu untersuchende Objekt eingeblendet wurde (objektangepasste Einblendung), desto geringer waren die gemessenen Dosisflächenprodukte. Erhöhung der Filterung auf 0,3mm verringerte für beide untersuchten Feldgrößen die Strahlenexposition.
Tabelle 28 Entwicklung des DFP (cGy x cm²) bei 0,3mm Zusatzfilterung mit steigender Röhrenspannung (kV) und unterschiedlichen Einblendungsformaten.

<table>
<thead>
<tr>
<th>Röhrenspannung [kV]</th>
<th>DFP bei organangepasster Einblendung [cGy x cm²]</th>
<th>DFP bei Einblendung auf Filmformat [cGy x cm²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>70</td>
<td>6,50</td>
<td>7,60</td>
</tr>
<tr>
<td>71,5</td>
<td>6,40</td>
<td>7,30</td>
</tr>
<tr>
<td>73</td>
<td>5,60</td>
<td>6,60</td>
</tr>
<tr>
<td>75</td>
<td>5,40</td>
<td>6,40</td>
</tr>
<tr>
<td>77</td>
<td>5,00</td>
<td>5,90</td>
</tr>
<tr>
<td>79</td>
<td>4,80</td>
<td>5,60</td>
</tr>
<tr>
<td>81</td>
<td>4,40</td>
<td>5,20</td>
</tr>
<tr>
<td>83</td>
<td>4,30</td>
<td>5,00</td>
</tr>
<tr>
<td>85</td>
<td>4,00</td>
<td>4,80</td>
</tr>
</tbody>
</table>

Tabelle 29 Darstellung des DFP (cGy x cm²) bei 0,3mm Kupferfilterung mit variierender Röhrenspannung (kV) und unterschiedlichen Einblendungsformaten.

<table>
<thead>
<tr>
<th>Einblendungsformate</th>
<th>Anzahl der Messungen</th>
<th>DFP Minimum [cGy x cm²]</th>
<th>DFP Maximum [cGy x cm²]</th>
<th>DFP Mittelwert [cGy x cm²]</th>
<th>Standardabweichung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organangepasste Einblendung</td>
<td>9</td>
<td>4,00</td>
<td>6,50</td>
<td>5,16</td>
<td>0,89</td>
</tr>
<tr>
<td>Filmformat Einblendung</td>
<td>9</td>
<td>4,80</td>
<td>7,60</td>
<td>6,04</td>
<td>1,00</td>
</tr>
</tbody>
</table>
Diagramm 14 Darstellung des DFP (cGy x cm²) in Abhängigkeit von der Röhrenspannung (kV) bei Verwendung des Flat Panel Detektors mit 0,3mm Zusatzfilterung.

3.1.2.4 Zusammenfassende Bewertung der lateralen Schädelaufnahmen

Die Auswertung der Messergebnisse zeigte, dass ansteigende Röhrenspannung (kV) mit einer Reduktion des Dosisflächenprodukts einherging.

Hierzu wurde die Differenz des Dosisflächenprodukts bei einer Röhrenspannung von 85kV und 70kV in Prozent, bei Kupfer-Filterungen von 0,1, 0,2 und 0,3mm ermittelt. Die Ergebnisse wurden addiert und anschließend gedrittelt. So ermöglichte objektagangepasste Einblendung bei steigender Röhrenspannung eine Dosisreduktion von durchschnittlich 38,84%. Bei Einblendung auf ein Kassettenfilmformat von 24 x 30cm zeigte sich eine DFP Reduktion um 36,73%.

Weiter ging aus den Messergebnissen hervor, dass steigende Filterung von 0,1mm auf 0,3mm zu einer Reduktion des Dosisflächenprodukts führte.

Hierfür wurde die prozentuale Differenz der Dosisflächenprodukte bei 0,3mm und 0,1mm Filterung in den einzelnen kV Messschritten ermittelt. Anschließend wurde aus der Summe der Einzelwerte der Mittelwert errechnet. Die Ergebnisse zeigten, dass durch steigende Filterung von 0,1mm auf 0,3mm bei organangepasster Einblendung eine durchschnittliche Dosisreduktion
von 35,30% möglich war. Bei Einblendung auf ein Kassettenformat der Größe 24 x 30cm verringernte sich das Dosisflächenprodukt um 34,44%.

Als ein drittes Ergebnis der Messreihen zeigte sich, dass organangepasste Einblendung zur bestmöglichen Reduktion des Dosisflächenprodukts führte.

Hierzu wurde die Summe aller Dosisflächenprodukte mit organangepasster Einblendung durch die Summe aller Dosisflächenprodukte mit Einblendung auf ein Format von 24 x 30cm dividiert und der prozentuale Anteil davon bestimmt. Nach dieser Berechnung verringerte organangepasste Einblendung die durchschnittliche Strahlenexposition gegenüber Einblendung auf ein Filmformat von 24 x 30cm um 13,95%.

3.2 Entwicklung des Dosisflächenprodukts bei Röntgenaufnahmen der Thoraxorgane

3.2.1 Messergebnisse des männlichen Patientenkollektivs

Anhand von Röntgen Thoraxaufnahmen wurde der Einfluss patientenspezifischer Merkmale (Körpergewicht und -größe, Body Mass Index, Patientendurchmesser im Hauptstrahlengang, Alter, Geschlecht) auf die Entwicklung des Dosisflächenprodukts untersucht.

Tabelle 30 Patientenspezifische Parameter der männlichen Patienten.

<table>
<thead>
<tr>
<th>Patientenspezifische Parameter</th>
<th>Anzahl der Messungen</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Mittelwert</th>
<th>Standardabweichung</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFP p.a. [cGy x cm²]</td>
<td>24</td>
<td>3,40</td>
<td>7,80</td>
<td>5,31</td>
<td>1,40</td>
</tr>
<tr>
<td>DFP lateral [cGy x cm²]</td>
<td>24</td>
<td>7,90</td>
<td>56,00</td>
<td>22,80</td>
<td>13,18</td>
</tr>
<tr>
<td>Körpergewicht [kg]</td>
<td>24</td>
<td>63,00</td>
<td>101,00</td>
<td>80,04</td>
<td>10,42</td>
</tr>
<tr>
<td>Körpergröße [m]</td>
<td>24</td>
<td>1,59</td>
<td>1,90</td>
<td>1,74</td>
<td>0,08</td>
</tr>
<tr>
<td>BMI [kg/m²]</td>
<td>24</td>
<td>21,77</td>
<td>33,74</td>
<td>26,38</td>
<td>3,19</td>
</tr>
<tr>
<td>Patientendurchmesser p.a. [cm]</td>
<td>24</td>
<td>19,50</td>
<td>29,50</td>
<td>25,13</td>
<td>2,37</td>
</tr>
<tr>
<td>Patientendurchmesser lateral [cm]</td>
<td>24</td>
<td>31,00</td>
<td>41,00</td>
<td>33,90</td>
<td>2,13</td>
</tr>
<tr>
<td>Alter [a]</td>
<td>24</td>
<td>37</td>
<td>88</td>
<td>61,75</td>
<td>11,19</td>
</tr>
</tbody>
</table>

In der Gruppe der Männer wurde bei Thoraxaufnahmen im p.a. Strahlengang ein maximales Dosisflächenprodukt von 7,80cGy x cm² gemessen. Das minimale Dosisflächenprodukt lag bei
Ergebnisse

3,40cGy x cm² bei einem Mittelwert von 5,31cGy x cm² (Tabelle 30). Verglichen mit dem aktuell gültigen Referenzwert von 20cGy x cm² (Tabelle 3) für Thorax p.a. Aufnahmen entsprach dies einem prozentualen Anteil von 17,00% bis 39,00% bei einem Durchschnittswert von 26,70%.

Diagramm 15 Dosisflächenprodukt der männlichen Patienten (Fallnummer 1-24) bei Röntgenaufnahmen der Thoraxorgane im p.a. Strahlengang.

Diagramm 16 Dosisflächenprodukt der männlichen Patienten (Fallnummer 1-24) bei Röntgenaufnahmen der Thoraxorgane im lateralen Strahlengang.

Bei den Thoraxaufnahmen im lateralen Strahlengang wurde ein Höchstwert von 56,00cGy x cm² bestimmt bei einem Minimalwert von 7,90cGy x cm². Das durchschnittliche DFP betrug 22,80cGy x cm² (Tabelle 30). In Bezug auf den aktuell gültigen diagnostischen Referenzwert
von 100cGy x cm² (Tabelle 3) für laterale Thoraxaufnahmen entsprach dies einer Ergebnis-
spanne von 7,90% bis 56,00% bei einem Durchschnittswert von 22,80%.

Die Berechnung des *Korrelationskoeffizienten nach Pearson* \(r \) zeigte einen signifikanten Zu-
sammenhang zwischen dem Dosisflächenprodukt bei Thorax p.a. Untersuchungen der Männer
und dem BMI \(r= 0,775, p\leq 0,01 \) sowie dem Körpergewicht \(r= 0,658, p\leq 0,01 \) und dem Pati-
entendurchmesser \(r= 0,507, p\leq 0,05 \). Für die Parameter Körpergröße und Alter konnte keine
signifikante Assoziation mit dem DFP in p.a. festgestellt werden.

Tabelle 31
Korrelation des DFP (cGy x cm²) mit klinischen Merkmalen bei Thoraxaufnahmen im p.a. Strahlengang anhand des zweiseitigen *Korrelationskoeffizienten nach Pearson* \(r \).

<table>
<thead>
<tr>
<th>Variable</th>
<th>Analytische Statistik</th>
<th>Körpergewicht [kg]</th>
<th>Körpergröße [m]</th>
<th>BMI [kg/m²]</th>
<th>Patientendurchmesser lateral [cm]</th>
<th>Alter [a]</th>
</tr>
</thead>
</table>
| DFP p.a. | Korrelation nach Pear-
son | 0,658(**) | 0,103 | 0,775(**) | 0,507(*) | 0,005 |
| | Signifikanz (2-seitig) | <0,001 | 0,631 | <0,001 | 0,012 | 0,982 |

* Die Korrelation ist auf dem Niveau von 0,05 (2-seitig) signifikant.
** Die Korrelation ist auf dem Niveau von 0,01 (2-seitig) signifikant.

Bei der Untersuchung der Thoraxorgane im lateralen Strahlengang stellte sich nach der Berech-
nung des *Korrelationskoeffizienten nach Pearson* \(r \) ein signifikanter Zusammenhang zwischen
dem Dosisflächenprodukt und dem Body Mass Index \(r= 0,694, p\leq 0,01 \) dar.

Das Körpergewicht korrelierte ebenfalls signifikant mit dem Dosisflächenprodukt \(r= 0,493, p\leq
0,05 \). Für die Körpergröße, den Patientendurchmesser und das Alter konnte im untersuchten
Patientenkollektiv im lateralen Strahlengang kein signifikanter Zusammenhang mit dem DFP
festgestellt werden.
Tabelle 32: Korrelation des DFP (cGy x cm²) mit klinischen Merkmalen bei Thoraxaufnahmen im lateralen Strahlengang anhand des zweiseitigen Korrelationskoeffizienten nach Pearson (r).

<table>
<thead>
<tr>
<th>Variable</th>
<th>Analytische Statistik</th>
<th>Körpergewicht [kg]</th>
<th>Körperlänge [m]</th>
<th>BMI [kg/m²]</th>
<th>Patientendurchmesser lateral [cm]</th>
<th>Alter [a]</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFP lateral</td>
<td>Korrelation nach Pearson</td>
<td>0,493(*)</td>
<td>0,222</td>
<td>0,694(**)</td>
<td>0,262</td>
<td>0,330</td>
</tr>
<tr>
<td></td>
<td>Signifikanz (2-seitig)</td>
<td>0,014</td>
<td>0,297</td>
<td><,0001</td>
<td>0,217</td>
<td>0,115</td>
</tr>
</tbody>
</table>

* Die Korrelation ist auf dem Niveau von 0,05 (2-seitig) signifikant.
** Die Korrelation ist auf dem Niveau von 0,01 (2-seitig) signifikant.

3.2.1.1 Zusammenfassende Bewertung der Thoraxaufnahmen der männlichen Patienten

Bei der Auswertung zeigte sich, dass die diagnostischen Referenzwerte bei den radiologischen Untersuchungen der Thoraxorgane eingehalten wurden.

Bei den Röntgen Thoraxaufnahmen belief sich die Strahlenexposition für p.a. Aufnahmen auf 17,00% bis 39,00% des gültigen Referenzwerts, für laterale Aufnahmen auf 7,90% bis 56,00%.

Als weiteres Ergebnis lässt sich festhalten, dass zwischen dem Body Mass Index und dem Dosisflächenprodukt bei Röntgen Thoraxaufnahmen die stärkste Korrelation der untersuchten patientenspezifischen Parameter nachgewiesen wurde.

Sowohl für Thoraxaufnahmen im p.a. ($r=0,775$, $p \leq 0,01$) als auch im lateralen ($r=0,694$, $p \leq 0,01$) Strahlengang war die Assoziation zwischen dem BMI und dem DFP am höchsten. Das Körpergewicht korrelierte sowohl im p.a. ($r=0,658$, $p \leq 0,01$) als auch im lateralen ($r=0,493$, $p \leq 0,05$) Strahlengang mit dem DFP. Der Patientendurchmesser ($r=0,507$, $p \leq 0,05$) zeigte nur bei p.a. Aufnahmen eine Korrelation mit dem Dosisflächenprodukt.

3.2.2 Messergebnisse des weiblichen Patientenkollektivs

Anhand der Messungen der Röntgenaufnahmen des Thorax wurde der Einfluss anthropometrischer Eigenschaften (Körpergewicht und -größe, Body Mass Index, Patientendurchmesser im Hauptstrahlengang, Alter, Geschlecht) auf die Entwicklung des Dosisflächenprodukts analysiert (Diagramm 18).
In der Gruppe der weiblichen Patienten wurden bei p.a. Aufnahmen der Thoraxorgane Dosisflächenprodukte von 2,30cGy x cm² bis 6,80cGy x cm² gemessen. Im Durchschnitt lag das Dosisflächenprodukt bei 4,34cGy x cm².

In Bezug auf den aktuellen diagnostischen Referenzwert von 20,00cGy x cm² (Tabelle 3) für Thoraxaufnahmen im p.a. Strahlengang entsprachen die gemessenen Dosisflächenprodukte einer Ergebnisspanne von 11,50% bis 34,00%. Die mittlere gemessene Strahlenexposition betrug 21,70% des Referenzwerts.

Bei den Aufnahmen der Thoraxorgane im lateralen Strahlengang wurden im Mittel 17,40cGy x cm² gemessen mit einem Minimum von 5,00cGy x cm² und einem Maximum von 38,40cGy x cm² (Tabelle 33). Bezüglich des aktuell gültigen Referenzwerts von 100cGy x cm² für Thoraxaufnahmen im lateralen Strahlengang (Tabelle 3) entsprach dies einem prozentualen Anteil von 5,00% bis 38,40% des Richtwerts bei einem Mittelwert von 17,40%.

<p>| Tabelle 33 Patientenspezifische Parameter der weiblichen Patienten. |
|---|-----------------|---------------|---------------|-----------------|-----------------|</p>
<table>
<thead>
<tr>
<th>Patientenspezifische Parameter</th>
<th>Anzahl der Messungen</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Mittelwert</th>
<th>Standardabweichung</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFP p.a. [cGy x cm²]</td>
<td>17</td>
<td>2,30</td>
<td>6,80</td>
<td>4,34</td>
<td>1,27</td>
</tr>
<tr>
<td>DFP lateral [cGy x cm²]</td>
<td>17</td>
<td>5,00</td>
<td>38,40</td>
<td>17,40</td>
<td>9,06</td>
</tr>
<tr>
<td>Körpergewicht [kg]</td>
<td>17</td>
<td>50,00</td>
<td>86,00</td>
<td>70,88</td>
<td>11,15</td>
</tr>
<tr>
<td>Körpergröße [m]</td>
<td>17</td>
<td>1,53</td>
<td>1,75</td>
<td>1,65</td>
<td>0,064</td>
</tr>
<tr>
<td>BMI [kg/m²]</td>
<td>17</td>
<td>20,17</td>
<td>32,36</td>
<td>26,05</td>
<td>4,20</td>
</tr>
<tr>
<td>Patientendurchmesser p.a. [cm]</td>
<td>17</td>
<td>17,50</td>
<td>27,00</td>
<td>22,65</td>
<td>2,64</td>
</tr>
<tr>
<td>Patientendurchmesser lateral [cm]</td>
<td>17</td>
<td>26,00</td>
<td>35,00</td>
<td>31,21</td>
<td>2,39</td>
</tr>
<tr>
<td>Alter [a]</td>
<td>17</td>
<td>19</td>
<td>79</td>
<td>58,12</td>
<td>17,91</td>
</tr>
</tbody>
</table>
Die Betrachtung der Ergebnisse der weiblichen Patienten zeigte, dass das Körpergewicht die höchste Korrelation mit dem Dosisflächenprodukt (r= 0,881, p ≤ 0,01) aufwies. Der BMI (r= 0,864, p ≤ 0,01) und der Patientendurchmesser in p.a. (r= 0,799, p ≤ 0,01) sind ebenso mit dem Dosisflächenprodukt assoziiert.

Für die Parameter Körpergröße und Alter konnte kein signifikanter Zusammenhang mit dem DFP in p.a. festgestellt werden.
Ergebnisse

Tabelle 34
Korrelation des DFP (cGy x cm²) mit klinischen Merkmalen bei Thoraxaufnahmen im p.a. Strahlengang anhand des zweiseitigen Korrelationskoeffizienten nach Pearson (r).

<table>
<thead>
<tr>
<th>Variable</th>
<th>Analytische Statistik</th>
<th>Körpergewicht [kg]</th>
<th>Körpergröße [m]</th>
<th>BMI [kg/m²]</th>
<th>Patientendurchmesser lateral [cm]</th>
<th>Alter [a]</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFP p.a.</td>
<td>Korrelation nach Pearson</td>
<td>0,881(**)</td>
<td>0,118</td>
<td>0,864(**)</td>
<td>0,799(**)</td>
<td>0,036</td>
</tr>
<tr>
<td></td>
<td>Signifikanz (2-seitig)</td>
<td><,0001</td>
<td>0,651</td>
<td><,0001</td>
<td><,0001</td>
<td>0,891</td>
</tr>
</tbody>
</table>

** Die Korrelation ist auf dem Niveau von 0,01 (2-seitig) signifikant.
* Die Korrelation ist auf dem Niveau von 0,05 (2-seitig) signifikant.

Bei den lateralen Thoraxuntersuchungen der weiblichen Patienten bestand zwischen dem Körpergewicht und dem Dosisflächenprodukt die höchste Korrelation. Die Berechnung des Korrelationskoeffizienten nach Pearson (r) bestätigte diesen Zusammenhang (r= 0,783, $p \leq 0,01$). Für den BMI (r= 0,668, $p \leq 0,01$) und den Patientenquerdurchmesser (r= 0,653, $p \leq 0,01$) zeigte sich ebenso eine signifikante Korrelation.

Für die Parameter Körpergröße und Alter konnte im vorliegenden Patientenkollektiv keine Assoziation mit dem Dosisflächenprodukt im lateralen Strahlengang festgestellt werden.

Tabelle 35
Korrelation des DFP (cGy x cm²) mit klinischen Merkmalen bei Thoraxaufnahmen im lateralen Strahlengang anhand des zweiseitigen Korrelationskoeffizienten nach Pearson (r)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Analytische Statistik</th>
<th>Körpergewicht [kg]</th>
<th>Körpergröße [m]</th>
<th>BMI [kg/m²]</th>
<th>Patientendurchmesser lateral [cm]</th>
<th>Alter [a]</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFP lateral</td>
<td>Korrelation nach Pearson</td>
<td>0,783(**)</td>
<td>0,166</td>
<td>0,668(**)</td>
<td>0,653(**)</td>
<td>0,095</td>
</tr>
<tr>
<td></td>
<td>Signifikanz (2-seitig)</td>
<td><,0001</td>
<td>0,526</td>
<td>0,003</td>
<td>0,004</td>
<td>0,717</td>
</tr>
</tbody>
</table>

** Die Korrelation ist auf dem Niveau von 0,01 (2-seitig) signifikant.
* Die Korrelation ist auf dem Niveau von 0,05 (2-seitig) signifikant.
3.2.2.1 Zusammenfassende Bewertung der Thoraxaufnahmen der weiblichen Patienten

Die Analyse der Messergebnisse zeigte, dass die aktuell gültigen Referenzwerte für diagnostisch radiologische Untersuchungen der Thoraxorgane eingehalten wurden.

Bezogen auf die aktuell gültigen diagnostischen Referenzwerte hatten die gemessenen Strahlenexpositionen einen prozentualen Anteil von 11,50% bis 34,00% für p.a. Aufnahmen, bzw. von 5,00% bis 38,40% für laterale Aufnahmen.

Als weiteres Ergebnis lässt sich festhalten, dass das Körpergewicht die höchste Korrelation mit dem Dosisflächenprodukt bei diagnostisch radiologischen Thoraxaufnahmen besaß.

Sowohl für Thoraxaufnahmen im p.a. (r= 0,881, p≤ 0,01) als auch im lateralen (r= 0,783, p≤ 0,01) Strahlengang war die Korrelation zwischen Körpergewicht und DFP am stärksten. Auch der Body Mass Index korrelierte sowohl im p.a. (r= 0,864, p≤ 0,01) als auch im lateralen (r= 0,668, p≤ 0,01) Strahlengang mit dem DFP. Der Patientendurchmesser zeigte bei p.a. Aufnahmen (r= 0,799, p≤ 0,01) und bei lateralen Aufnahmen (r= 0,653, p≤ 0,01) eine Korrelation mit dem Dosisflächenprodukt.
4 Diskussion

4.1 Messergebnisse bei Röntgenaufnahmen am Schädelphantom

Um das Ausmaß der Strahlenexposition in der Röntgendiagnostik besser beurteilen und vergleichen zu können, kam es im Zuge der Patientenschutzrichtlinie EURATOM 97/43 zur europaweiten Einführung diagnostischer Referenzwerte. Als geeignete Messgröße zur Erfassung der Strahlenexposition wurde 2003 das Dosisflächenprodukt durch das Bundesamt für Strahlenschutz empfohlen (Brix 2003).

In der vorliegenden Dissertationsarbeit wurde mit Hilfe eines Schädelphantoms der Einfluss von Änderung der Belichtungsparameter (Röhrenspannung, Filterung, Einblendung) auf die Reduktion des Dosisflächenprodukts untersucht und bewertet.

Die Ergebnisse der Schädelphantommessungen zeigten, dass sowohl bei den Untersuchungen am Röntgenbildverstärker als auch am Flat Panel Detektor mit Erhöhung der Aufnahmespannung (kV) die Strahlenexposition reduziert wurde. Unter Verwendung unterschiedlicher Einblendungs- und Kassettenformate führte eine Erhöhung der Röhrenspannung von 70kV auf 79kV im a.p. Strahlengang zu einer Minderung der Strahlenexposition zwischen 21,05% und 28,24%. Bei Exposition des Schädelphantoms im lateralen Strahlengang wurde bei Erhöhung der Röhrenspannung von 70kV auf 85kV eine prozentuale Dosisreduktion zwischen 24,91% und 38,84% gemessen.

Als weiteres Ergebnis zeigte sich, dass es durch eine Erhöhung der Zusatzfilterung bei beiden Aufnahmesystemen zu einer Reduktion der gemessenen Dosisflächenprodukte kam. Bei Verwendung unterschiedlicher Einblendungs- und Kassettenformate führte eine Erhöhung der Zusatzfilterung von 0,1mm auf 0,3mm im a.p. Strahlengang zu einem prozentualen Rückgang der Strahlenexposition von 29,64% bis 33,50%. In den Untersuchungen in den seitlichen Strahlengang wurde bei einer Erhöhung der Filterung ein prozentualer Rückgang der Strahlenexposition zwischen 30,38% und 35,30% festgestellt.

Diskussion

ders in der medizinischen Physik der Dosis reduzierende Einfluss steigender Röhrenspannung

Aktuell untersuchten Ullman et al. (Ullman et al. 2006) in einem Monte Carlo Computer Model
den Einfluss ansteigender Röhrenspannung (kV) auf die Entwicklung der Strahlenexposition. Sie berichteten, dass eine Erhöhung der Röhrenspannung von 90kV auf 150kV bei digitalen
Thorax p.a. Aufnahmen zu Dosisreduktionen von 25% bis 30% führte. Des Weiteren bestätigten
die in dieser Dissertationsarbeit vorgestellten Ergebnisse die Arbeiten von Wraith et al.
(Wraith et al. 1995) in ihren Messungen der Thoraxorgane Neugeborener. Wraith et al. be-
schrieben, dass bei einer Steigerung der Röhrenspannung von 50kV auf 60kV mit zusätzlicher
Erhöhung der Filterung von 2,5mm auf 3,5mm Aluminium eine Dosisreduktion von 40% er-
reich wurde. Die Forschungsgruppe von Sandborg et al. (Sandborg et al. 1994) errechnete mit
Hilfe eines computergestützten Models bei Verwendung einer 0,1mm dicken Kupferfilterung
eine Reduktion der Strahlenexposition um ca. 30%. Sie verwendeten dazu ein Wasserphantom
um Röntgenaufnahmen des Abdomens sowie Dentalaufnahmen zu simulieren. Die Ergebnisse
derer Dissertationsarbeit bestätigten ebenfalls die von Nicholson et al. (Nicholson et al. 2000)
berichteten Ergebnisse. Diese Arbeitsgruppe beobachtete bei Verwendung einer 0,35mm dicken
Kupferfilterung anhand von Wasserphantommessungen eine Strahlenreduktion von ca. 60%.
Die Arbeitsgruppe von Seifert et al. (Seifert et al. 1998) stellte bei der Darstellung des Thorax
neugeborener Kinder eine Dosisreduktion von 39% durch Filterung fest. Sie führten ihre Mes-
sungen bei einer festgelegten Röhrenspannung von 66kV und zusätzlicher Filterung mit 0,1mm
Kupfer und 1,0mm Aluminium durch.

Trotz der unterschiedlichen oben genannten Studienprotokolle konnte anhand der experimentel-
len Messreihen eine Reduktion der Strahlenexposition reproduzierbar nachgewiesen werden.
Die Analyse der Messergebnisse dieser Dissertationsarbeit verdeutlicht, wie effektiv eine Erhö-
hung der Röhrenspannung (Dosisreduktion zwischen 21,05% und 38,84%) sowie eine Erhö-
hung der Filterung (Dosisreduktion zwischen 29,64% und 35,30%) in Hinblick auf eine Reduk-
tion der Strahlenexposition ist. Besonders die Verwendung von Zusatzfilterung stellt eine wirk-
ungsvolle Möglichkeit dar, die Strahlenexposition für den Patienten auch bei klinischer An-
wendung von Röntgenstrahlung zu reduzieren (Bundesärztekammer 1995).

Als ein weiteres Ergebnis der Schädelphantommessungen zeigte sich, dass sowohl bei den Un-
tersuchungen am Röntgenbildverstärker als auch am Flat Panel Detektor eine Optimierung der
Einblendung auf das zu untersuchende Objekt zu einer Reduktion der Strahlenexposition führte.
In den Messungen am Röntgenbildverstärker wurde bei organangepasster Einblendung im Vergleich zu Einblendung auf ein Kassettenformat der Größe 24 x 30cm eine Dosisreduktion von durchschnittlich 13,86% festgestellt. Diese Reduktion der Feldgröße wurde im a.p. Strahlengang durch eine Einblendung an den Rändern von 2,60cm (vertikal) bzw. 7,00cm (horizontal) erreicht. Im lateralen Strahlengang wurde bei einer seitlichen Einblendung von 2,80cm (vertikal) bzw. 4,80cm (horizontal) ein Dosisrückgang von durchschnittlich 16,58% gemessen. Der Vergleich von organangepasster Einblendung mit einem großen Kassettenformat der Größe 35 x 43cm zeigte im a.p. Strahlengang durchschnittlich 37,79% Dosisersparnis. Dies entsprach einer Einblendung an den Rändern von 7,60cm (vertikal) bzw. 26,00cm (horizontal). Bei lateraler Exposition ergab sich eine durchschnittliche Dosisersparnis von 53,25%. Diese wurde bei einer seitlichen Einblendung von 7,80cm (vertikal) bzw. 13,80cm (horizontal) bestimmt.

In den Schädelphantommessungen am Flat Panel Detektor wurde die Strahlenexposition bei organangepasster Einblendung mit der Einblendung auf ein Kassettenformat der Größe 24 x 30cm verglichen. Dies entsprach im a.p. Strahlengang einer Einblendung der Seitenränder von 1,30cm (vertikal) bzw. 5,40cm (horizontal) und resultierte in einer durchschnittlichen DFP-Reduktion von 5,29%. Im lateralen Strahlengang wurde durch Einblendung an den Rändern von 3,60cm (vertikal) bzw. 6,70cm (horizontal) eine durchschnittliche Dosisreduktion von 13,95% gemessen.

Aus der Literatur und den Messergebnissen dieser Dissertationsarbeit wird die Wirksamkeit organangepasster Einblendung (Dosisreduktion zwischen 5,29% und 53,25%) deutlich. Bei den in dieser Dissertationsarbeit durchgeführten Messungen zeigte die organangepasste Einblendung den größten Effekt auf die Reduktion der Strahlenexposition. Der Einfluss organangepasster Einblendung übertraf in den vorgenommenen Messungen den Dosis mindernden Effekt steigender Röhrenspannung bzw. steigender Filterung. Vor diesem Hintergrund ist organangepasste Einblendung als wichtiges Mittel der Strahlenexpositionsreduktion zu werten und zu Recht in den Leitlinien der Bundesärztekammer zur Qualitätssicherung in der Röntgendiagnostik fest verankert (Bundesärztekammer 1995).

Abschließend erfolgte der Vergleich der Strahlenexpositionswerte der zwei verwendeten Aufnahmesysteme (Röntgenbildverstärker, Flat Panel Detektor). Anhand der ermittelten Dosisflächenprodukte zeigte sich, dass bei Schädelphantomaufnahmen mit dem Flat Panel Detektor im Vergleich zu Aufnahmen mit dem Röntgenbildverstärker konstant niedrigere DFP Werte erzielt wurden.

In der Literatur wird die Dosisreduktion durch Verwendung neuartiger Flat Panel Detektoren im Vergleich zu Röntgenbildverstärkern kontrovers diskutiert. Einige Autoren berichteten bei vergleichenden Phantomstudien zwischen Flat Panel Detektoren und Röntgenbildverstärker Systemen von äquivalenten Strahlenexpositionswerten für beide Systeme (Davies et al. 2007, Ducote et al. 2007, Vano et al. 2005). Diese Arbeitsgruppen führten ihre experimentellen Untersuchungen sowohl an Phantomen aus Polymethylmethacrylat (PMMA) als auch an Herzkatheteruntersuchungen durch. Die Arbeitsgruppe von Blietz et al. (Blietz et al. 2007) hingegen wies in ihren experimentellen Messungen an einem Alderson Phantom höhere Dosisflächenprodukte bei der Verwendung von Flat Panel Detektoren nach. Hatakeyama et al. (Hatakeyama et al. 2007) führten vergleichende Phantommessungen mittels digitaler Subtraktionsangiografie zwi-

4.2 Messergebnisse bei Röntgenaufnahmen der Thoraxorgane

Die vorliegenden Ergebnisse der Thoraxaufnahmen zeigten, dass an der Klinik für Strahlendiagnostik des UKGuM, Standort Marburg, die aktuell gültigen diagnostischen Referenzwerte (Brix 2003) bei allen durchgeführten Thoraxuntersuchungen eingehalten wurden. Die gemessenen Dosiswerte unterlagen jedoch einer erheblichen Variationsbreite. In der Gruppe der männlichen Patienten belief sich das durchschnittliche DFP für Thorax p.a. Aufnahmen auf 26,70% (Ergebnisspanne zwischen 17,00% und 39,00%) des diagnostischen Referenzwerts von 20,00cGy x cm². In der Gruppe der Frauen zeigte sich nach Analyse der Thorax p.a. Aufnahmen ein durchschnittliches DFP von 21,70% (Ergebnisspanne zwischen 11,50% und 34,00%) des diagnostischen Referenzwerts (20,00cGy x cm²). Bei den lateralen Thoraxaufnahmen wurde
in der Gruppe der Männer ein durchschnittlicher prozentualer Anteil von 22,80% (Ergebnis-
spanne zwischen 7,90% und 56,00%) bezogen auf den diagnostischen Referenzwert für laterale
Thoraxaufnahmen (100,00cGy x cm²) gemessen. In der Gruppe der Frauen zeigte sich bei Tho-
raxaufnahmen im lateralen Strahlengang ein durchschnittlicher prozentualer Anteil von 17,40%
(Ergebnisspanne zwischen 5,00% und 38,40%) bezogen auf den diagnostischen Referenzwert
von 100cGy x cm².

In der Vergangenheit wurde bereits in verschiedenen Studien gezeigt, dass die applizierte Rönt-
genstrahlung selbst bei äquivalenten Röntgenuntersuchungen in unterschiedlichen Röntgenein-
2001, Schandorf et al. 1998). Die Mehrzahl derartiger Dosisunterschiede ist dabei auf unter-
schiedliche Untersuchungsstandards der Belichtungsparameter (Röhrenspannung, Filterung),
sowie auf verfahrenstechnische Mängel zurückzuführen. Auch heute sind Strahlenexpositions-
werte bei Röntgenaufnahmen der Thoraxorgane noch erheblichen Schwankungen unterworfen.
Schuncke et al. (Schuncke et al. 2005) berichteten nach der Analyse von Thorax p.a. Aufnah-
men an 11 verschiedenen Krankenhäusern von Strahlenexpositionswerten zwischen 0,53dGy x
cm² und 2,09dGy x cm² pro Untersuchung. Dies entspricht einer Spanne von 26,50% bis
100,45% des diagnostischen Referenzwerts. Die Forschungsgruppe von Stieve et al. (Stieve et
16 Zufallstichproben à 10 Patienten und ermittelten so ein durchschnittliches Dosisflächenpro-
dukt von 202,20mGy x cm² pro Stichprobe. Dies entspricht für den einzelnen männlichen Pati-
enten umgerechnet 10,11% des diagnostischen Referenzwerts (20cGy x cm²).

In der Literatur und den Messergebnissen dieser Dissertationsarbeit wurden allein bei der Un-
tersuchung des Thorax in zwei Ebenen beachtliche Dosisschwankungen von 5,00% bis 56,00%
des diagnostischen Referenzwerts detektiert. Dies verdeutlicht, dass die gängige Röntgenpraxis
noch nicht vollständig optimiert ist. Da aussagekräftige Thoraxaufnahmen mit hoher Bildquali-
tät und niedriger Strahlenexposition im Vergleich zu anderen radiologischen Untersuchungen
schwer zu erreichen sind (Gonzalez et al. 1999), muss an einer weiteren Optimierung der Rönt-
genpraxis gearbeitet werden.

Die im Rahmen dieser Dissertationsarbeit erhobenen Strahlenexpositionswerte für Thoraxauf-
nahmen in zwei Ebenen liegen weit unter den durch das Bundesamt für Strahlenschutz festge-
setzten diagnostischen Referenzwerten (Brix 2003). Die Ergebnisse werden durch die oben ge-
nannten Untersuchungen von Schuncke et al. und Stieve et al. weiter bestätigt. Da die diagnosti-
schen Referenzwerte für Thoraxaufnahmen in zwei Ebenen in der Praxis zumeist deutlich un-
Diskussion

terboten werden, sollte eine Herabsenkung der Referenzwerte erwogen werden. Hierzu werden die ärztlichen Stellen, welche für die Überprüfung der Einhaltung diagnostischer Referenzwerte zuständig sind, erstmalig am 01.06.2008 ihre Erfahrungsberichte an das Bundesamt für Strahlenschutz weitergeben (Bundesministerium für Umwelt 2007a). Auf Grundlage dieser Erfahrungsberichte kann im Folgenden durch das Bundesamt für Strahlenschutz eine Herabsetzung der diagnostischen Referenzwerte vorgenommen werden. Auf diese Weise wird auch zukünftig eine weitere Verbesserung der Röntgenpraxis gefördert.

Wie die Auswertung der Messergebnisse dieser Dissertationsarbeit zeigte, nehmen auch anthropometrische Parameter erheblichen Einfluss auf die resultierende Strahlenexposition. Darüber hinaus zeigte sich, dass der Einfluss patientenspezifischer Merkmale bei Männern und Frauen unterschiedlich zu bewerten ist.

In der Gruppe der männlichen Patienten hatte der errechnete BMI mit einem Korrelationskoeffizienten nach Pearson (r) von durchschnittlich 0,775 für p.a.- und 0,694 für laterale Aufnahmen den stärksten Einfluss auf die Strahlenexposition. An zweiter Stelle ist die Variable Körpergewicht zu nennen, welche für p.a. Untersuchungen eine Korrelation nach Pearson (r) von 0,658 bzw. von 0,493 für laterale Aufnahmen aufwies.

Bei den Frauen zeigte das Körpergewicht (p.a. Aufnahmen r= 0,881; laterale Aufnahmen r= 0,783) den stärksten Einfluss auf das Dosisflächenprodukt gefolgt vom Body Mass Index (p.a. Aufnahmen r= 0,864; laterale Aufnahmen r= 0,668).

5 Zusammenfassung

Um das Ausmaß der Strahlenexposition in der Röntgendiagnostik besser beurteilen und vergleichen zu können, kam es im Zuge der Patientenschutzrichtlinie EURATOM 97/43 zu einer europaweiten Einführung diagnostischer Referenzwerte. Als geeignete Messgröße zur Erfassung der Strahlenexposition wurde dabei das Dosisflächenprodukt empfohlen.

Mit Hilfe eines Schädelphantoms wurde anhand von zwei verschiedenen Aufnahmeystemen (Röntgenbildverstärker, Flat Panel Detektor) der Einfluss von Änderungen der Belichtungsparameter (Röhrenspannung, Filterung, Einblendung) auf das Dosisflächenprodukt untersucht. Bei Verwendung unterschiedlicher Einblendungs- und Kassettenformate wurden durch Erhöhung der Aufnahmespannung Dosisreduktionen zwischen 21,05% und 38,84% erzielt. Eine Steigerung der Filterung von 0,1mm auf 0,3mm führte zu einem prozentualen Rückgang des Dosisflächenprodukts zwischen 29,64% und 35,30%. Bei organangepasster Einblendung wurden Dosisreduktionen bis zu 53,25% gemessen. Der Vergleich der Strahlenexpositionswerte beider Aufnahmeysteme zeigte keinen signifikanten Unterschied.

6 Anhang

6.1 Literaturverzeichnis

17. Chu RY, Parry C, Eaton BG. Entrance skin exposure in PA chest radiography. Radiologic Technology Jan-Feb;69[(3)], 251-254, 1998. Department of Radiologic Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, USA.

genstrahlen und der Bildgebenden Verfahren Apr;172[(4)], 391-396, 2000. Medizinisches
Zentrum für Radiologie, Abteilung Strahlendiagnostik, Klinikum der Philipps-Universität
Marburg. kurtz@mrs1.ukl.uni-freiburg.de.

lag.

50. Laubenberger Th, Laubenberger J. Technik der medizinischen Radiologie. Diagnostik,
Strahlentherapie, Strahlenschutz für Ärzte, Medizinstudenten und MTRA. 7., 1-635, 1999.
Köln, Deutscher Ärzte Verlag.

51. Leppek R, Bertrams SS, Höltermann W, Klose KJ Radiation exposure due to bedside chest
radiography during intensive care. Cumulative dose and additional morbidity risk of long term
Abteilung für Strahlendiagnostik, Philipps-Universität Marburg.

53. Lindner M. Entwicklung eines zählenden Pixeldetektors für "Digitales Röntgen". 1-153,
2001. Mathematisch-Naturwissenschaftliche Fakultät der Rheinischen Friedrich-Wilhelms-
Universität Bonn. 2001.

54. Link TM, Heppe A. Physikalische und technische Grundlagen der Radiologie. 1-317,

56. Little MP, Tawn EJ, Tzoulaki I et al. A Systematic Review of Epidemiological Associa-
tions between Low and Moderate Doses of Ionizing Radiation and Late Cardiovascular Ef-

58. Montgomery A, Martin CJ. A study of the application of paediatric reference levels. Br J
Radiol Oct;73[(874)], 1083-1090, 2000. Western Infirmary, Dumbarton Road, Glasgow G11
6NT, UK.

59. Mould RF. Invited review: Rontgen and the discovery of X-rays. Br J Radiol 68[815],

60. Muhogora WE, Nyanda AM. The Potential for Reduction of Radiation Doses to Patients
Undergoing some Common X Ray Examinations in Tanzania. Radiat Prot Dosimetry 94[1],

61. Nagel HD. Comparison of performance characteristics of conventional and K-edge filters

copper filtration. Br J Radiol 73[865], 36-42, 2000. Department of Radiology, St Mary's Hos-
pital, London, UK.

individuals against the dangers of ionizing radiation in relation to medical exposure, and re-

64. Papadimitriou D, Perris A, Molfetas G et al. Patient Dose, Image Quality and Radiographic
Techniques for Common X ray Examinations in Greece and Comparison with the European

82. Shannoun F, Zeeb H, Back C et al. Medical exposure of the population from diagnostic use of ionizing radiation in Luxembourg between 1994 and 2002. Health Physics 91[(2)], 154-162, 2006. Ministry of Health, Directorate of Public Health, Department of Radiation Protection, L-2120 Luxembourg, Luxembourg; University of Bielefeld, School of Public Health, P.O. Box 10 01 31, D-33501 Bielefeld, Germany; University of Mainz, Institute of Medical Biometry, Epidemiology and Informatics, D-55101 Mainz, Germany.

92. Vano E, Geiger B, Schreiner A et al. Dynamic flat panel detector versus image intensifier in cardiac imaging: dose and image quality. Physics in Medicine and Biology Dec 7;50[(23)], 5731-5742, 2005. Radiology Department, Medicine School, Complutense University and San Carlos University Hospital, Madrid, Spain. eliseov@med.ucm.es.

6.2 Lebenslauf

Persönliche Daten:

Name: Bliemel
Vorname: Christopher Franz Randolf Peter
Geburtsdatum: 11.09.1980
Geburtsort: Landshut
Adresse: Haspelstrasse 16 A
 35037 Marburg

Schulausbildung:

1986 - 1990 Grundschule Landshut-Berg
1992 - 1999 Maristengymnasium Furth b. Landshut

Zivildienst:

1999 - 2000 Zivildienstleistender am Kreiskrankenhaus Landshut-Achdorf

Studium:

2000 - 2007 Studium der Humanmedizin in Marburg, Berlin, Luzern und Zürich

Ärztliche Funktion:

Seit 10 / 2007 Assistenzarzt an der Klinik für Unfall-, Hand- und Wiederherstellungs-
chirurgie der Philipps-Universität Marburg
6.3 Verzeichnis der akademischen Lehrer

Meine akademischen Lehrer in Marburg waren die Damen und Herren:

6.4 Danksagung

Zunächst bin ich meinem Doktorvater Herrn Univ.-Prof. Dr. med. Klaus Jochen Klose für die Überlassung des Dissertationsthemas zu Dank verpflichtet. Ganz besonders danke ich aber meinem Betreuer, Herrn Dr. med. Ronald Leppek, für die sorgfältige Heranführung an die Problematik, seine äußerst geduldige Hilfe und die intensive Betreuung bei der Erstellung dieser Arbeit. Zu jedem Zeitpunkt stand er mir mit uneingeschränktem Engagement bei Fragen und Problemen mit Rat und Tat zur Seite.

Bedanken möchte ich mich außerdem bei Herrn Univ.-Prof. Dr. med. Volker Klingmüller für die Möglichkeit meine experimentellen Messreihen an der Klinik für pädiatrische Radiologie durchzuführen. Zu Dank bin ich auch Herrn Günther Bitterlich für die freundliche Überlassung des Schädelphantoms verpflichtet, ohne welches meine Messungen nicht erhoben werden konnten.

Meiner Freundin Judith danke ich für die zahlreichen Momente der Aufmunterung sowie die hilfreichen Ratschläge gerade in der Endphase dieser Dissertation.

6.5 **Ehrenwörtliche Erklärung**

Hiermit erkläre ich ehrenwörtlich, dass ich die dem Fachbereich Medizin in Marburg zur Promotionsprüfung eingereichte Arbeit mit dem Titel

Strahlenexpositionswerte in der Röntgendiagnostik - eine Analyse ausgewählter Untersuchungsverfahren nach Einführung von diagnostischen Referenzwerten.

in der Abteilung für Strahlendiagnostik des Zentrums für Radiologie unter der Leitung von Herrn Univ.-Prof. Dr. med. Klaus Jochen Klose ohne sonstige Hilfe selbst durchgeführt habe und bei der Verfassung der Arbeit keine anderen als die in der Dissertation angeführten Hilfsmittel benutzt habe.

Ich habe bisher an keinem in- oder ausländischen medizinischen Fachbereich ein Gesuch um Zulassung zur Promotion eingereicht noch die vorliegende oder eine andere Arbeit als Dissertation vorgelegt.

Marburg, den 14.07.2008

Christopher Bliemel