Klonierung der Human Airway Trypsin-like Protease und Untersuchungen zu ihrer Fähigkeit der Aktivierung des Influenza A-Virus Hämagglutinins

Inaugural-Dissertation zur Erlangung des Doktorgrades der gesamten Humanmedizin
dem Fachbereich Medizin der Philipps-Universität Marburg

vorgelegt von
Michaela H. Beyerle aus Hagen/Westfalen
Marburg 2008
Inhaltsverzeichnis

Zusammenfassung ................................................................. 7

1. Einleitung ........................................................................... 8

1.1. Influenza ........................................................................ 8

1.1.1. Historischer Überblick .................................................. 8

1.1.2. Ätiologie ...................................................................... 11

1.1.3. Pathogenese und Klinik .................................................. 12

1.1.4. Therapie und Prophylaxe ............................................... 14

1.1.5. Mikrobiologie und Klassifizierung der Influenzaviren ....... 15

1.1.5.1. Influenza A-Virus ...................................................... 16

1.1.5.1.1. Replikationszyklus Influenza A-Virus ...................... 19

1.1.5.1.2. Hämagglutinin (HA) ................................................ 22

1.2. Bedeutung der Aktivierungsproteasen .............................. 26

1.2.1. PRSS22 (protease serine S1 family member 22) .............. 28

1.2.2. PRSS8 (protease serine S1 family member 8) ................. 28

1.2.3. Human Airway Trypsin-like Protease (HAT) ................. 29

1.2.3.1. Eigenschaften und Lokalisation der Human Airway Trypsin-like Protease (HAT) .............................................................. 29

1.2.3.2. Genetik und Molekularbiologie von HAT .................. 31

1.2.3.3. Weitere Untersuchungen zu HAT ............................... 32

1.2.4. TMPRSS2 (transmembrane protease, serine, 2) ............... 33

1.3. Zielsetzung ................................................................. 34

2. Material ........................................................................... 35

2.1. Geräte .......................................................................... 35

2.2. Verbrauchsmaterialien .................................................... 35

2.3. Chemikalien ................................................................... 36

2.4. Sera ............................................................................. 37

2.5. Medien für Zellkulturtechniken ......................................... 38

2.6. Enzyme ......................................................................... 38

2.7. Kits ............................................................................. 38

2.8. Plasmide und Vektoren .................................................... 39

2.8.1. pIRESbleo3, Klonierungsvektor .................................. 39

2.8.2. pCAGGS + MCS, Klonierungsvektor .............................. 40
2.8.3. pCR®2.1-TOPO®-Vektor ................................................................. 41
2.9. Oligonukleotide und Sequenzen ........................................................................ 42
2.10. Antikörper ................................................................................................. 43
2.11. Eukaryotische Zellen .................................................................................... 44
2.12. Influenzavirusstämmle ............................................................................... 44
2.13. Bakterienstämmle ....................................................................................... 44
3. Methoden ........................................................................................................... 45

3.1. Molekularbiologische Methoden .................................................................... 45

3.1.1. Isolierung von Plasmid-DNA aus Bakterien im kleinen Maßstab (Minipräparation) .................................................................................................................. 45
3.1.2. Isolierung von Plasmid-DNA im großen Maßstab (Maxipräparation) .......... 46
3.1.3. RNase-Behandlung .................................................................................... 48
3.1.4. Quantifizierung von Nukleinsäuren ............................................................ 48
3.1.5. RNA-Isolierung aus eukaryotischen Zellen .................................................. 48
3.1.6. Überprüfung von Sequenzen mittels Integration in den pCR®2.1-TOPO®-Vektor .................................................................................................................. 50
3.1.7. Polymerasekettenreaktion (PCR) und rekombinante PCR ......................... 51
3.1.8. QuickChange® Site-Directed Mutagenesis Kit ........................................... 53
3.1.9. Reverse Transkription und Polymerasekettenreaktion (RT-PCR) ............... 54
3.1.10. Aufreinigung von Desoxyribonukleinsäure (DNA)-Molekülen .................. 55
    3.1.10.1. Aufreinigung mittels QIAquick™ PCR Purification Kit ....................... 55
    3.1.10.2. Alkoholfällung .................................................................................... 56
    3.1.10.3. Fällung mittels „89/11“-Reagens ............................................................. 56
3.1.11. Verdau von Doppelstrang-DNA mit Restriktionsendonukleasen ................. 57
    3.1.11.1. Analytische Restriktion doppelsträngiger DNA ...................................... 57
    3.1.11.2. Präparative Restriktion doppelsträngiger DNA ...................................... 58
3.1.12. Elektrische Auftrennung von DNA-Fragmenten in der Agarosegelelektrophorese ................................................................. 58
3.1.13. Anfärbung und Photographieren der Gele ............................................... 59
3.1.15. Ligation von DNA-Fragmenten ................................................................. 60
3.1.16. Dephosphorylierung der 5'-Enden linearisierter Plasmide ....................... 61
3.1.17. Sequenzierung von DNA ......................................................................... 61
    3.1.17.1. Sequenzierung nach Sanger ................................................................. 61
4.7. Nachweis der HAT-Proteinaktivität mittels MCA-Assay in den Zellen der stabilen Zelllinie MDCK-HAT-args................................................................. 87
4.8. Herstellung der Plasmidvektoren pCAGGS-HAT-flag3’ und pCAGGS-HAT-flag5’ ... 88
4.9. HAT-Nachweis in transient transfizierten Zellen mittels Immunfluoreszenz........ 90
5. Diskussion.................................................................................................................. 93
5.1. Überblick über die Zielsetzung dieser Arbeit.......................................................... 93
5.2. Klonierung von HAT aus humanen Atemwegsepithelzellen und Etablierung stabil HAT-exprimierender Zellen........................................................................ 93
5.3. Infektion der stabilen MDCK-HAT-Zellen mit Influenza A-Virus........................ 94
5.4. Überprüfung der HAT-Aktivité................................................................................... 95
5.5. Das Plasmid pIRESbleoHAT-args................................................................. 95
5.6. Die Plasmide pCAGGS-HAT-flag5’ und pCAGGS-HAT-flag3’.............................. 96
5.7. Weitere Ansätze zum Nachweis von HAT.............................................................. 96
5.8. Spaltung von HA durch HAT.................................................................................. 97
5.9. Ausblick.................................................................................................................... 98
6. Literaturverzeichnis..................................................................................................... 100
7. Sequenzen................................................................................................................... 115
7.1. pIRESbleo3.......................................................................................................... 115
7.2. pCAGGS+MCS(c5)............................................................................................... 117
7.3. HAT......................................................................................................................... 120
7.4. Human Airway Trypsin-like Protease, kloniert...................................................... 121
ANHANG......................................................................................................................... 127
Zusammenfassung

Zur Aktivierung des Influenza A-Virus muss während des Replikationszyklus in der Zelle das Oberflächenprotein Hämagglutinin durch eine Wirtsprotease gespalten werden, um infektiöse Tochterviren generieren zu können. Die humanen Aktivierungsproteasen, die für diesen Prozess bei der Influenzavirusinfektion im menschlichen Organismus verantwortlich zeichnen, sind bis heute nicht eindeutig identifiziert.

In dieser Arbeit wurde eine der möglichen humanen Aktivierungsproteasen, die Human Airway Trypsin-like Protease (HAT), kloniert und ihre Fähigkeit, Influenza A-Virus Hämagglutinin zu aktivieren, untersucht.


Die Klonierung der Protease, die Herstellung unterschiedlicher Plasmide sowie die Entwicklung stabiler Zelllinien mit einigen dieser Plasmide sind die wesentlichen Inhalte der vorliegenden Arbeit.

Weiterhin wurden verschiedene Versuchsansätze verfolgt, die der weiteren Untersuchung der Aktivität und der Expression der Human Airway Trypsin-like Protease in den Zellen der entwickelten Zelllinien dienten. Die Spaltung von Hämagglutinin durch HAT und die daraus resultierende Aktivierung des Influenzavirus konnte in den in hier vorgestellten Versuchsreihen nicht bewiesen werden. In einer auf diesen Versuchsreihen aufbauenden Arbeit am Institut für Virologie in Marburg gelang es jedoch, in weiterführenden Versuchen die Aktivierung und Spaltung von Hämagglutinin durch HAT mit den in der vorliegenden Arbeit generierten Plasmiden nachzuweisen\(^1\).

Die Klonierung der Vektoren war hierfür wesentliche Voraussetzung. Der schließlich in der späteren Arbeit erbrachte Erfolg bestätigte die ursprüngliche Vermutung, dass HAT eine der möglichen Aktivierungsproteasen des Influenzavirus im Menschen sei. Somit leistet die vorliegende Arbeit ihren wissenschaftlichen Beitrag zur Untersuchung der Biologie und Pathologie der Influenzavirusinfektion im menschlichen Organismus.

1. Einleitung

1.1. Influenza

1.1.1. Historischer Überblick


In der Diskussion um den primären Ursprung der Pandemie richtete sich die Aufmerksamkeit zunächst auf die USA, wo im März 1918 in Detroit/South Carolina und im Gefängnis von St. Quentin von Ausbrüchen der Krankheit berichtet wurde. Man vermutete das erste Auftreten der Krankheit vor allem in den amerikanischen Armee-Camps, von wo aus sich im Zuge der
Einleitung

Truppenbewegungen im ersten Weltkrieg das Virus über den gesamten Globus ausbreiten konnte. Im April 1918 wurden in den westlichen Häfen Frankreichs, wo die amerikanischen Truppen landeten, weitere Ausbrüche verzeichnet (Guenel, 2004). Ebenso geben Ausbrüche in Brest und Boston im Herbst 1918 Hinweis auf die Bedeutung der Truppenbewegung im Zusammenhang mit der Verbreitung der Krankheit.


Einleitung

Domänen, wie die der Rezeptorbindungstasche, der Fusionsproteine und antigener Epitope im Raummodell (Wiley and Skehel, 1987).


1.1.2. Ätiologie

Während Influenza A-Viren außer dem Menschen noch viele andere Säugetiere und Vögel infizieren (Fields, 2007), konnten Influenza B-Viren bisher nur aus Menschen und Influenza C-Viren nur aus Menschen und Schweinen isoliert werden.

Influenza A und B sind ubiquitär verbreitet und treten in jährlichen Epidemien auf beiden Erdhemisphären zeitversetzt auf. Auf der Südhalbkugel geschieht dies in den Monaten Mai bis Oktober und auf der nördlichen Hemisphäre in den Monaten November bis April.

Abb.1. Beobachtung der saisonalen Aktivität von Influenza auf der nördlichen Hemisphäre
Verlaufsbeobachtung über 24 Jahre: 1982/83 bis 2005/06 (Quelle: Department of Health and Human Services; Centers for Disease Control and Prevention, Atlanta, U.S.A.)


Dabei kommt es zu einer Übersterblichkeit abwehrgeschwächter und älterer Menschen. Auch im Kindesalter sowie bei Vorliegen chronischer Erkrankungen von Herz oder Lunge, bei Diabetes, Niereninsuffizienz oder anderen Komorbiditäten, kommt es häufig zu schweren Verläufen mit ernsten Komplikationen, die bis zum Tode führen können.

1.1.3. Pathogenese und Klinik


*Abb. 2. Ätiologie und Übertragungswege des Influenza A-Virus*

schweren Verläufen, die insbesondere bei geschwächter Abwehrlage der Infizierten zu beobachten sind, werden große Teile des Epithels abgetragen. Infolge der Nekrosen können Gewebseinrisse und Blutungen entstehen, die das hämorrhagische Verlaufsbild prägen, das sich in der hämorrhagischen Tracheitis bis hin zur häufig letal endenden primär-hämorrhagischen Influenzapneumonie äußert. Greift das Virus auf die Zellen des Lungenparenchyms über, entwickelt sich eine interstitielle Pneumonie. Diese Form der primären Influenza-Pneumonie kennzeichnet ebenfalls einen schweren Verlauf, der bis zum Tod führen kann.


Perakute Verläufe, die auch bei Jugendlichen und jungen Erwachsenen beobachtet werden, sind wegen der hohen Mortalität, vor allem durch ein sekundäres Herz-Kreislaufversagen, besorgniserregend.

Familie Streptococcaceae, wie Aerococcus viridans, sind in der Lage, das Hämagglutinin bestimmter Influenza-Virusstämmen durch Spaltung direkt zu aktivieren (Scheiblauer et al., 1992). Das erklärt die bedeutende Rolle einer bakteriellen Koinfektion in der Entwicklung eines schweren Krankheitsverlaufs und die Tatsache, dass die Zahl der Influenzavirus-Pneumonien mit bakteriellen Koinfektionen dreifach so hoch ist wie die der primär viralen Pneumonien (Tashiro et al., 1987). Heute sind bakterielle Superinfektionen antibiotisch weitgehend beherrschbar, früher waren sie jedoch verantwortlich für die hohe Letalität der Grippeinfektionen.

Bei unkomplizierten Verläufen sind die Patienten nach durchschnittlich sechs Tagen wieder fieberfrei, die akuten Symptome verschwinden und es beginnt die Regeneration des zilientragenden Epithels. Geringe körperliche Belastbarkeit und Orthostase-Probleme können jedoch noch über Wochen anhalten.

1.1.4. Therapie und Prophylaxe


Die Sialinsäurederivate Zanamivir und Oseltamivir hemmen die Virusausbreitung im Körper durch Blockierung der influenzaviralen Neuraminidase und können damit, wenn sie innerhalb von 36 Stunden post infectionem eingenommen werden, den Krankheitsverlauf abschwächen und die Krankheitsdauer verkürzen. Die Schwierigkeit, in klinischen Studien die Empfindlichkeit der Virusneuraminidase zuverlässig zu messen und die unzureichende

Die erwähnten bakteriellen Superinfektionen werden entsprechend dem isolierten Erreger nach einem spezifischen Antibiogramm behandelt.


Die Herstellung eines Lebendimpfstoffes birgt Schwierigkeiten, da die Gefahr besteht, durch Rekombination ein hochpathogenes Virus zu generieren. Dennoch gibt es Versuche, durch die Erzeugung rekombinanter Influenzaviren diesem Problem zu begegnen. Die Idee ist die Herstellung eines abgeschwächten, reассortierten Virus, dessen Hämagglutinin- und Neuraminidase-Gene aus einem virulenten Virus stammen, während die restlichen Gene aus einem abgeschwächten Donor-Virus, insbesondere einer kältesensitiven Variante stammen. Studien mit bi- und trivalenten, kältesensitiven, rekombinannten Influenzavirus-Impfstoffen, bestehend sowohl aus Influenza A-Virussubtypen (H1N1 und H3N2), als auch aus dem Influenza B-Virus, konnten eine reduzierte Viruslast und eine verminderte Serum-Antikörper-Reaktion in Erwachsenen zeigen (Keitel et al., 1993). Darüber hinaus wurden als eine neue Strategie NS1-modifizierte, attenuierte Influenzaviren als Lebendimpfstoff vorgestellt, mit denen im Tierversuch erfolgreiche Resultate erzielt worden waren (Solorzano et al., 2000).

Doch solange einige wichtige Pathogenitätsfaktoren der Influenzavirusinfektion nicht vollständig bekannt sind, bleiben die Strategien in Prophylaxe und Therapie optimierungsfähig und weitere Bemühungen, verbesserte Impfstoffe gegen das Influenzavirus zu generieren, sind indiziert (Keitel, 2002).

1.1.5. Mikrobiologie und Klassifizierung der Influenzaviren

Influenzaviren gehören zur Familie der Orthomyxoviridae (griech.: ortho = richtig; myxo = Schleim) (Lamb and Krug, 2001). Die Viren dieser Familie zeichnen sich durch ein
Einleitung


1.1.5.1. Influenza A-Virus

Die in der Lipiddoppelschicht der Virushülle spikeförmig angeordneten Oberflächenproteine lassen sich drei Typen unterscheiden. Zum einen finden sich hier die beiden Hauptantigene Hämagglutinin (s.u.) und die Neuraminidase (Rott et al., 1976), ein als Tetramer vorliegendes Typ-II-Membranprotein, dessen vier identische Untereinheiten durch

Unter der Lipidmembran der Virushülle befindet sich die 6 nm dicke, aus dem M1 Protein bestehende Matrix. Verschiedenen Untersuchungsergebnisse postulieren, dass das Matrixprotein M1 sowohl mit den RNPs als auch mit den anderen viralen Proteinen HA, NA und M2 interagiert (Dimmock et al., 1989; Zhao et al., 1998; Nayak et al., 2004). Während des Replikationszyklus ist phosphoryliertes M1 für den Austritt neu-synthetisierter RNPs aus dem Zellkern und den Transport zur Plasmamembran erforderlich (Bui et al., 2000). Alle Influenzaviren besitzen eine eigene trimere RNA-abhängige RNA-Polymerase, die nach der Infektion der Replikation und der Transkription des Virusgenoms dient. Ihr heterotrimerer Komplex setzt sich zusammen aus den drei Untereinheiten PB1, PB2 und PA, die jeweils an den 3′-Enden der RNPs kolokalisiert sind (Noda et al., 2006). Diese Polymerase katalysiert die im Zellkern der Wirtszelle ablaufenden RNA-Syntheseprozesse. Die drei Proteinketten wurden nach ihrem Verhalten bei der Elektrofokussierung benannt. Während die beiden PB-
Einleitung


Das in infizierten Zellen exprimierte Phosphoprotein NS1 hemmt sowohl den Splicevorgang, als auch die Polyadenylierung zellulärer prä-mRNAs, was zu deren Retention im Zellkern führt und dazu beiträgt, dass die Zelle nach kurzer Zeit ausschließlich virale Proteine produziert. Das NS1-Protein besitzt die Fähigkeit, an Doppelstrang-RNA zu binden und damit die Ausbildung eines interferoninduzierten antiviralen Status in der Zelle zu antagonisieren (Reinhardt and Wolff, 2002).

Abb.4  Schematische Darstellung des Influenza A-Virus

Das primär als Nichtstrukturprotein NS2 identifizierte Nuklear-Export-Protein (NEP) konnte, wenn auch nur in geringen Mengen, als Bestandteil des Virions nachgewiesen werden. Es spielt vermutlich ebenfalls eine Rolle im Zellkernexport viraler RNPs (O'Neill, 1998).

Die genaue Bezeichnung die Wirtsquelle, der Ursprungsort, die Stammnummer und das Jahr der Isolation benannt, z.B. Mallard/Alberta/205/98 (H2N9).

Bei Hämagglutinin konnten bis heute 16 verschiedene Subtypen und für die Neuraminidase neun unterschiedliche Subtypen identifiziert werden (Röhm et al., 1996; Steinhauer, 1999). Die daraus resultierende Vielzahl von Kombinationsmöglichkeiten zwischen HA- und NA-codierenden Gensegmenten bestimmt die große Zahl der möglichen Virussubtypen. Der als Antigen-Shift bezeichnete Austausch von RNA-Segmenten und die damit verbundene Bildung neuer Subtypen führt zu einer Veränderung der Oberflächenstruktur, die im Wirtsorganismus eine Wiedererkennung und damit eine immunologische Gedächtnisreaktion abschwächt oder gar unmöglich macht. Erst spät ist der Organismus in der Lage, das Virus durch eigene Antikörper zu neutralisieren, was die Schwere der Infektion und die Ausbreitung des Virus in einer Population verstärkt. Durch den Antigen-Shift erklären sich somit die immer wieder auftretenden Pandemien des Influenzavirus, die mit einer erheblichen Mortalität verbunden sein können (Shimizu, 2000).


1.1.5.1.1. Replikationszyklus Influenza A-Virus

Einleitung

Einleitung

Abb. 5. Replikationszyklus des Influenza A-Virus

Vom Golgi-Apparat aus werden die Proteine durch die Golgi-Vesikel zur Zellmembran transportiert. Bei bestimmten Influenza A-Virusinfektionen ist es erforderlich, dass die Azidität im trans-Golgi-Netzwerk durch das M2-Protein reduziert wird, um die vor der Assemblierung und der folgenden Abknospung erforderliche Passage des säuresensiblen Hämagglutinins zur Plasmamembran zu ermöglichen (Chizmakov et al., 1996).

Das im späteren Verlauf des Replikationzyklus gebildete M1-Protein assoziiert im Zellkern, gebunden an das Nuklear-Export-Protein, mit den vRNPs und induziert deren Export ins Zytosol. Aufgrund der spezifischen Affinität des M1-Proteins werden ausschließlich vRNPs ausgeschleust. Die Signalstellen für die Kernlokalisierung des NP werden durch die Bindung von M1 verdeckt; dies verhindert einen möglichen Rücktransport der vRNPs in den Nucleus (Whittaker et al., 1996).

Die Morphogenese neuer Viren beginnt, wenn genügend vRNPs und Strukturproteine synthetisiert wurden. Diese assemblieren in den Bereichen der Zellmembran, die
ausschließlich mit den neu synthetisierten viralen Membranproteinen besetzt sind. Das Matrixprotein M1 bestimmt durch die Assoziation an HA, NA, die RNPs und die Zellmembran den Prozess der Virushüllenbildung (Gomez-Puertas et al., 2000). In diesem letzten Schritt der Morphogenese wird das Kapsid mit der zellulären Lipidmembran umhüllt, die neuen Viren werden abgeschnürt und ausgeschleust. Dabei werden endständige N-Acetyleneuraminsäuren viraler Glykoproteine von der Neuraminidase abgespalten, um eine Anheftung an der Zellmembran zu verhindern und die einzelnen Virions aus ihrem Verband zu lösen. Diese können jetzt neue Zellen infizieren.

1.1.5.1.2. Hämagglutinin (HA)

Das Hämagglutinin (HA), benannt nach der Fähigkeit der Influenza-Viren, Erythrozyten zu agglutinieren (Hirst, 1941), ist ebenso verantwortlich für die zu Beginn der Influenza-Virusinfektion stattfindende Bindung an Rezeptoren der Wirtszelle, wie für die Verschmelzung der Virushülle mit der Endosomenmembran. Da das Immunsystem gegen die Struktur des Hämagglutinins die meisten Antikörper bildet und das Hämagglutinin die Fusionsprozesse steuert, spielt es die Schlüsselrolle im Infektionsprozess (Wiley and Skehel, 1977).


![Abb.6. Hämagglutinin: a) ungespalten, HA$_0$, mit seitlicher Schleife, 329. Aminosäurenposition (Arginin) (Pfeil)
b) gespalten, HA$_1$ und HA$_2$ über Disulfidbrücke noch miteinander verbunden
c) Entfaltung des Moleküls mit Exposition des Kopfteils aus hydrophoben Aminosäuren im sauren Milieu. Der Kopfteil befähigt das Virus zur Verschmelzung mit der Endosomenmembran.](image)


Das Aminosäurenmotiv der Spaltstelle kann variieren. Das Motiv bestimmt den Ort, wo die Spaltung stattfindet und die Protease, die vom Virus genutzt wird. Besitzt das HA in seiner
Einleitung

Spaltstelle die multibasische Erkennungssequenz für subtilisin-ähnliche Proteasen wie Furin (Garten et al., 1981) oder PC6 (Horimoto et al., 1994; Garten et al., 2004), erfolgt die Spaltung bereits intrazellulär während der Assemblierung der Virionen im Replikationszyklus. Diese charakteristischen multibasischen Spaltstellen liegen nur bei hochpathogenen aviären Influenzastämmen vor, welche zu den HA-Subtypen H5 oder H7 gehören (Steinhauer, 1999).

\[ \text{Abb. 7. Schnittstellen-Motive der HA-Subtypen} \]


Aufgrund der multibasischen Spaltstelle, an der die ubiquitäre Protease Furin angreift, kann das Hämagglutinin der hochpathogenen aviären Virusstämme in allen Geweben gespalten werden. Die so aktivierten Viren breiten sich über das Gefäßsystem systemisch in den Endothelien und epithelialen Zellen der Wirtsorgane aus (Feldmann et al., 2000). In Zellkulturen, in denen HA

Bei den aviären Stämmen von niedriger Pathogenität sowie bei den humanen Virusstämmen liegt zwischen den beiden Untereinheiten eine monobasischen Spaltstelle, die von trypsinähnlichen Serinproteasen gespalten wird. Sie spalten HA

In humanen epithelialen Drüsenzellen (HAEC) wird HA

Die Spaltung und die Virusaktivierung konnten durch Inhibitoren wie Aprotinin und Leupeptin gehemmt werden, während die Zugabe von fetalem Kälberserum, welches mehrere hochmolekulare Antiproteasen enthält, die mit extrazellulären Proteasen konkurrieren, keine Hemmung der Virusausbreitung in HAEC induzierte. Diese Ergebnisse weisen ebenfalls darauf hin, dass im humanen respiratorischen Epithel die Spaltung des Influenza A-Virus Hämagglutinins ein von Serinproteasen begleiteter, zellassoziiert Prozess ist, der durch niedermolekulare exogene Serinproteasen-Inhibitoren gehemmt werden kann (Zhirnov et al., 2002).
1.2. Bedeutung der Aktivierungsproteasen


Daher ist die Charakterisierung HA-spaltender Endoproteasen in vivo von großer Bedeutung für das biologische Verständnis und unter Umständen für eine gezielte Therapie der Influenzavirusinfektion.


In vitro-Versuche erbrachten den Nachweis, dass Trypsin und trypsinähnliche Serinproteasen ebenso wie einige andere Proteasen, u.a. Akrosin und Urokinase, an der HA-Spaltstelle angreifen und zur Spaltung von HA befähigt sind (Lazarowitz et al., 1973; Klenk et al., 1975).


Sakai et al. haben gezeigt, dass im Rahmen einer Infektion mit dem Sendai-Virus die Kompartimentierung dieser Protease pathologisch verändert wird. Das Fusionsprotein des Sendai-Virus wird, wie das Hämagglutinin, an einem Argininrest in die Untereinheiten F₁ und F₂ gespalten. Während im gesunden Respirationstrakt Tryptase Clara weder in bronchiolären Flimmerzellen noch in Alveolarzellen vorkommt, wurde sie zu Beginn der Infektion in luminalen peripheren Membranen sowohl von nicht-zilientragenden als auch von


intrazelluläre freie Calcium erhöht und die Signaltransduktion initiiert. Die von der Enteroprotease aktivierten PAR2 finden sich an der apikalen Membran von Enterozyten (Hooper et al., 2001), während HAT PAR2 humaner Bronchialepithelzellen aktiviert (Miki et al., 2003, Matsushima, 2006).
Für die HA-Aktivierung humanpathogener Influenza-Viren gelten vier Serinproteasen als vielversprechende Kandidaten:

1. PRSS22 *(protease serine S1 family member 22)*
2. PRSS8 *(protease serine S1 family member 8)*
3. HAT *(Human Airway Trypsin-like Protease)*
4. TMPRSS2 *(transmembrane protease, serine, 2)*

### 1.2.1. PRSS22 *(protease serine S1 family member 22)*


### 1.2.2. PRSS8 *(protease serine S1 family member 8)*

PRSS8, auch unter dem Synonym Prostasin bekannt, ist ebenfalls eine Serinprotease der Serin-S1-Proteasen Familie. Diese Protease ist meist membrangebunden in einer GPI-verankerten Form und konnte außer aus der Lunge auch aus Prostata, Niere, Gastrointestinaltrakt und Haut isoliert werden. PRSS8 wird primär als Transmembranprotein mit einem Carboxy-terminalen Peptidanker synthetisiert. Zu ihrer Aktivierung muss das Zymogen an der trypsinartigen Spaltstelle hydrolisiert werden. Die Peptidase wird vor allem in Epithelzelllinien des humanen Respirationstraktes exprimiert. In diesen Zellen bewirkt PRSS8 eine Aktivitätssteigerung des Amilorid-sensitiven epithelialen Natriumkanals (ENaC) an der Zelloberfläche. Bei Untersuchungen des Krankheitsbildes der zystischen Fibrose (CF) am ΔF598 CF Epithel konnte die Bedeutung der Protease in der regulativen Funktion der
Einleitung

Natriumionenströme gezeigt werden (Tong et al., 2004). PRSS8 wird von Aprotinin in seiner Funktion gehemmt.

1.2.3. Human Airway Trypsin-like Protease (HAT)


1.2.3.1. Eigenschaften und Lokalisation der Human Airway Trypsin-like Protease (HAT)


Es zeigte sich in verschiedenen Untersuchungen, dass auch HAT an den bereits beschriebenen Protease-Aktivierten-Rezeptoren (PAR) vom Typ 2 agonistisch wirkt durch die Spaltung der aminoterminalen Rezeptordomäne. PAR2 werden durch Serinproteasen der Trypsin-Familie aktiviert, wie z.B. Trypsin oder die Mastzelltryptase (Chokki et al., 2004). In humanen Zellen des Bronchialepithels wurde in vitro ein Anstieg der intrazellulären
Calciumkonzentration durch die Aktivierung von PAR2 durch HAT nachgewiesen (Miki et al., 2003). PAR2 ist G-Protein gekoppelt. Seine Aktivierung führt über die Aktivierung der Phospholipase C zur Hydrolyse des Phosphatidylinositol-bisphosphats und zur Freisetzung von Calciumionen aus den intrazellulären Speichern des sarkoplasmatischen Retikulums (Matsushima et al., 2006). In vitro haben Matsushima et al. 2006 auch gezeigt, dass HAT über die Aktivierung von PAR2 die Proliferation humaner bronchialer Fibroblasten stimuliert. Das würde in vivo bedeuten, dass HAT nicht nur die Regeneration im Respirationstrakt mitbeeinflusst, an der in akuten Entzündungen Fibroblasten beteiligt sind, sondern auch das Remodeling durch Fibroblasten, wie die Verdickung der Basalmembranen und der subepithelialen Schichten im Rahmen chronischer Entzündungen.

Einige Lokalisationen von HAT im Respirationstrakt konnten durch immunhistochemische Untersuchungen ermittelt werden. HAT fand sich im Zytoplasma zilientragender Zellen des Bronchialepithels und im basalen Anteil der Zilen. Im Zytoplasma von Zellen der bronchoepithelialen Suprabasalschicht, die mit den zilientragenden Zellen korrespondieren, belegten die Untersuchungen eine granuläre und vesikuläre Immunreaktivität, was auf eine Lokalisation im Golgi-Apparat oder am rauen endoplasmatischen Retikulum hinweist (Takahashi et al., 2001).


Die unterschiedlichen Ergebnisse verdeutlichen zum einen, dass die Lokalisation von HAT im Respirationstrakt noch der genaueren Klärung bedarf, und zum anderen, dass die Expression von HAT im Gewebe in Abhängigkeit vom physiologischen und pathophysiologischen Status des Bronchialepithels sehr variiert. Aufgrund dieser Ergebnisse lässt sich vermuten, dass die Human Airway Trypsin-like Protease an der Abwehr und der mukoziliären Clearance sowohl im gesunden als auch im erkrankten Respirationstrakt...
Einleitung

beteiligt ist und darüber hinaus möglicherweise auch Prozesse und Gewebeveränderungen chronischer Atemwegserkrankungen verstärkt und unterstützt (Takahashi et al., 2001).

1.2.3.2. Genetik und Molekularbiologie von HAT

Im Sputum liegt HAT als Monomer mit einem Molekulargewicht von 27 kDa vor. Die Analyse der cDNA läßt darauf schließen, dass HAT als Vorläufermolekül mit einem Molekulargewicht von 48 kDa synthetisiert wird und diese membranegebundene Vorstufe durch limitierte Proteolyse zu einer löslichen Protease aktiviert wird, die an die Schleimhaut freigesetzt wird (Takahashi et al., 2001). Das zugehörige Gen wurde kloniert und sequenziert. Das Polypeptid besteht aus 418 Aminosäuren, 232 bilden die extrazelluläre carboxyterminale katalytische Region und 186 Aminosäuren den nicht-katalytischen Bereich.


Abb.8. Aufbau der Human Airway Trypsin-like Protease

(H,N: Aminoterminus; TM: Transmembrandomäne, SEA-Modul: „urchin sperm protein, enterokinase and agrin“-Domäne; P: Prodome/Aktivierungsdomäne; COOH: Carboxyterminus; die Zahlen bezeichnen die Aminosäurenposition der verschiedenen Domänen)

Die nicht-katalytische Region von HAT weist nur wenige Übereinstimmungen mit anderen bekannten Proteasen auf (Yamaoka et al., 1998; Takahashi et al., 2001). In dieser Region liegt vermutlich nahe des Aminoterminus eine hydrophobe Transmembrandomäne.

Neben der Transmembrandomäne ist ein SEA (= urchin sperm protein, enterokinase and agrin) Modul lokalisiert. SEA-Module bilden Domänen, die in vielen Muzinen und membranassoziierten Proteinen zu finden sind (Palmai-Pallag et al., 2005). Es wird vermutet, dass
Die Domänen die die Bindung an die Zelloberfläche vermitteln. In der Gruppe der Typ II Transmembran-Serin-Proteasen gibt es noch einige wenige andere Vertreter, wie die Enteropeptidase, die dieses Modul aufweisen (Hansen et al., 2004).

**1.2.3.3. Weitere Untersuchungen zu HAT**

*In vitro*-Versuche zeigten, dass HAT die Schleimsekretion in Zelllinien des respiratorischen Epithels steigert und die Mukusglykokonjugat-Synthese erhöht. HAT verstärkt die Muzin-Gen-Expression in diesem Fall jedoch wahrscheinlich nicht über PAR2, sondern über den Anti-Amphiregulin-EGFR-Weg. Sollten sich die Ergebnisse *in vivo* bestätigen lassen, wäre HAT mitverantwortlich für die erhöhte Sekretproduktion in den Atemwegen bei Patienten mit chronischen Atemwegserkrankungen (Chokki et al., 2003).

HAT ist in der Lage, Fibrinogen zu spalten, insbesondere dessen α-Kette. Durch Vorbehandlung von Fibrinogen mit der Protease konnte eine Verminderung bis zu einem kompletten Verlust der Thrombin-induzierten Koagulationsfähigkeit erreicht werden. Diese Ergebnisse postulieren, dass HAT eine Rolle in antikoagulatorischen Prozessen im Respirationstrakt, besonders auf der Ebene der mukosalen Membranen spielen könnte, indem sie Fibrinogen spaltet und damit inaktiviert (Tsuchihashi et al., 1997; Yoshinaga et al., 1998).

HAT konnte auch aus anderen Geweben, unter anderem aus der Haut, isoliert werden. In den Epidermiszellen von Psoriasis-Patienten wurde eine erhöhte Expression von HAT und eine erniedrigte Expression des PAR2 festgestellt. Weiterführende Untersuchungen zeigten, dass HAT im Zusammenspiel mit PAR2 die IL-8-Produktion in der Epidermis von Psoriasis-Patienten verstärkt, um die Einwanderung von inflammatorischen Zellen zu erhöhen (Iwakiri et al., 2004). Auch in Bronchialepithelzellen konnte die IL-8-Synthese über die Aktivierung des PAR2 durch die Human Airway Trypsin-like Protease stimuliert werden (Matsushima et al., 2006). Ein Nachweis in Zellen des Nebennierenmarks sowie in adrenergen Tumoren lassen eine Funktion im Wachstum der Nebenniere und in der Adrenaltumorgenese diskutieren (Hansen et al., 2004).

1.2.4. TMPRSS2 \textit{(transmembrane protease, serine, 2)}


Das 492 Aminosäuren große Protein ist androgen-reguliert. Es besitzt die Serinproteasen-Domäne der S1 Familie, die vermutlich an Arginin- oder Lysinresten spaltet, sowie eine SRCR (scavenger receptor cysteine-rich)-Domäne der Gruppe A. Diese Domäne ist involviert in die Bindung an andere Zelloberflächen oder extrazelluläre Moleküle. Desweiteren weist die Protease eine LDLRA (LDL receptor class A)-Domäne auf, die eine Bindungsstelle für Calcium bildet, und eine Transmembrandomäne (Paoloni-Giacobino et al., 1997; Hooper et al., 2000).


Die Fähigkeit von TMPRSS2, das Influenza A-Virus durch die proteolytische Spaltung von Hämaggulitin zu aktivieren, konnte \textit{in vitro} in MDCK-Zellen belegt werden. Die transiente Expression von TMPRSS2 ermöglichte ohne die Zugabe exogenen Trypsins eine multizyklische Replikation von Influenzaviren in diesen Zellen (Garten et al., 2004; Boettcher et al., 2006).
Einleitung

1.3. Zielsetzung

2. Material

2.1. Geräte

Beckmann Coulter™ Zentrifuge Avanti J-25 mit JA-10 Rotor
Beckmann, Frankfurt

Brutschrank, Cytoperm Inkubator
Heraeus, Hanau

Elektrophorese Electrophoresis EPS 301
Amersham Pharmacia Biotech, Freiburg

Eppendorf Zentrifuge 5415 C
Eppendorf-Netheles-Hinz, Hamburg

GeneAmp PCR System 2400
Perkin Elmer, Wiesbaden

GenePulser
Biorad, München

Heizblock
Eppendorf-Netheless-Hinz, Hamburg

MegaBACE™ 500
Amersham Biosciences, Freiburg

MegaBACE™ 1000
Amersham Biosciences, Freiburg

Fluoreszenz-Mikroskop Axiophot
Zeiss, Göttingen

Microzentrifuge
Heraeus, Hanau

Minigelkammer
Kentz, Reiskirchen

Minifuß T
Heraeus, Hanau

Photometer Gene Quant Pro
Amersham Pharmacia, Freiburg

Polaroid Kamera, Gel Doc 2000 + Sony Video Graphic Printer UP-895CE
BioRad GmbH, München

Quarzküvette
Dormed, Hamm

Schüttler für Bakterien + Hefeanzuchten
Hellma, Müllheim

Spektralphotometer (Graphicord)
HT Infors AG, Bottmingen

Spot Kamera, Version 2.1.2
Shimadzu, Japan

Taumelschüttler
Roche Diagnostics, Rotkreuz, Schweiz

Vortex Mixer
Biorad, München

Wasserbad, julabo U3
Gemmy Industrial Corp., Taipei, Taiwan

2.2. Verbrauchsmaterialien

Polypropylenröhrchen 1,5/2 ml
Eppendorf-Netheles-Hinz, Hamburg

Deckgläschen
Menzel Gläser, Braunschweig

Falcon® Röhrchen
BD Biosciences, Heidelberg

Kanüle 25G
BD Biosciences, Heidelberg

Kodak BioMax Röntgenfilm
Kodak, Stuttgart
Material

Neubauer Zählkammer
Nitrozellulose-Membran
Parafilm "M"
Ponal™ Klebstoff
Sterilfilter
Zellkulturflaschen
Zellschaber

2.3. Chemikalien

Acrylamid-Mix (30% AA,0,8% BisAA)  
Agarose SeaKem LE®  
Ammoniumacetat (NH₄CH₃OH)  
Ammoniumpersulfat  
Ampicillin  
Bakto-Hefe-Extrakt  
Borsäure  
Bromphenolblau (BPB)  
4,2-Diamino-2-phenylindol (DAPI)  
1,4 Diazobicyklo-[2,2,2]-Oktan (DABCO)  
Dimethylsulfoxid (DMSO)  
Ethylendiamintetraacetat (EDTA)  
Fluoroprep™  
Fragmentgrößenstandard „1 kb DNA ladder“  
Fragmentgrößenstandard „Gene Ruler® 1 kb DNA ladder“  
Glycerin  
Glycin  
Isopropanol  
Ligationspuffer (ATP-haltig)  
Lipofectamin™ 2000  
ß-Mercaptoethanol  
Methanol

Braun, Ludwigshafen  
AmershamLifeScience, Buckinghamshire, U.K.  
AmericanNationalCan™, Chicago, IL, USA  
Henkel, Düsseldorf  
Schleicher und Schuell, Düsseldorf  
Greiner Bio-One GmbH, Frickenhausen  
Greiner Bio-One GmbH, Frickenhausen  
Roth, Karlsruhe  
FMC Bioproducts, Biozym, Hameln  
Merck, Darmstadt  
Merck, Darmstadt  
Serva, Heidelberg  
Merck, Darmstadt  
Sigma Aldrich Laborchemikalien, Seelze  
MBI Fermentas, St. Leon Roth  
Serva, Heidelberg  
Sigma Aldrich Laborchemikalien, Seelze  
Merck, Darmstadt  
Merck, Darmstadt  
Sigma Aldrich Laborchemikalien, Seelze  
Merck, Darmstadt  
Merck, Darmstadt  
MBI Fermentas, St. Leon Roth  
Merck, Darmstadt  
Merck, Darmstadt  
MBI Fermentas, St. Leon Roth  
Gibco/BRL, Karlsruhe  
Merck, Darmstadt  
Merck, Darmstadt
Molekulargewichtsmarker
BlueRanger® Prestained Protein Molecular Weight Marker Mix
Pierce, Rockford, IL, U.S.A.

Natriumacetat
Natriumazid (NaN₃)
Natriumchlorid (NaCl)
Natriumdodecylsulfat (SDS)
Natriumhydroxid (NaOH)
o-Phenylenediamin-Dihydrochlorid (OPD)
Paraformaldehyd
Pefablock SC
Penicillin/Streptomycin-Antibiotikagemisch (100x)
Pepton (aus Casein pankreatisch verdaut)
Phenylmethylsulfonylfluorid (PMSF)
Polyethylenglycol, PEG 8000
Salzsäure (HCl)
Schwefelsäure (H₂SO₄)
SuperSignal® West Dura ED Substrate
TEMED
TPCK-Trypsin
TrisBase
(2-Amino-2-(hydroxymethyl)-1,3-propandiol )
TritonX-100™
Trueblue™ Peroxidase Substrat
Tween™ (ICI Americas)
Wasserstoffperoxid (H₂O₂)
X-Galaktose (X-Gal)
Zeocin™

Material

2.4. Sera

Rinderserumalbumin (BSA)
Fötales Kälberserum (FKS)
NDS (normal donkey serum)
NHS (normal horse serum)

Pierce, Rockford, IL, U.S.A.
Merck, Darmstadt
Serva, Heidelberg
Roche, Mannheim
Gibco/BRL, Karlsruhe
Sigma Aldrich Laborchemikalien, Seelze
Serva, Heidelberg
Merck, Darmstadt
Merck, Darmstadt
Serva, Heidelberg
Merck, Darmstadt
Sigma Aldrich Laborchemikalien, Seelze
Sigma Aldrich Laborchemikalien, Seelze
Sigma Aldrich Laborchemikalien, Seelze
Sigma Aldrich Laborchemikalien, Seelze
KPL, USA
Serva, Heidelberg
Sigma Aldrich Laborchemikalien, Seelze
Serva, Heidelberg
Invitrogen, Carlsbad, U.S.A.
Sigma-Aldrich GmbH, Taufkirchen
Gibco/BRL, Karlsruhe
Institut für Virologie, Marburg
Institut für Virologie, Marburg
2.5. Medien für Zellkulturtechniken

DMEM (Dulbecco’s Modified Eagle Medium) + 1% Glutamin
Gibco/BRL, Karlsruhe

MEM (Minimal Essential Medium)
Gibco/BRL, Karlsruhe

OPTI-MEM (Optimal Minimal Essential Medium)
Gibco/BRL, Karlsruhe

2.6. Enzyme

AmpliTaqFS (Fluorescent Sequencing) DNA-Polymerase
ABgene, Epsom, U.K.

Cloned Pfu DNA-Polymerase
Stratagene, Heidelberg

PfuTurbo™ DNA-Polymerase
Stratagene, Heidelberg

PfuTurbo™ 10xPuffer
Stratagene, Heidelberg

RNase A
Sigma, Deisenhofen

<table>
<thead>
<tr>
<th>Restriktionsenzym</th>
<th>Schnittstelle</th>
</tr>
</thead>
<tbody>
<tr>
<td>EcoRI</td>
<td>GAA TCC</td>
</tr>
<tr>
<td>NotI</td>
<td>GCG GCC GC(G)</td>
</tr>
<tr>
<td>DpnI quickchange</td>
<td>GM6 ATC</td>
</tr>
</tbody>
</table>

Sequenase™
United States Biochemical, U.S.A.

Shrimp Alkaline Phosphatase (SAP)
AmershamLifeScience, Buckinghamshire, U.K.

Trypsin
Life Technologies, Karlsruhe

T4-DNA-Ligase
New England Biolabs, Frankfurt a.M.

2.7. Kits

High Pure RNA Isolation Kit
Roche Diagnostics, Mannheim

HiSpeed Plasmid Maxi Kit
Qiagen, Hilden

OneStep RT-PCR Kit
Qiagen, Hilden

QIAquick Gel Extraction Kit
Qiagen, Hilden

QIAquick PCR Purification Kit
Qiagen, Hilden

QIAprep 8 Miniprep Kit
Qiagen, Hilden
2.8. Plasmide und Vektoren

2.8.1. pIRESbleo3, Klonierungsvektor

Der Vektor pIRESbleo3 ist ein Klonierungsvektor, der durch die Firma Becton Dickinson (BD) Biosciences Clontech (Clontech, pIRESbleo3 Vector Information, PT 3643-5) vertrieben wird. Die in diesem bicistronischen Expressionsvektor vorhandene IRES-Sequenz codiert für eine interne ribosomale Eintrittsstelle (IRES), eine Sequenz, die primär in verschiedenen Viren nachgewiesen wurde. Diese erlaubt die cap-unabhängige Translation, das heißt, das Ribosom bindet die mRNA am Startcodon unabhängig von der 5'-wärts gelegenen unübersetzten Region (Mountford and Smith, 1995). Das bedeutet, dass die IRES-Sequenz die Expression zweier singulärer Proteine unter einem Promotor von einem mRNA-Transkript ermöglichen kann.

Abb. 9 Abb. 1.2 Restriktionskarte und Multiple Cloning Site (MCS) des pIRESbleo (pIRESbleo3 Vector Information BD Biosciences Clontech, PT 3643-5)
Der Vektor pIRESbleo3 enthält die interne ribosomale Eintrittsstelle des Encephalomyocarditis-Virus (ECMV).


2.8.2. pCAGGS + MCS, Klonierungsvektor

Der eukaryotische Expressionsvektor pCAGGS+MCS wurde freundlicherweise von Dr. Jan ter Meulen, Institut für Virologie, Marburg, zur Verfügung gestellt und wurde ursprünglich im Labor von Dr. Miyazaki, Japan entwickelt (Niwa et al., 1991).

Der Vektor enthält einen CAG-Promotor (chicken-β-actin-Promotor), der für eine konstitutive Expression durch die zelluläre RNA-Polymerase-II sorgt, eine für die β-Globin des Kaninchens codierende Gensequenz, die ein Polyadenylierungssignal beinhaltet und ein für die Ampicillinresistenz codierendes Gen. Zusammen mit einem SV40 ori (origin of replication including an early SV-40 promoter) wurden die Segmente in den pUC13 Vektor eingefügt. Die multiple cloning site (MCS) enthält Restriktionsstellen für die in dieser Arbeit verwendeten Restriktionsenzyme EcoRI und NotI (2.6.).
2.8.3. pCR®2.1-TOPO®-Vektor

Das TOPO® TA Cloning® Kit wurde von der Firma Invitrogen entwickelt, um innerhalb weniger Minuten PCR-Produkte direkt im Anschluss an die PCR-Reaktion zu klonieren.

Material

Abb.11. pCR®2.1-TOPO®-Vektor (Invitrogen Produktinformation)

2.9. Oligonukleotide und Sequenzen
Die verschiedenen Oligonukleotide (Primer) wurden von der Firma MWG Biotech AG, Ebersberg hergestellt. Diese kurzketten Nukleinsäuremoleküle dienen als Startermoleküle bei allen PCR-Reaktionsvarianten.

<table>
<thead>
<tr>
<th>Primer</th>
<th>Sequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>HAT-F</td>
<td>5'-GGCAATAATGCGCGCAGCCACCATGTATAAGGCAGC ACGTGT-3'</td>
</tr>
<tr>
<td>HAT-R</td>
<td>5'-CGATTATGTAATCTAGATCCAGTTGTTGGCCTATCC-3'</td>
</tr>
<tr>
<td>HAT-R415</td>
<td>5'-CATGACAACATCCGCTCTC-3'</td>
</tr>
<tr>
<td>HAT-F224</td>
<td>5'-CACAGGTACACAGGAATAC-3'</td>
</tr>
<tr>
<td>HAT-F374</td>
<td>5'-CTGAGGCAAGATGGTAGTGG-3'</td>
</tr>
</tbody>
</table>
### Material

<table>
<thead>
<tr>
<th></th>
<th>Sequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>HAT-F718</td>
<td>5’-CATGTGGATCCTGACAGCAGC-3’</td>
</tr>
<tr>
<td>HAT-R752</td>
<td>5’-CCAGACGTGGCAATCCAGTC-3’</td>
</tr>
<tr>
<td>HAT-F1094</td>
<td>5’-GAGCCATCTTGTCTGGAATGC-3’</td>
</tr>
<tr>
<td>Args-f (forward)</td>
<td>5’-CTAATAACATTGTCTGAGCAGCGAAGACGCAGGAGAATCCTTGGAG GCACTGAG-3’</td>
</tr>
<tr>
<td>Args-r (reverse)</td>
<td>5’-CTCAGTGCCCTCCAAGGATTCTCCTGCCTCCTTGCTGCTC AGACAAT GTTATTAG-3’</td>
</tr>
<tr>
<td>T7 (forward)</td>
<td>5’-GGGATATCACTCAGCATAAT-3’</td>
</tr>
<tr>
<td>M13 (reverse)</td>
<td>5’-GTCATAGCTGTTCCTCCT-3’</td>
</tr>
<tr>
<td>EcoRI-flag-HAT (forward)</td>
<td>5’-GAATTCATCGACTACAAGGACGACGATGACAAGTG-3’</td>
</tr>
<tr>
<td>NotI-flag-HAT (reverse)</td>
<td>5’-CGCCGGCGCTACTTGTGTCATCGTGCTCCTTGTAGTGC GAT-3’</td>
</tr>
</tbody>
</table>

### 2.10. Antikörper

**Erstantikörper:**

<table>
<thead>
<tr>
<th>Antikörper</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>anti-FLAG</td>
<td>Sigma, St.Louis/Missouri, USA</td>
</tr>
<tr>
<td>polyklonal vom Kaninchen, gegen N-terminal und C-terminal flag-konjugierte Proteine</td>
<td></td>
</tr>
<tr>
<td>anti-NP-A</td>
<td>CDC, Atlanta/GA, USA</td>
</tr>
<tr>
<td>monoklonal, von der Maus gegen das Nukleoprotein von Influenza A</td>
<td></td>
</tr>
</tbody>
</table>

**Zweitantikörper:**

<table>
<thead>
<tr>
<th>Antikörper</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peroxidase konjugiertes Anti-Maus-IgG vom Schaf</td>
<td>DAKO, Hamburg</td>
</tr>
<tr>
<td>Peroxidase konjugiertes Anti-Maus-IgG vom Kaninchen</td>
<td>DAKO, Hamburg</td>
</tr>
<tr>
<td>Peroxidase konjugiertes Anti-Kaninchen-IgG vom Esel</td>
<td>DAKO, Hamburg</td>
</tr>
<tr>
<td>Peroxidase konjugiertes Anti-Kaninchen IgG von der Ziege</td>
<td>DAKO, Hamburg</td>
</tr>
<tr>
<td>FITC-konjugiertes Anti-Kaninchen-IgG vom Schwein</td>
<td>DAKO, Hamburg</td>
</tr>
</tbody>
</table>
### 2.11. Eukaryotische Zellen

<table>
<thead>
<tr>
<th>Zellen</th>
<th>Herkunft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Madin-Darby Canine Kidney (MDCK)-Zellen</td>
<td>Frederic Hayden, Charlottesville, Virginia, USA</td>
</tr>
<tr>
<td>293T-Zellen</td>
<td>American Type Culture Collection, Rockville, MD, USA</td>
</tr>
<tr>
<td>A549-Zellen</td>
<td>American Type Culture Collection, Rockville, MD, USA</td>
</tr>
<tr>
<td>NHBE-Zellen</td>
<td>Clonetics BioWhittaker, Taufkirchen</td>
</tr>
</tbody>
</table>

### 2.12. Influenzavirusstämmе

- H2N9: Mallard/Alberta/205/98
- H1N1: A/Memphis/14/96
- H3N2: A/Aichi/2/68

### 2.13. Bakterienstämmе

Die bei den Arbeiten verwendeten *Escherichia coli* Stämme sind sämtlich Derivate des 1922 in Stanford/Kalifornien isolierten, anerkannten Sicherheitsstammes *Escherichia coli* K12.

<table>
<thead>
<tr>
<th>Stamm</th>
<th>Genotyp</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>XL-I Blue</td>
<td>K12 recA1 lac endA1 gyrA96 thi-1 hsdR17 supE44 relA1 (F' proAB lacIq lacZ dm15 Tn10 (Tet')Amy Cam')</td>
<td>Stratagene®, Heidelberg</td>
</tr>
<tr>
<td>XL-10-Gold</td>
<td>Tetr Δ(mcrA)183 Δ(mcrCB-hsdSMR-mrr)173 end A1 supE44 thi-1 recA1 lac Hte (F' proAB lac1°ZΔM15 Tn10 (Tet') Amy Cam²)</td>
<td>Stratagene®, Heidelberg</td>
</tr>
</tbody>
</table>

2 Chloramphenicolresistenz bei Konzentrationen < 40 µg/ml, jedoch sensitiv bei Konzentrationen von 100 µg/ml
3. Methoden

3.1. Molekularbiologische Methoden

Soweit nicht anders angegeben, entsprechen die in der Arbeit angewendeten molekularbiologischen Methoden den Standardverfahren (Sambrook and Russel, 2001). Die Verfahren mit den Produkten der Firma Qiagen erfolgten nach Angaben des Herstellers.

3.1.1. Isolierung von Plasmid-DNA aus Bakterien im kleinen Maßstab (Minipräparation)

Für die Isolierung von bis zu 20 µg Plasmid-DNA wurden das QIAprep Spin Miniprep Kit und QIAprep 8 Miniprep Kit (2.7.) verwendet. Mit letzterem können mittels Vakuumapplikation bis zu 48 Plasmid-DNA-Proben parallel aufgereinigt werden.


Es werden 1,5 ml einer *Escherichia coli*-Übernachtskultur in ein Eppendorfgefäß überführt und 1 - 2 min bei 13.000 rpm abzentrifugiert. Das Bakterienzellsediment wird in 250 µl gekühlter Lösung P1 (Sambrock & Russel, 2001) möglichst homogen resuspendiert.

*Lösung P1*

- 50 mM Tris-HCl (pH 8,0)
- 10 mM EDTA
- 100 µg/ml RNase A

Danach werden 250 µl der Lösung P2 zugegeben. Der Ansatz wird gut gemischt und für 5 min bei Raumtemperatur (RT) inkubiert. Hierbei kommt es zur alkalischen Denaturierung der DNA.

*Lösung P2*

- 0,2 M NaOH
- 1% SDS
Um das Natriumhydroxid zu neutralisieren und das Detergenz SDS zu entfernen, werden 500 µl der Lösung N3 zum Ansatz hinzugefügt. Dieser wird gut gemischt, jedoch nicht mit dem Vortex-Gerät, da dies zum Scheren der chromosomalen DNA führt. Anschließend wird bei 13.000 rpm für 10 min zentrifugiert, um Zelltrümmer, die denaturierten Proteine und die chromosomale DNA zu sedimentieren.

**Lösung N3**
3 M Natriumacetat (pH 4,8)

Der Überstand, in dem sich die Plasmid DNA befindet, wird dann auf eine Säule gegeben und mittels Zentrifugalkraft oder mit Hilfe eines Vakuums durch das Säulenmaterial gedrückt. Die Plasmid-DNA bindet dabei aufgrund ihrer negativen Ladung an das Säulenmaterial, während die ungebundenen RNA- und Proteinrückstände je nach Verfahrensweise durch ein- bis zweimaliges Waschen der Säule mit 0,75 - 1 ml QC-Waschpuffer entfernt werden.

**Puffer QC**
- 0,1 M NaCl
- 0,05 M MOPS (pH 7,0)
- 15% Ethanol

Die an das Säulenmaterial gebundene Plasmid-DNA wird hernach durch die Zugabe von 30 - 100 µl Elutionspuffer (EB oder TE) eluiert, wobei zu beachten ist, dass EDTA nachfolgende enzymatische Reaktionen unter Umständen beeinflussen kann.

**Puffer EB**
- 10 mM Tris-HCl (pH 8,5)

**Puffer TE**
- 10 mM Tris-HCl
- 1 mM EDTA (pH 8,0)

**3.1.2. Isolierung von Plasmid-DNA im großen Maßstab (Maxipräparation)**
Für die Gewinnung großer DNA-Mengen (250 µg – 500 µg) wurde das QIAfilter™ Plasmid Maxi Kit (2.7.) verwendet. Diese Methode ermöglicht die Aufarbeitung größerer Mengen an Zellen mit einer hohen Ausbeute an hochreiner DNA.
Das Prinzip basiert — wie auch bei der Minipräparation — auf einer modifizierten alkalischen Lyse mit anschließender Bindung und Reinigung der Plasmid-DNA über eine Anionenaustauschersäule und Fällung der DNA durch Isopropanol (Hochsalzmethode).

100 ml der Bakterienkulturen werden bei 4 °C 15 min bei 6.000 rpm (Beckmann JA-10 Rotor, 2.1.) abzentrifugiert. Das entstehende Sediment wird in 10 ml gekühlter Lösung P1 (3.1.1.) möglichst homogen suspendiert. Danach werden 10 ml Lösung P2 (3.1.1.) zugegeben. Der gut gemischte Ansatz wird für 5 min bei Raumtemperatur inkubiert.

Um das Natriumhydroxid und das Detergenz SDS zu entfernen, werden 10 ml Lösung P3 zu dem Ansatz gegeben, dieser wird gut gemischt und sofort in eine QIAfilter®-Spritze überführt.

\textit{Lösung P3}

3 M Kaliumacetat (pH 5,5)

Nach einer zehnminütigen Inkubationszeit bei Raumtemperatur wird der Kolben in die Spritze eingeführt und das Lysat mechanisch auf eine zuvor bereits mit 10 ml QBT-Puffer äquibrilierte Qiagen® Tipp 500-Säule gedrückt.

\textit{Puffer QBT}

0,75 M NaCl
0,05 M MOPS (pH 7,0)
15% Ethanol
0,15% Triton X-100™ (2.2.)


\textit{Elutionspuffer QF}

1,25 M NaCl
0,05 M Tris-HCl (pH 8,5)
15% Ethanol

Das Eluat wird mit 0,7 Volumina (10,5 ml) Isopropanol versetzt. Es erfolgt die Präzipitation der Plasmid-DNA, die nach einer dreißigminütigen Zentrifugation bei 15.000 rpm
sedimentiert. Das Sediment wird mit 5 ml 70%igem Ethanol gewaschen und an der Luft oder im Vakuum getrocknet. Anschließend wird das Sediment in eine entsprechende Menge Puffer EB (3.1.1.) aufgenommen.

3.1.3. RNase-Behandlung

In manchen Fällen können vorhandene RNA-Moleküle in einer DNA-Lösung nach erfolgter Präparation störend sein. Durch fünfminütige Inkubation mit 100 µg/ml RNase A werden selbst größere Mengen an RNA degradiert.

10 mg RNase A werden in 1 ml 10 mM Tris-HCl und 15 mM NaCl gelöst und durch 15 min bei 100 °C von DNase befreit.

3.1.4. Quantifizierung von Nukleinsäuren

Da DNA ultraviolettes Licht absorbiert, kann man durch die Messung der Extinktion (E) bei einer Wellenlänge von 260 nm die Konzentration von DNA in wässriger Lösung bestimmen. Bei dieser photometrischen Konzentrationsbestimmung erfolgt die Messung gegen den Blindwert von aqua bidest. im Photometer. Es wurde eine Quarzküvette (2.1.) mit 500 µl Füllvolumen und 1 cm Lichtweg verwendet. Um den linearen Messbereich von 0,01 – 0,8 einzuhalten, wurde die DNA-Lösung in aqua bidest. entsprechend verdünnt (Verdünnungsfaktor 1:50 – 1:200). Auch Proteine absorbieren Licht bei einer Wellenlänge von 260 nm. Ihr Absorptionsmaximum liegt jedoch bei 280 nm. Daher können bei einer Wellenlänge von 280 nm Verunreinigungen durch Proteine gemessen und zur Überprüfung der Reinheit der DNA dann das Verhältnis O.D.\textsubscript{260nm}/O.D.\textsubscript{280nm} ermittelt werden. Bei O.D.\textsubscript{260nm}/O.D.\textsubscript{280nm} von 1,8 oder mehr kann die DNA als rein bezeichnet werden.

Einer ΔE\textsubscript{260nm} von 1 entsprechen näherungsweise Konzentrationen von 50 µg/ml für Einzelstrang-DNA und 20 µg/ml für Oligonukleotide.

3.1.5. RNA-Isolierung aus eukaryotischen Zellen


Die am Vortag passagierten und zu einem subkonfluenten Monolayer herangewachsenen Zellen werden zweimal mit PBS gewaschen und anschließend mit einem Zellschaber vom Boden der Zellkulturflasche abgelöst. Die $10^6$-10$^7$ Zellen werden in PBS aufgenommen und
abzentrifugiert. Das Pellet wird in 200 µl PBS resuspendiert und mit 400 µl Lysepuffer versetzt, um die Zellen aufzulösen.

**PBS (phosphat buffered saline)**
- 137 mM NaCl
- 2,7 mM KCl
- 80,9 mM KH$_2$PO$_4$
- HCl-Zugabe, bis pH 7,4

**Lyse-Puffer**
- 4,5 M Guanidiumchlorid
- 50 mM Tris-HCl
- 30% Triton-X-100™ (w/v), pH 6,6

Das Zellysat wird auf ein High Pure Filter Röhrchen gegeben und für 15 sec bei 10.000 rpm zentrifugiert. Hierbei erfolgt die Bindung der RNA an ein Glasvlies. Pro Probe werden 90 µl DNase-Puffer mit 10 µl lyophilisierter DNase (≈18.000 U/ml) gemischt, auf das Glas-Filter-Vlies pipettiert und 15 min bei Raumtemperatur inkubiert.

**DNase-Puffer**
- 1 M NaCl
- 20 mM Tris-HCl
- 10 mM MnCl$_2$ (pH 7,5)

Anschließend wird die Säule mit 500 µl Waschpuffer I gewaschen und für 15 sec bei 15.000 rpm zentrifugiert. Die folgenden zwei Waschschrüte werden mit Waschpuffer II durchgeführt, zuerst mit 500 µl für 15 sec bei 15.000 rpm und dann mit 200 µl für 2 min bei 20.000 rpm.

**Waschpuffer I**
- 5 M Guanidiumchlorid
- 20 mM Tris-HCl (pH 6,6)
- 38% Ethanol
**Methoden**

*Waschpuffer II*

- 20 mM NaCl
- 2 mM Tris-HCl (pH 7,5)
- 80% Ethanol

Anschließend wird die Säule in ein autoklaviertes 1,5 ml Eppendorf-Gefäß (2.2.) überführt und die RNA mit 50 - 100 µl Elutionspuffer oder nukleasefreiem bidestilliertem Wasser eluiert. Die Menge der auf diese Weise gewonnenen Gesamt-RNA beträgt ca. 15 µg.

### 3.1.6. Überprüfung von Sequenzen mittels Integration in den pCR®2.1-TOPO®-Vektor

Es folgen die übliche DNA-Amplifizierung mittels Minipräparation und die weitere Aufbereitung der DNA für die Sequenzierung. Für die Sequenzierungs-PCR-Reaktion (3.1.17.) werden zwei Startermoleküle eingesetzt: M13 (forward-primer) und T7 (reverse primer) (2.9.). Sie hybridisieren in entgegengesetzten Richtungen mit der Vektor-DNA, so dass sie nicht nur einen Abschnitt eingrenzen, sondern der ganze Vektor durch die Polymerase vervielfältigt werden kann. Bei einer Insert-DNA mit einer Größe über 500 bp ist es empfehlenswert, einen weiteren Primer zuzusetzen, der im Mittelteil des eingefügten DNA-Abschnitts hybridisieren kann, um eine vollständige Polymerisierung des gesamten Plasmids zu gewährleisten. Der anschließenden DNA-Präzipitation (3.1.10.) folgen die automatische DNA-Sequenzierung und die Analyse der Sequenz (3.1.17.2.).

3.1.7. Polymerasekettenreaktion (PCR) und rekombinante PCR

die ausgewählten Primer neben komplementären Bereichen auch eine veränderte Sequenz, z.B. eine Schnittstelle besitzen (QuickChange-Methode, 3.1.8.).

Die Reaktion wird in 200 µl Reaktionsgefäßen im GeneAmp PCR System 2400 (2.1.) durchgeführt. Die doppelsträngige DNA-Matrise wird 5 min bei 95 °C denaturiert, dann folgt 25 - 35 mal der Reaktionszyklus: Denaturierung bei 95 °C für 30 - 60 sec, Hybridisierung für 30 - 60 sec und Amplifikation der DNA-Abschnitte bei 68 - 72 °C für näherungsweise 1 min pro 1000 Nukleotide. Eine abschließende zehnminütige Inkubation bei 72 °C soll gewährleisten, dass die Amplifikate vervollständigt werden, bevor die Reaktion beendet und das Reaktionsgefäß auf 4 °C abgekühlt wird. Die Hybridisierungstemperatur richtet sich nach der Schmelztemperatur der Oligonukleotide, die sich nach der Formel

\[ T_m(°C) = 2°C \times (A+T) + 4°C \times (G+C) \]

berechnet. Dabei werden nur bindende Nukleotide berücksichtigt. Bei dieser Temperatur liegt die eine Hälfte der Nukleinsäuremoleküle in einer Lösung in doppelsträngiger Form, die andere in einzelsträngiger Form vor.

Die Hybridisierungstemperatur wird so gewählt, dass sie etwa 5 °C unter der \( T_m \) der Primer liegt.


**Reaktionsansatz (50µl)**

<table>
<thead>
<tr>
<th>Komponenten</th>
<th>Menge</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNA-Matrice (dsDNA)</td>
<td>≈ 100 ng</td>
</tr>
<tr>
<td>Startermolekül (Oligonukleotid) #1</td>
<td>250 ng</td>
</tr>
<tr>
<td>Startermolekül (Oligonukleotid) #2</td>
<td>250 ng</td>
</tr>
<tr>
<td>Nukleotidgemisch (dNTPs)</td>
<td>400 µmol</td>
</tr>
<tr>
<td>DNA-Polymerase-Puffer (10x)</td>
<td>5 µl (1x)</td>
</tr>
<tr>
<td>DNA-Polymerase</td>
<td>1 – 5 Einheiten</td>
</tr>
<tr>
<td>Aqua dest.</td>
<td>auf 50 µl auffüllen</td>
</tr>
</tbody>
</table>
Methoden


3.1.8. QuickChange™ Site-Directed Mutagenesis Kit

Mit dem von der Firma Stratagene® entwickelten Kit (2.7.) lassen sich Punktmutationen, Deletionen und Insertionen von einer oder mehreren Aminosäuren in eine beliebige supercoiled dsDNA einfügen. Dabei wird die Differenzierungsmöglichkeit aufgrund des unterschiedlichen Methylierungszustandes von PCR-Amplifikaten und Ausgangs-DNA ausgenutzt. Das Restriktionsenzym DpnI (10 U/µl) (2.6.) wird dabei am Ende der PCR zu dem Ansatz hinzupipettiert und für 1 h bei 37 °C inkubiert. In dieser Zeit verdaut das Enzym die methylierte Ausgangs-DNA, während es die neu synthetisierte, nicht-methylierte DNA nicht umsetzt.

Reaktionsansatz (50µl)

<table>
<thead>
<tr>
<th>Komponenten</th>
<th>Menge</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNA-Matrice</td>
<td>10 ng</td>
</tr>
<tr>
<td>Startermolekül (Oligonukleotid) #1</td>
<td>125 ng</td>
</tr>
<tr>
<td>Startermolekül (Oligonukleotid) #2</td>
<td>125 ng</td>
</tr>
<tr>
<td>Nukleotidgemisch (dNTPs)</td>
<td>25 mM je dNTP</td>
</tr>
<tr>
<td>Reaktionspuffer 10x</td>
<td>5 µl</td>
</tr>
<tr>
<td>PfuTurbo™ DNA Polymerase</td>
<td>2,5 U (1 µl)</td>
</tr>
<tr>
<td>aqua dest.</td>
<td>auf 50 µl auffüllen</td>
</tr>
<tr>
<td>DpnI (wird nach dem Thermal Cyler Programm zugegeben)</td>
<td>10 U (1 µl)</td>
</tr>
</tbody>
</table>
Nach der Aufreinigung erfolgt dann die Transformation von Bakterien mit Plasmiden (3.1.20.), welche ausschließlich die eingeführte Mutation tragen sollen.

3.1.9. Reverse Transkription und Polymerasekettenreaktion (RT-PCR)

Um DNA-Abschnitte von aus Zellen gewonnener mRNA zu amplifizieren, wurde das One-Step RT-PCR Kit (2.7.) verwendet. Mit Hilfe der reversen Transkriptase kann die RNA-Matrice in cDNA umgeschrieben werden. Zunächst wird eine reverse Transkriptions-Reaktion von Gesamt-RNA, viraler RNA (vRNA) oder messenger-RNA (mRNA) mit einem Oligo-dT-Molekül oder auch mit einem spezifischen internen Startermolekül durchgeführt.

**Reaktionsansatz (50 µl):**

<table>
<thead>
<tr>
<th>Komponenten</th>
<th>Menge</th>
</tr>
</thead>
<tbody>
<tr>
<td>RNA-Matrice</td>
<td>1 pg – 2 µg</td>
</tr>
<tr>
<td>Startermolekül (Oligonukleotid) #1</td>
<td>0,6 µM</td>
</tr>
<tr>
<td>Startermolekül (Oligonukleotid) #2</td>
<td>0,6 µM</td>
</tr>
<tr>
<td>Nukleotidgemisch (dNTPs) [40 mM]</td>
<td>400 µM je dNTP</td>
</tr>
<tr>
<td>5x QIAGEN OneStep RT-PCR Puffer</td>
<td>10 µl</td>
</tr>
<tr>
<td>QIAGEN OneStep RT-PCR Enzym Mix</td>
<td>2 µl</td>
</tr>
<tr>
<td>RNase Inhibitor [40 U/µl]</td>
<td>5 – 10 U</td>
</tr>
<tr>
<td>RNase-freies H2O</td>
<td>auf 50 µl auffüllen</td>
</tr>
</tbody>
</table>

**OneStep RT-PCR Enzyme-Mix**

1 mM DTT
0,1 mM EDTA
0,5% (v/v) Nonidet® P-40
0,5% (v/v) Tween® 20
50% Glycerin (v/v), pH 9,0
Omniscript™ Reverse Transkriptase
Sensiscript™ Reverse Transkriptase
HotStart Taq® DNA Polymerase (2.6.)
Der eigentlichen PCR geht eine reverse Transkription von RNA in cDNA voraus, dabei wird der Reaktionsansatz für 30 min bei 50 °C inkubiert. Bei dem folgenden PCR-Aktivierungsschritt wird die Temperatur für 15 min auf 95 °C erhöht. Dadurch wird die HotStartTaq DNA-Polymerase aktiviert, Omniscript und Sensiscript Reverse Transkriptase werden inaktiviert und die cDNA wird denaturiert.


3.1.10. Aufreinigung von Desoxyribonukleinsäure (DNA) -Molekülen

Bei den unterschiedlichen Reinigungsmethoden macht man sich chemische Eigenschaften der DNA zunutze. DNA ist gut wasserlöslich, löst sich jedoch kaum in organischen Lösungsmitteln.

3.1.10.1. Aufreinigung mittels QIAquick™ PCR Purification Kit


Hierfür wird der Ansatz mit dem fünffachen Volumen an PB-Puffer versetzt, gut gemischt und auf die QIAquick™-Säule gegeben. Zur Zusammensetzung des Puffers PB macht der Hersteller keine Angaben. Es folgt die selektive Bindung der amplifizierten DNA an das
Methoden

Säulenmaterial, dNTPs können dann durch einmaliges Waschen mit 750 ml PE-Puffer (3.1.14.) entfernt werden.
Die so gereinigte DNA wurde mit 20 – 50 µl aqua bidest. oder 30 – 50 µl Puffer EB (3.1.1.) eluiert.

3.1.10.2. Alkoholfällung
Diese Methode wird durchgeführt, um die Konzentration einer DNA-Lösung zu verändern oder störende anorganische Ionen zu beseitigen. Die DNA-Moleküle überschreiten dabei in wässrigen Lösungen mit einer hohen Konzentration einwertiger Kationen ihr Löslichkeitsprodukt, wenn entsprechende Volumina an Ethanol oder Isopropanol zugegeben werden.

**Fällungsansatz**

DNA-Lösung

1/10 Volumen 3 M Natriumacetat (pH 5,2) 4 °C
2 bis 3 Volumina Ethanol 96% (1 Volumen Isopropanol) -20 °C

Der Ansatz wird gut gemischt und 30 min auf Trockeneis inkubiert. Durch eine anschließende Zentrifugation für 30 min bei 13 000 rpm und 4 °C wird die Plasmid-DNA sedimentiert. Der Überstand wird abgenommen. Um die Reste des eingesetzten Natriumacetats zu beseitigen, wird die Plasmid-DNA nach der Fällung noch einmal mit 1 ml 70%igem Ethanol bei 13 000 rpm und 4 °C für 10 min gewaschen. Der Überstand wird abgenommen, die pelletierte DNA getrocknet und in 1 ml TBE Puffer (3.1.12.) oder in 20 µl aqua dest. aufgenommen.

3.1.10.3. Fällung mittels „89/11“-Reagens
Nach der Extraktion aus dem Gel kann mittels dieser Methode DNA weiter aufgereinigt werden. Der Reaktionsansatz besteht aus der zu fällenden DNA in H2O, der das dreifache Volumen an 89/11-Reagens zugefügt wird.

**89/11**

89% Ethanol
11% NH₄OAc
Der Ansatz wird für 30 min bei 13.000 rpm und RT zentrifugiert und das Pellet mit 70% Ethanol gewaschen. Bei diesem Waschschritt wird die Probe für weitere 30 min bei 13.000 rpm zentrifugiert. Der Überstand wird verworfen und die DNA getrocknet. Anschließend kann die gereinigte DNA in 10 - 20 µl H₂O aufgenommen werden.

3.1.11. Verdau von Doppelstrang-DNA mit Restriktionsendonukleasen

Die für diese Arbeit eingesetzten Restriktionsendonukleasen gehören dem Typ II an und wurden in 30 Einheiten pro Reaktion gemäß Herstellerangaben verwendet. Sie erkennen 4 - 8 bp lange, meist palindromische Sequenzen. Innerhalb dieser Sequenzen bzw. in einem definierten Abstand zu ihnen schneiden die Restriktionsendonukleasen den DNA-Doppelstrang unter Hydrolyse je einer Phosphodiesterbindung pro Einzelstrang. Danach tragen die 3'-Enden des DNA-Moleküls eine Hydroxyl- und die 5'-Enden eine Phosphatgruppe. Enzymspezifisch entstehen dabei entweder glatte (blunt ends) oder 3'- bzw. 5'-überstehende Molekülenden (sticky ends).

3.1.11.1. Analytische Restriktion doppelsträngiger DNA


Der Spaltungsansatz setzt sich zusammen aus DNA-Lösung, dem Restriktionspuffer und der entsprechenden Restriktionsendonuklease und wird mit aqua dest. auf das gewünschte Volumen ergänzt. Der Restriktionsverdau läuft bei 37 °C für 0,5 – 2 h ab. Zur Analyse werden die Fragmente im Agarosegel parallel zu einem Längenstandard elektrophoretisch aufgetrennt (3.1.12.). Mit Ethidiumbromid (2.3.) werden die DNA-Banden sichtbar gemacht (3.1.13).

3.1.11.2. Präparative Restriktion doppelsträngiger DNA

Methoden

extentsprechenden 10x Restriktionspuffer gebildet. Die Proben werden zwischen 60 und 120 min bei 37 °C inkubiert.


3.1.12. Elektrische Auftrennung von DNA-Fragmenten in der Agarosegelelektrophorese

Die Agarosegelelektrophorese dient der analytischen Auftrennung zur Größenbestimmung und Mengenabschätzung und der präparativen Gewinnung von DNA-Fragmenten. Die negativ geladenen DNA-Fragmente wandern zur Anode eines elektrischen Feldes, wobei die Wanderungsgeschwindigkeit innerhalb bestimmter Molmassenbereiche umgekehrt proportional zum Logarithmus der Masse und somit auch der Menge ist.

Um DNA-Fragmente zu trennen, die größer als 200 bp sind, werden Agarosegele verwendet, die Konzentrationen zwischen 0,4 % und 2% aufweisen.

Die Agarose (2.3.) wird in gewünschter Konzentration in 1x TBE-Puffer gelöst und in einem Mikrowellengerät bis zum vollständigen Lösen der Agarose aufgekocht. Die Lösung wird anschließend in eine abgedichtete Flachgelkammer aus Plexiglas gegossen. Ein eingesetzter Kamm erzeugt die zu beladenden Geltaschen. Die DNA-Proben werden mit 1/6 Volumen 6x Ladepuffer und aqua dest. auf das gewünschte Volumen gebracht und in die Geltaschen geladen. Zur Analyse von Größe und Konzentration der eingesetzten DNA reichen geringe Mengen der DNA-Proben aus (0,5 – 1 µl). Die Größe der Fragmente und der eingesetzten DNA-Mengen werden im Vergleich zum DNA-Fragmentgrößenstandard 1 kb DNA Ladder (2.3.) mit Fragmenten definiert Grösse geschätzt.

Die Elektrophorese läuft horizontal bei einer konstanten Spannung von 80 – 140 V ab, je nach Gelgröße bzw. Elektrodenabstand in 1x TBE als Laupuffer.
Methoden

TBE-Puffer (1l)
108 g Trisbase
55 g Borsäure
4 ml EDTA (0,5M; pH 8,0)
ad aqua dest.

Ladepuffer (6x)
60% (v/v) Glycerin
60 mM EDTA
0,009 % (w/v) BPB
0,009% Xylencyanol FF

3.1.13. Anfärbung und Photographieren der Gele

Definierte DNA-Fragmente nach préparativem Verdau (3.1.11.2.) und Auftrennung in der Agarosegelelektrophorese wurden mit dem QIAquick™ Gel Extraction Kit (2.7.) eluiert. Mit diesem Verfahren lassen sich die aus Agarosegelen ausgeschnittenen DNA-Fragmente (70 - 10.000 bp) reinigen. Das Ausschneiden der gewünschten DNA-Banden erfolgt unter längerwelliger Beleuchtung (> 302 nm), um DNA-Verluste oder -Defekte zu vermeiden. Darüber hinaus können die DNA-Banden durch Aluminium-Folie geschützt werden. Die zunächst zerkleinerten Gelstücke werden in ein oder mehrere Eppendorfgefäße überführt, mit 3 Volumina (w/v) Puffer QG (Zusammensetzung von der Firma Qiagen nicht angegeben) versetzt und bei 50 °C inkubiert. Je nach Dicke und Menge der Agarose-Stücke dauert es 5 bis 10 min bis zu ihrer Aufschmelzung, nach der die DNA in Lösung vorliegt. Für DNA-Fragmente < 500 bp und > 4 kb wird 1 Gelvolumen Isopropanol hinzugegeben. Danach wird die DNA-Lösung auf eine QIAquick™-Säule gebracht und 1 min bei 13.000 rpm zentrifugiert.
Um die nun gebundene DNA zu waschen, werden 0,75 ml Puffer PE auf die Matrix gegeben. Es folgen zwei Zentrifugationsschritte bei 13.000 rpm, um alle Reste des Waschpuffers zu entfernen.

**Puffer PE**

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Konzentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tris-HCl</td>
<td>10 mM</td>
</tr>
<tr>
<td>NaCl</td>
<td>10 mM</td>
</tr>
<tr>
<td>EDTA</td>
<td>1 mM</td>
</tr>
<tr>
<td>in 70% Ethanol</td>
<td></td>
</tr>
</tbody>
</table>

Die DNA wird anschließend mit 30 - 50 μl Puffer EB eluiert, indem nach Zugabe des Puffers erneut bei 13.000 rpm für 1 min zentrifugiert wird.

### 3.1.15. Ligation von DNA-Fragmenten

Für die Ligation linearisierter Plasmid-DNA mit Fremd-DNA-Fragmenten wurde das Enzym T4-DNA-Ligase (2.6.) verwendet, welches unter ATP-Hydrolyse die Verbindung von 3'-Hydroxylgruppen mit 5'-Phosphatgruppen katalysiert. Dazu werden an den DNA-Enden zunächst komplementäre Überhänge (*sticky ends*) durch Restriktion erzeugt (3.1.11.2.). Durch die Ligasereaktion können sowohl *sticky ends* als auch stumpfe Enden (*blunt ends*) doppelsträngiger DNA kovalent miteinander verknüpft werden. Hierbei werden wechselseitig die 5'-Phosphat- und die 3'-Hydroxylgruppen der Partnermoleküle unter ATP-Verbrauch verestert.

Für die Ligationsreaktion werden ein geschnittener, linearisierter Vektor und das zu klonierende Fremd-DNA-Fragment je nach Größe im molaren Verhältnis von 1:3 oder größer in einem Gesamtvolumen von 20 μl eingesetzt. Darüber hinaus enthält der Ansatz den ATP-haltigen Reaktionspuffer, die T4-Ligase und *aqua dest*.

Der Ligationsansatz wird bei 16 °C für 10 - 20 h inkubiert. Ein Aliquot von 4 μl kann hier auf ein Gel aufgetragen werden, um den Erfolg der Ligation zu prüfen. Die anderen 16 μl werden anschließend zur Transformation eingesetzt.

**10xLigationspuffer**

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Konzentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tris-HCl</td>
<td>0,25 M</td>
</tr>
<tr>
<td>MgCl₂</td>
<td>50 mM</td>
</tr>
<tr>
<td>ATP</td>
<td>5 mM</td>
</tr>
<tr>
<td>DTT</td>
<td>5 mM</td>
</tr>
<tr>
<td>PEG 8000</td>
<td>25% (w/v)</td>
</tr>
</tbody>
</table>
3.1.16. Dephosphorylierung der 5'Enden linearisierter Plasmide

Ist das für eine Liggationsreaktion vorgesehene Vektorfragment nur mit einem Restriktsenzym als lineares Molekül hergestellt worden, so ist es zur Verhinderung einer monomolekularen Religation notwendig, die 5'-Phosphatgruppe der Vektor-DNA abzuspalten. Die Dephosphorylierung erfolgt nach dem Restriktsverdau während einer Inkubation von 20 - 60 min mit einer alkalischen Phosphatase. Der Vorgang wird gestoppt und die Phosphatase für 10 min bei 65 °C inaktiviert. Anschließend wird der Ansatz aufgereinigt. Die in dieser Arbeit verwendete Phosphatase ist die Shrimp Alkaline Phosphatase (SAP, 2.6.).

Zur Dephosphorylierung wurde der Restriktsansatz des Vektors mit 10xSAP-Puffer (Endkonzentration 1x) und 2-3 Einheiten alkalischer Phosphatase mit entsprechender Menge aqdest. auf ein Ansatzvolumen von 30 μl aufgefüllt.

**SAP-Puffer(10x)**

200 mM Tris-HCl, pH 8,8

3.1.17. Sequenzierung von DNA

Nach erfolgter Klonierung werden die Nukleotidsequenzen durch Sequenzierung, d.h. durch die Bestimmung der Abfolge von Basen in einem DNA-Abschnitt, überprüft. Dafür stehen verschiedene Verfahren zur Verfügung.

3.1.17.1. Sequenzierung nach Sanger

Zur Sequenzierung nach Sanger (Sanger et al., 1977) wird das Plasmid, auf dem sich die gesuchte Sequenz befindet, zu Einzelsträngen denaturiert. Durch die Zugabe eines Starter-Oligonukleotids, das spezifisch in der Nähe der 5'-Region der Sequenz bindet, wird der Startpunkt der Gegenstrangsynthese festgelegt. Das daran beteiligte Enzym Sequenase™, eine modifizierte T7-DNA-Polymerase, baut neben den normalen, im Reaktionsansatz enthaltenen vier Desoxynukleosidtriphosphaten (dNTP) auch das in geringer Konzentration jeweils vorhandene einzelne 2',3'-Didesoxynukleosid-5'-triphosphat (ddNTP) ein. Durch den Einbau eines Didesoxynukleotids in einer der vier parallelen Synthesereaktionen wird aufgrund der der DNA fehlenden 3'-Hydroxylgruppe eine weitere Verlängerung des synthetisierten Gegenstranges unterbunden. Damit kommt es in einer Serie von basenspezifischen Kettenlängen an dieser Stelle zum Syntheseabbruch. Aufgrund der im Gegenstrang verteilten Positionen der komplementären Nukleotide entstehen DNA-
Fragmente aller zugehörigen Kettenlängen, ebenso wie in den drei parallelen Synthesereaktionen mit einem der übrigen ddNTPs, die anschließend alle elektrophoretisch in vier Spuren aufgetrennt werden.

3.1.17.2. Automatische DNA-Sequenzierung


Nach Anregung durch einen Argon-Laserstrahl bei 488 nm emittieren die Farbstoffe Licht verschiedener Wellenlängen zwischen 525 nm und 605 nm, das über ein Gitter, den sogenannten Spektrographen, in seine Spektralfarben zerlegt wird. Anschließend erfolgt die zeitgleiche Detektion der Spektralfarben mit Hilfe einer digitalen, konfokalen Optik, verschiedenen Filtern sowie eines Computers und der entsprechenden Analyse-Software (Amersham Bioscience MegaBACE™ Sequence Analyser, 2.1.).

Als Startermolekül sollte das komplementäre Oligonukleotid möglichst eine T_m von 55 °C aufweisen. Der Dye Terminator Ready-Mix stellt ein Gemisch aus den FddNTPs und der Ampli-Taq-FS-DNA-Polymerase dar. Die PCR verläuft in 25 Zyklen. Vor Beginn der Zyklen werden die Proben bereits für 1 min auf 95 °C erhitzt. Pro Zyklus wird der Ansatz zunächst für 20 sec auf 94 °C erhitzt, dann die Temperatur für 20 sec auf 55 °C gesenkt und dann 4 min auf 60 °C gehalten. Nach Abschluß der PCR wird die Probe auf 4 °C heruntergekühlt.
Reaktionsansatz Sequenzier-PCR-Reaktion (20 μl)

<table>
<thead>
<tr>
<th>Komponenten</th>
<th>Menge</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNA-Matrize</td>
<td>0,25 - 1 μg</td>
</tr>
<tr>
<td>Startermolekül (Primer)</td>
<td>20 μM</td>
</tr>
<tr>
<td>Dye Terminator Ready-Mix</td>
<td>4 μl</td>
</tr>
<tr>
<td>H₂O</td>
<td>ad 20 μl</td>
</tr>
</tbody>
</table>

Der Ansatz wird nach der Polymerisationsreaktion aufgereinigt und in 5 μl Probenpuffer (Formamid-EDTA-Dextranblau) aufgenommen, bevor er im Sequenzierlauf analysiert wird. Dabei werden die Proben auf die verschiedenen Spuren des chromatographischen Auftrennungsmediums gegeben und bei 2 kV für 80 sec in die mit Acrylamidgel gefüllten Glaskapillaren gezogen. Die Auftrennung der DNA-Fragmente erfolgt bei 9 kV für 130 min.

In dieser Arbeit wurde die automatische Sequenzierung an institutseigenen Kapillarsequenziergeräten (MegaBACE™) durchgeführt, einige Proben wurden von der Firma „Sequence Laboratories GmbH Göttingen“ sequenziert.

3.1.18. Kultivierung von Bakterien

Alle in dieser Arbeit benötigten Kulturen von *Escherichia coli* wurden in Luria-Bertani-Medium (Bertani, 1951) bzw. auf Luria-Bertani-Agar bei 37 °C angezogen. Zur Selektion von plasmidtragenden Klonen ist der Zusatz von 0,1 mg/ml Ampicillin zum Medium erforderlich.

*Luria-Bertani (LB)-Medium*

Bacto-Hefe-Extrakt 5 g/l  
Pepton 10 g/l  
Natriumchlorid 5 g/l  
ad. *aqua dest.*

*Luria-Bertani-Agar*

Bacto-Agar 15 g/l  
Luria-Bertani Medium 1 l

3.1.19. Herstellung von Glycerinstocks
Zur Lagerung von Bakterienstämmen können Suspensionen der Übernachtkulturen mit 15% Glycerin im Verhältnis 1:1 versetzt und bei -20 °C eingefroren werden.

3.1.20. Transformation von Bakterien mit DNA

3.1.20.1. Transformation nach der TSS-Methode
Um die Effizienz der Aufnahme zu erhöhen, erfolgt eine Vorbehandlung der Bakterien; die eigentliche Transformation erfolgt durch Hitzeschock (Chung et al., 1989).
Für die Transformation von *Escherichia coli* (XL1-Blue, 2.13.) werden 100 ml LB-Medium (3.1.18.) mit 100 µl einer Übernachtkultur im Verhältnis 1:100 angeimpft und bei 37 °C auf einem Schüttler bei 200 rpm inkubiert. Das Wachstum der Kultur wurde durch photometrische Messung der O.D. bei einer Wellenlänge von 578 nm kontrolliert. Als Blindwert dient hierfür die O.D.\textsubscript{578nm}-Messung von LB-Medium. Ist eine O.D.\textsubscript{578nm} von 0,5 – 0,6 erreicht, wird die Bakterienkultur 30 min auf Eis abgekühlt, mit der Minifuge T (2.1.) bei 3.000 rpm und 4 °C für 10 min pelletiert und in 2 ml eiskaltem TSS-Puffer resuspendiert. Die Suspension wird anschließend zehn Minuten auf Eis inkubiert.
200 µl der so erzeugten kompetenten Bakteriensuspension werden mit der zu transformierenden DNA in einem Eppendorfgefäss gemischt und für 30 - 45 min auf Eis inkubiert. Die Aufnahme der DNA in die Bakterien erfolgt bei einer anschließenden Inkubation bei 42 °C für 2 min. Nach der Abkühlung auf Eis für 2 min werden dem Transformationsansatz 800 µl LB-Medium zugesetzt. Durch Inkubation für weitere 60 min bei 37 °C auf dem Schüttler kann sich die plasmidcodierte Antibiotikaresistenz durch Expression der Selektionsmarker wie β-Laktamase-Expression oder Ampicillinresistenz etablieren. Nach Zentrifugation von 1 min bei 13.000 rpm mit der Minifuge T und Resuspension in 100 µl LB-Medium werden jeweils 100 µl und das Restvolumen auf LB-Agarplatten, die zur Selektion

**TSS-Puffer (Transformation and Storage Solution)**

- 85% LB Medium (v/v)
- 10% Polyethylenglycol (w/v)
- 5% DMSO (v/v)
- 50 mM MgCl₂
- in *aqua dest.* und steril filtriert

### 3.1.20.2. Klassische CaCl₂-Methode

Der Vorteil dieser Methode besteht darin, dass kompetente Zellen bei Bedarf direkt zur Verfügung stehen und nicht, wie bei der TSS-Methode, jedes Mal frisch hergestellt werden müssen. Dafür ist die Transformationseffizienz mit 10⁶ und 10⁷ Transformanten pro μl Supercoil-DNA bedeutend geringer.

Bei diesem Verfahren (Cohen *et al.*, 1972; Dagert and Ehrlich, 1979) werden die Zellwände der Bakterienzellen durch die Behandlung mit einem Überschuss von Ca²⁺-Ionen destabilisiert. Dadurch wird die Aufnahme von Fremd-DNA in die Bakterien ermöglicht. Hierfür müssen sich die Zellen in ihrer logarithmischen Wachstumsphase befinden. Aus einer Übernachtkultur werden 500 ml LB-Medium im Verhältnis 1:100 angeimpft und bei 37 °C geschüttelt, bis eine OD₅₇₈<sub>nm</sub> von < 0,5 erreicht ist. Danach werden die Zellen für 10 min bei 4 °C abzentrifugiert, bei 6.000 rpm im Beckmann JA-10 Rotor. Das Bakterien sediment wird in 100 ml einer eiskalten 0,1 M CaCl₂-Lösung resuspendiert und anschließend für 30 min auf Eis inkubiert. Nach erneuter Zentrifugation sind die Zellen in 20 ml 0,1 M CaCl₂ + 16%
Methoden


Für eine Transformation werden 200 μl kompetente Zellen auf Eis vorsichtig aufgetaut und zu der zu transformierenden DNA oder dem Ligationssatz in ein Falcon®-Röhrchen (2.2.) gegeben. Durch schnelle Temperaturwechsel wird dabei die Aufnahme der DNA erleichtert.

Einer dreißigminütigen Inkubation auf Eis folgt ein zweiminütiger Temperaturschock bei 42 °C. Anschließend werden die Bakterien für 2 min auf Eis wieder heruntergekühlt, in 800 μl LB-Medium aufgenommen und für 1 h bei 37 °C auf dem Schüttler bei 200 rpm inkubiert. Während dieses Schrittes erfolgt die Etablierung des Plasmids und die Expression der Selektionsmarker. Anschließend wird der Ansatz auf ein bis vier Agarplatten mit 6 cm Durchmesser, die zur Selektion der transformierten Escherichia coli-Zellen das Antibiotikum enthalten, für dessen Resistenz das Plasmid codiert, ausgestrichen und für 16 - 20h bei 37 °C inkubiert.

Die Kontrollen erfolgen wie bei der Transformation nach der TSS-Methode (3.1.20.1.).

3.1.20.3. Transformation ultrakompetenter Zellen


50 μl der Zellen werden mit 25 mM β-Mercaptoethanol versetzt und 10 min auf Eis inkubiert. 50 ng Plasmid-DNA werden zugefügt und die Zellen für weitere 30 min auf Eis inkubiert. Dann wird der Transformationsansatz für 45 sec bei 42 °C erhitzt und direkt im Anschluss wieder für 2 min auf Eis abgekühlt. Nach der Zugabe von 500 ml LB-Medium erfolgt eine Inkubation für 1 h bei 200 rpm auf dem Schüttler. Anschließend werden jeweils 250 μl auf eine antibiotikahaltige Agar-Platte ausgestrichen und wie in den anderen Verfahren für 16 - 20 h bei 37 °C inkubiert.

3.1.20.4. Transformation mittels Elektroporation

Die Elektroporation ist eine weitere effiziente Methode, um Nukleinsäuren in Zellen einzubringen. Dabei wird ein elektrisches Feld hoher Intensität aufgebaut, das die Membran permeabilisiert und damit durchlässig macht für Makromoleküle wie DNA, die sich im umgebenden Medium befinden. Dafür werden pro Ansatz je 50 μl der zu transformierenden

3.2. Zellbiologische Methoden

3.2.1. Kultivierung von Zellen unterschiedlicher Zelllinien


**Kulturmedium**

DMEM

1% L-Glutamin

10% FKS (fetales Kälberserum), 30 min bei 56 °C inaktiviert

1% 100x Penicillin/Streptomycin-Antibiotikagemisch
Methoden

**Waschmedium**
MEM (Dulbecco’s MEM à la Brandl)

**Trypsin-EDTA-Lösung**
- 0,025% Trypsin
- 0,05% EDTA
- in H₂O

### 3.2.2. Anlegen von Zellstocks eukaryotischer Zellen

Eukaryotische Zellen können eingefroren und dauerhaft bei -132 °C gelagert werden. Subkonfluente Zellmonolayer, ausgehend von einer 75 cm²-Zellkulturschale, werden mit PBS gewaschen und mit Trypsin-EDTA-Lösung abgelöst, vereinzelt und mit 1x Dulbecco’s MEM mit 10% FKS versetzt. Die Zellen werden bei 4 °C für 3 min bei 3000 rpm pellettiert, in Frostmedium aufgenommen und zu je 1 ml in Polypropylen-Kryogefäße überführt. Daraus resultiert eine Zellkonzentration von 5 x 10⁶ Zellen pro Kryogefäß. Um die Zellen kontinuierlich herunterzukühlen, werden sie 24 h in Isopropanol-gefüllten Gefrierbehältern bei -80 °C gelagert und für die Dauerlagerung anschließend bei -132°C in der Gasphase über flüssigem Stickstoff (-196 °C) aufbewahrt.

**Frostmedium**
- DMEM
- 10% FKS
- 1% Glutamin
- 1% Penicillin/Streptomycin-Antibiotikagemisch
- 10% DMSO

Eingefrorene Zellen werden nach Entnahme aus dem flüssigen Stickstoff sofort im Wasserbad bei 37 °C aufgetaut und direkt im Anschluss in eine Zellkulturschale mit entsprechendem Medium überführt. Nach 24 h im Brutschrank werden die Zellen geteilt und erneut passagiert.

### 3.2.3. Transfektion von Plasmid-DNA in eukaryotischen Zellen

Im Unterschied zu der Transformation von Bakterienzellen, die erst durch eine Vorbehandlung aufnahmefähig gemacht werden müssen, wird die DNA-Aufnahme bei der Transfektion eukaryotischer Zellen meist durch einen DNA-Reagens-Komplex erreicht. Für

**3.2.3.1. Transfektion von adhärenten Zellen**


*Transfektionsmedium*

OPTI-MEM (2.3)
3.2.3.2. Transfektion von Zellen in Suspension

Der Transfektionsansatz wird ebenso vorbereitet wie für die Transfektion des Monolayers (3.2.3.1.). Die in einer 75 cm²-Zellkulturschale konfluently wachsenden Zellen werden einmal mit Trypsin-EDTA-Lösung (3.2.1.) gewaschen und anschließend in dieser Lösung inkubiert, bis die Zellen sich vom Flaschenboden gelöst und aus dem Zellverband separiert haben. Anschließend werden sie in 2 ml OPTI-MEM aufgenommen und für 5 min bei 900 rpm und RT zentrifugiert. Das Pellet wird in 8 ml Transfektionsmedium resuspendiert. Je 1 ml der Zellsuspension wird in je eine Vertiefung einer 6-Well-Platte gegeben, anschließend wird der Transfektionsansatz mit dem DNA-Lipidkomplex hinzugegeben. Die Zellen werden nun für 8 h im Brutschrank inkubiert, bevor das Transfektionsmedium durch das Kulturmedium ersetzt wird, in dem die Zellen für weitere 24 h wachsen. Auch hier können für unterschiedliche Ansätze und Plattengrößen die genauen Mengen berechnet werden.

3.2.4. Etablierung stabiler Zelllinien

In Zellen stabiler Zelllinien werden die auf dem eingebrachten Vektorplasmid codierten Gene durch eine Selektion in das Genom der Zelle eingefügt und stabil exprimiert. Für die Herstellung stabiler Zelllinien werden die MDCK-Zellen für die Transfektion einen Tag zuvor mit Trypsin vereinzelt und mit frischem Kulturmedium auf Zellschalen verteilt (3.2.1.), so dass am Tag der Transfektion der Zellrasen zu 90 - 95% konfluently wachsend ist. Zur Transfektion werden die Zellen für 4 - 6 h mit dem Transfektionsmedium und dem DNA-Lipofectamin-Komplex inkubiert (3.2.3.1), anschließend wird das Medium durch Kulturmedium ohne Zeocin™-Zusatz ersetzt. Ca. 12 h nach der Transfektion wird das Kulturmedium ausgetauscht und das Antibiotikum zugesetzt, für das der Expressionsvektor das Resistenzgen trägt. In dieser Arbeit wurde der Expressionsvektor pIRESbleo3 verwendet, dessen Gen für die Bleomycin-Resistenz die Selektion stabiler Zellklone durch den Zusatz von Zeocin™ (2.3.) ermöglichte. Die Verwendung unterschiedlicher Konzentrationen hat ergeben, dass eine Zeocin™-Konzentration von 1mg/ml einen ausreichenden Selektionsdruck auf die Zellen ausübt. Die Kolonien einzelner Zellklone werden über einen Zeitraum von ein bis zwei Wochen selektioniert. Um die Klone zu isolieren, werden Metallzylinder auf die Kolonien gesetzt, in deren Lumen dann die Trypsinisierung und die Vereinzelung der Zellen vorgenommen wird, so dass eine Vermischung mit Zellen anderer Kolonien vermieden wird. Die vereinzelten Zellen werden dann in Kulturmedium auf frische Zellkulturschalen verteilt und regelmäßig passagiert. Von nun an werden die Zellen dieses Klons als eigenständige Zelllinie kultiviert.
3.2.5. Überprüfung der Proteasen-Aktivität mit spezifischen fluorogenen Substraten in der Spektrofluoreszenzanalyse

Um die Aktivität einer Protease in unterschiedlichen Zellen zu bestimmen, wird die Spaltung eines spezifischen Substrates, das durch die Spaltung fluoreszierende Eigenschaften erhält, mittels der Fluoreszenz-Spektrophotometrie überprüft. Die zu analysierende Probe wird mit dem spezifischen Substrat inkubiert, die Protease setzt das Substrat um und die Fluoreszenzintensität wird bestimmt.


**Probenpuffer 10ml**
- 0,5 ml NaCl 85%
- 526 µl TrisHCl, 1M, pH 8,6
- 3,5 µl BSA 30%
- 100 µM MCA-Substrat
- 9,5 ml H₂O
3.3. Immunologische Methoden

3.3.1. Immunhistochemische Anfärbung von Zellantigenen

Diese Nachweismethode dient der Auffindung von Antigenen mittels spezifischer monoklonaler Antikörper, die wiederum durch einen Zweitantikörper detektiert werden und mit verschiedenen Färbemethoden sichtbar gemacht werden können.

Nach Abnahme des Nährmediums werden die Zellen zunächst fixiert. Dies geschieht entweder durch eine einstündige Inkubation mit Paraformaldehyd 4% in MEM bei Raumtemperatur oder durch eine zehnminütige Inkubation mit 80%igem Aceton bei -20 °C. Nach zweimaligem Waschen mit PBS werden die Zellwände durch eine zwanzigminütige Inkubation mit 10% Triton-X-100™ in PBS permeabilisiert. Es folgen zwei Waschschritte mit PBS und eine Inkubation mit der Verdünnungslösung für die Antikörper, um spätere unspezifische Bindungen zu minimieren. Nach drei Waschschritten mit PBS wird der Erstantikörper gegen das zu detektierende Protein in der jeweiligen Verdünnung in Elisa-Puffer hinzugegeben.


Alternativ kann als Substrat o-Phenyldiamin-Dihydrochlorid [OPD (2.3.')] verwendet werden, wobei die Peroxidase 10 min mit dem OPD-Substrat reagiert. Die Farbreaktion wird mit H₂SO₄ gestoppt und photometrisch bei 490 nm im TeraTerm-Analysator (2.1.) abgelesen.

Elisa-Puffer

- 10% NHS (normal horse serum)
- 0,1% Tween 80
- in PBS
Je nach Antikörper wird der Elisapuffer zur Verdünnung variiert; statt NHS kann NDS (normal donkey serum) verwendet werden, oder BSA (bovine serum albumin) kann hinzugefügt werden. Auch die Konzentrationen können variiert werden.

**Waschpuffer**

- 0,05% Tween 80
- in PBS

### 3.3.2. Indirekte Immunfluoreszenz


In vorliegender Arbeit diente die Immunfluoreszenz zum Nachweis und zur Lokalisation von amino- und carboxyterminal mit flag-Protein versehener Human Airway Trypsin-like Protease in transient transfizierten intakten Zellen.

Die Zellen werden auf Objekträgern in Kulturschalen mit acht Vertiefungen herangezogen und 12, 24 und 48 h nach Transfektion fixiert. Hierfür werden die Zellen in kaltem PBS gewaschen und anschließend zu Fixierung mit 4%igem Paraformaldehyd (2.3.) in MEM für 15 min inkubiert. PFA wird mit kaltem PBS abgewaschen und die Zellen werden für weitere 10 min mit 100mM Glycin in PBS inkubiert. Nachdem auch das Glycin mit PBS abgewaschen ist, wird 0,1%iges Triton-X-100™ in PBS zur Membranpermeabilisierung zugesetzt. Die Inkubationszeit beträgt 20 min. Danach werden die Zellen erneut sorgfältig mit PBS gewaschen. Sättigt man die Zellen anschließend mit einem dafür vorgesehenen proteinhaltigen Puffer ab, so lassen sie sich mehrere Tage bei 4 °C aufbewahren.

**Absättigungspuffer**

- 2% BSA
- 5% Normal Donkey Serum (NDS)
- 0,01% NaN₃
- in PBS
Zur Markierung mit Antikörpern wird zunächst der Absättigungspuffer abgewaschen. Dann werden die Zellen für 1 h mit einem spezifischen, in BSA-Puffer verdünnten Erstantikörper [hier: anti-flag vom Kaninchen (2.10.)] inkubiert und anschließend in PBS\textsubscript{def} gewaschen. Darauf folgt die einstündige Inkubation mit einem fluoreszenzmarkierten Zweitantikörper [hier: Texas Red\textsuperscript{TM} Anti-Kaninchen IgG (2.10.)]. Nach einem weiteren Waschschritt mit PBS\textsubscript{def} wird für die Fluoreszenzmarkierung der Nuklei noch DAPI für 10 min zugegeben (3.3.2.1). Die Präparate werden nach Waschschritten mit PBS\textsubscript{def} und einem, zur Verhinderung der Salzkristallbildung, abschließenden Waschschritt mit \textit{aqua dest}. in Fluoroprep\textsuperscript{TM} (2.3.) eingedeckt. Um ein Ausbleichen zu verhindern, werden der Fluoroprep\textsuperscript{TM}-Lösung zuvor 0,2% (v/v) des Radikalfängers DABCO (1,4 Diazobicyclo- [2,2,2]- Oktan, 2.3.) zugefügt. Dann werden die Deckgläser aufgelegt und die Ränder mit transparentem Nagellack versiegelt. Die Auswertung der fluoreszenz-immunologischen Färbung erfolgt mit Hilfe eines Mikroskops mit Epifluoreszenz (Axioplan, 2.1.) und einer Kameraausrüstung (Spot Kamera, 2.1.).

\subsection*{3.3.2.1. DAPI-Färbung}
Zur Darstellung von Zellkernen in der indirekten Fluoreszenzmikroskopie (3.3.2.) werden die Präparate nach der Immunfärbung für 10 min mit DAPI-Färbelösung inkubiert und anschließend mit PBS\textsubscript{def} und \textit{aqua dest}. gewaschen. Der Fluoreszenzfarbstoff DAPI (4,2-Diamino-2-phenylindol, 2.3.) interkaliert mit DNA, so dass das Chromatin und somit der Zellkern nach Anregung durch UV-Licht entsprechend fluoreszieren.

\textbf{DAPI-Färbelösung}

\begin{itemize}
  \item 300 mM Natriumchlorid
  \item 30 mM Natriumcitrat
  \item 0,1 ug/ml DAPI
  \item in H\textsubscript{2}O
\end{itemize}

\subsection*{3.3.2.2. EGFP (\textit{enhanced green fluorescent protein})-Nachweis}
Zur Kontrolle des Transfektionserfolgs werden die Zellen einer Vertiefung auf dem Objektträger mit einem Plasmid, das EGFP exprimiert, transfiziert. EGFP fluoresziert nach Anregung mit UV-Licht eines definierten Spektralbereichs. Mit geeigneten Filtern ist so eine Detektion des exprimierten EGFPs in der lebenden Zelle möglich (Zylka and Schnapp,
1996), was unter dem Mikroskop eine Lokalisationsbestimmung und eine Aussage über die Menge der transfizierten Zellen zuläßt.

Das Wildtyp-GF-Protein, das ursprünglich aus den beiden Cnidaria Aequorea victoria und Renilla spp. isoliert wurde, strahlt bei zwei Anregungsmaxima (396 nm und 475 nm) jeweils Licht der Wellenlänge von 508 nm ab (Morise et al., 1974). Der Vorteil gegenüber anderen Reportergensystemen ist die direkte Detektierbarkeit in lebenden Zellen oder Geweben (Chalfie et al., 1994). So kann die Transfektionseffizienz leicht unter dem Mikroskop beurteilt werden. Verschiedene Mutationen des Wildtyps führten zur Verstärkung der Emission des grün leuchtenden Proteins (EGFP), zur Verschiebung der Anregungs- und Emissionsmaxima (rote und blau Variante) und zur Steigerung der Thermostabilität des C-Terminus (Siemering et al., 1996).

3.4. Infektionsversuche mit Viren verschiedener Influenza-Stämme

3.4.1. Alternative Virusanzucht im embryonierten Hühnerei

Das klassische System zur Anzucht von Influenza-Viren sind 11 Tage alte, embryonierte Hühnereier, in denen sie sich zu hohen Titer in der Allantoismembran replizieren (Klenk and Rott, 1973). Die Viren werden in die Allantoisflüssigkeit abgegeben und können mit dieser geerntet werden.


3.4.2. Experimentelle Virusinfektion von eukaryotischen Zellen mit dem Influenza-Virus

Bei den Infektionsversuchen werden die zu infizierenden Zellen dreimal mit MEM oder PBS+ gewaschen. Die zweiwertigen Ionen bewirken die Stabilisierung des Virus.
**Methoden**

*PBS*:

- 2,5 mM MgCl$_2$
- 3,4 mM CaCl$_2$

in PBS

Zunächst werden die verschiedenen Verdünnungsreihen des Virus hergestellt. Dazu wird die Virussuspension (3.4.1) in Infektionsmedium in einer log10-Verdünnungsreihe diluiert. In den Versuchen, in denen eine Virusaktivierung durch HAT in Zellen der stabilen Zellinien oder transient transfizierten Zellen nachgewiesen werden sollte, wurde nur in den Kontrollreihen TPCK-Trypsin$^3$ (10 – 20 µg/ml, 2.1.) zum Medium hinzugegeben. Das Waschmedium wird abgenommen und das Virusmedium auf die Zellen gegeben. Zur Virusvermehrung werden die Zellen dann im Brutschrank unter 5% CO$_2$-Begasung bei 35 °C und 80% Luftfeuchtigkeit inkubiert. Ab ca. 8 Stunden Inkubation ist je nach Virusstamm ein Replikationszyklus abgeschlossen und der zytopathische Effekt kann kontrolliert werden.

**Infektionsmedium**

- DMEM
- 1% Glutamin
- 1% Streptomycin/Penicillin-Antibiotikagemisch

---

4. Ergebnisse

4.1. Herstellung des pIRESbleo-HAT Plasmids

Mit Hilfe einer RT-PCR (3.1.9.) wurde aus mRNA humaner Bronchialepithelzellen (NHBE, 2.11.) durch Verwendung der Primer HAT-F und HAT-R (2.9.) das HAT-Gen amplifiziert. Zusätzlich wurden dabei die Erkennungssequenzen für die Restriktionsenzyme EcoRI und NotI angefügt. Die beiden Enzyme schneiden innerhalb ihrer Erkennungssequenz immer am gleichen Ort der Symmetrieachse und erzeugen DNA-Fragmente überstehender einzelsträngiger Enden, sogenannter „sticky ends“.

In der Kontroll-Gelelektrophorese (3.1.12.) wurde eine Bande einer Größe von ca. 1,2 kb erkannt, die der Molekülgröße der DNA der HAT entsprach.

<table>
<thead>
<tr>
<th>Marker</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>5000bp</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4000bp</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1500bp</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000bp</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 und 2 : RT-PCR-Produkt der beiden mRNA-Isolat-Proben
3 : Vektorplasmid pIRESbleo3 bei ca. 4,9 kb

Abb. 12. Gel-Elektrophorese zur Kontrolle nach RT-PCR und Restriktionsverdau

Das RT-PCR-Produkt wurde nach dem QIAquick Gel Extraction Protokoll (3.1.14) aus dem Agarosegel isoliert und aufgereinigt. Anschließend wurden das Gen und das Vektorplasmid pIRESbleo3 (Clontech; 2.8.1) im Restriktionsverdau mit EcoRI und NotI für die Ligation präpariert. Die Schnittstellen für EcoRI und NotI sind in der MCS des ausgewählten Vektors lokalisiert. Durch den Restriktionsverdau (3.1.11.2.) mit diesen Enzymen sowohl des Gensegmentes als auch des Vektorplasmids werden kohäsive Enden erzeugt, wodurch das Gen nahtlos in den Vektor eingefügt werden kann. Nach der zusätzlichen Inkubation des Vektorplasmids mit Phosphatase und der anschließenden Aufreinigung in der Alkoholfällung (3.1.10.2.) wurde das HAT-Gen mit Hilfe der DNA-T4-Ligase (3.1.15) über die Schnittstellen EcoRI und NotI in die MCS des Vektors eingefügt.
Ergebnisse

Abb. 13. Schematische Darstellung des Konstruktes pIRESbleo-HAT

Die Plasmid-DNA wurde mittels TSS-Transformation (3.1.20.1) in *Escherichia coli* (2.12.) eingebracht. Die transformierten Bakterien wurden mit Hilfe Ampicillin-haltiger Agarplatten selektioniert und einzelne Kolonien in LB-Medium mit Ampicillinzusatz kultiviert (3.1.18.). Für die Analyse wurde zunächst im kleinen Maßstab Plasmid-DNA isoliert (3.1.1). Die so gewonnene DNA wurde erneut mit den Restriktionsenzymen EcoRI und NotI inkubiert und in der Gелеlektrophorese überprüft. Positive Klone wurden für die Isolierung von Plasmid-DNA im großen Maßstab über Nacht kultiviert. Anschließend wurde die DNA in der Maxipräparation (3.1.2.) isoliert. Die Konzentration der DNA wurde mittels UV-Spektrophotometrie (3.1.4.) bestimmt und anschließend durch Sequenzierung (3.1.17.2.) überprüft.
4.2. Entwicklung der stabilen Zelllinien mit dem HAT-Gen

Für eine stabile Expression von HAT wurden MDCK-Zellen mit dem Plasmid pIRESbleo-HAT transfiziert und mit Zeocin™-haltigem Medium selektioniert (3.2.4.). Zur Kontrolle wurden MDCK-Zellen unter gleichen Bedingungen mit einem EGFP-tragenden Plasmid transfiziert und eine weitere Kontrolle lediglich mit dem Lipofectamin-Reagens in Transfektionsmedium inkubiert. Nach weiteren 24 - 36 h wurden die Zellen gewaschen und mit neuem Kulturmedium mit Zeocin™-Zusatz versehen. Der Transfektionserfolg konnte indirekt anhand der Fluoreszenz in der Kontrolle mit dem EGFP-Plasmid überprüft werden (3.3.2.2.). Zeocin™ wurde als Antibiotikum zur Selektion in den Konzentrationen 1mg/ml, 0,5 mg/ml und 0,25 mg/ml zugesetzt. Über einen Zeitraum von ca. 2 Wochen wurde regelmäßig das Medium gewechselt und das Wachstum der transfizierten Zellen beobachtet. Es stellte sich auch anhand der Kontrollen heraus, dass die Antibiotikakonzentration von 1mg/ml Zeocin™ für einen ausreichenden Selektionsdruck erforderlich war. Nach 16 - 18 Tagen konnten mehrere Kolonien selektionierter Zellklone isoliert werden, die für die Etablierung stabiler Zelllinien Verwendung fanden. Die Klone wurden durch Aufsetzen eines sterilen Metallzyinders isoliert, darin durch Trypsinzugabe vereinzelt und in frische Zellkulturflaschen überführt. Aus den vier isolierten Klonen wurden so vier stabile Zelllinien etabliert, die für weitere Untersuchungen zur Verfügung standen.
4.3. Infektion von Zellen der stabilen Zelllinie MDCK-HAT mit Influenza A-Virus

Zur Untersuchung, ob die Zellen der vier stabilen Zellklone HAT exprimieren und die Protease in der Lage ist, Influenzavirus-Hämagglutinin zu aktivieren, wurden die Zellen mit Influenza A-Virus infiziert.


![Zellen der stabilen Zelllinie MDCK-HAT nach Infektion mit Influenza A-Virus und Kontrollen](image)

Abb.15. Zellen der stabilen Zelllinie MDCK-HAT nach Infektion mit Influenza A-Virus und Kontrollen

In mehrfachen Versuchsreihen mit unterschiedlichen Virusverdünnungen sowie unterschiedlichen Zeiten für die Inkubation mit Infektionsmedium für alle Zelllinien der drei HAT-Klone konnte keine signifikante Aktivierung im Vergleich zu den MDCK-Zellen
festgestellt werden. Auch die Zugabe unterschiedlicher, aus dem Bronchialsystem gewonnener Muzine, mit der Idee, darin enthaltenene Proteasen würden eventuell das HAT-Zymogen aktivieren, zeigte keinen Erfolg.

4.4. Nachweis von HAT-RNA in Zellen der stabilen Zelllinien


<table>
<thead>
<tr>
<th>HAT-Klone</th>
<th>Marker</th>
<th>MDCK 1</th>
<th>MDCK 2</th>
<th>MDCK 3</th>
<th>MDCK 4</th>
<th>NHBE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDCK :</td>
<td>aus normalen MDCK-Zellen isolierte mRNA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Klon 1 :</td>
<td>aus MDCK-HAT-Zelllinie 1 isolierte mRNA; Zeocin™ 0,5 mg/ml</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Klon 2-4 :</td>
<td>aus MDCK-HAT Zelllinien 2 - 4 isolierte mRNA; Zeocin™ 1 mg/ml</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NHBE :</td>
<td>aus normalen humanen Bronchialepithelzellen isolierte mRNA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abb.16. Gelelektrophorese zum Nachweis von HAT-spezifischer mRNA in infizierten Zellen der stabilen Zelllinie und den Kontrollen

Zur Überprüfung der Sequenz wurde erneut RNA aus den Zellen der positiven Zelllinien gewonnen, in einer RT-PCR als DNA amplifiziert und im Elektrophoresegel kontrolliert. Dann wurde die DNA mit dem QIAquick™ Gel Extraction Kit aus dem Gel eluiert und mit dem „89/11“-Reagens weiter aufgereinigt (3.1.10.3.). Das PCR-Produkt wurde in einen pCR®2.1-TOPO-Vektor integriert (3.1.6.) und mittels Elektroporation (3.1.20.4.) in Escherichia coli transformiert. Die aus der Minipräparation gewonnene DNA wurde mit dem Restriktionsenzym EcoRI verdaut. Im anschließenden Kontrollgel war ein DNA-Fragment der erwarteten Größe von ca. 1200 bp zu erkennen.

\[\text{Marker} \quad 1 \quad 2 \quad 3 \quad \text{Marker} \]

| 5000bp | 4000bp | 1500bp | 1000bp |

Marker: Fragmentgrößenstandard 1 kb DNA ladder linearisierter Plasmidvektor pIRESbleo in allen 3 Proben bei ca. 5 kb exzidiertes DNA-Fragment bei ca. 1,2 kb entsprechend dem HAT-Insert

**Abb.17.** Kontroll-Gelelektrophorese der Proben aus der stabilen Zelllinie des Klons Nr. 3 nach dem Restriktionsverdau mit EcoRI

In der PCR für die folgende Sequenzierung wurden die Oligonukleotide T7 (forward), M13 (reverse) und aufgrund der Länge des Inserts noch der Primer HAT-F374 (2.9.) verwendet. Das PCR-Produkt wurde durch Alkoholfällung aufgereinigt und die DNA sequenziert. Hier konnte die korrekte Sequenz der Human Airway Trypsin-like Protease in den Proben der stabilen Zelllinien nachgewiesen werden.

### 4.5. Nachweis von HAT-Proteinaaktivität mittels MCA-Assay

Der Nachweis der HAT-mRNA belegte die Transkription des HAT-Gens in der Zelllinie. Es sollte nun überprüft werden, ob die fehlende Aktivierung des Influenza A-Virus durch HAT in den Zellen eventuell auf eine generelle Inaktivität der Protease zurückzuführen sei.

Die Extinktionen wurden gegen die Leerprobe des Reaktionspuffers oder des Mediums und gegen eine Positivprobe gemessen, in der das Substrat mit Trypsin in einer Konzentration von 10 µg/ml inkubiert wurde sowie gegen eine weitere Kontrolle mit normalen MDCK-Zellen.

Abb.18 .Graphische Darstellung des MCA-Assays MDCK-HAT

Die am Vortag umgesetzten Zellen wurden bei einer Konfluenz von 85 - 95% ebenso wie die entsprechenden Kontrollen mit dem im Probenpuffer oder Infektionsmedium aufgenommenen Substrat inkubierte. Die Zellüberstände wurden nach der Inkubationszeit abgenommen, zentrifugiert und analysiert. Die Emission wurde bei einer Wellenlänge von 460 nm gegen die Extinktion bei 350 nm je nach Versuchsreihe nach 30 min, 60 min, 4 h, 12 h und 24 h bestimmt. In keiner der Versuchsreihen war eine signifikante Freisetzung von AMC und damit eine Umsetzung des spezifischen Substrats messbar.
4.6. Herstellung des pIRESbleo-HAT-Plasmids mit multibasischer Schnittstelle (pIRESbleo-HAT-args)


![Marker 1 2 3 4](image)

Abbildung 19: Kontroll-Gelelektrophorese mit Proben der Minipräparation des Plasmids nach Ethanolfällung

Marker 1 – 4: DNA-Fragmente aus den Proben der Minipräparation in der Größe des Plasmidvektors pIRESbleo-HAT-args (ca. 6,2 kb)
Für die Einfügung dieser multibasischen Spaltstelle wurde in einer Quick-Change-PCR (3.1.8.) das Vektorplasmid pIRESbleo-HAT (4.1.) als Ausgangs-DNA verwendet; als Primer dienten die Oligonukleotide Args-f und Args-r (2.9.). In der anschließenden Inkubation mit Dpn I (2.6.) wurde die methylierte Ausgangs-DNA verdaut, anhand der Gelelektrophorese überprüft und in Escherichia coli transformiert. Die Plasmid-DNA wurde durch Minipräparation isoliert, zur Linearisierung mit EcoRI gespalten und in einer Ethanolfällung aufgereinigt. Die DNA wurde anschließend sequenziert. Die Sequenzierung zeigte die erfolgreiche Integration der multibasischen Schnittstelle in die HAT-Sequenz des Vektors pIRESbleo-HAT.


Aminosäurenposition 182-185

4 Arginin eingefügt

SEQRILGG -> SEQRRRRRRILGG

Marker 1  2  3

Marker : Fragmentgrößenstandard 1 kb DNA ladder
1  : Zelllinie 1 des Klons pIRESbleo-HAT-args
2  : Zelllinie 2 des Klons pIRESbleo-HAT-args
3  : Negativkontrolle aus MDCK-Zellen

Abb. 22. Kontroll-Gelelektrophorese HAT-args

4.7. Nachweis der HAT-Proteinaktivität mittels MCA-Assay in den Zellen der stabilen Zelllinie MDCK-HAT-args


Auch hier waren in keiner Versuchsreihe eine signifikante Freisetzung von AMC und damit eine Umsetzung des spezifischen Substrats messbar.
4.8. Herstellung der Plasmidvektoren pCAGGS-HAT-flag3' und pCAGGS-HAT-flag5'

In einer RT-PCR wurden an die HAT-Sequenz flag-Epitop-codierende Sequenzen angefügt, um die Protease einmal amino- und einmal carboxyterminal mit dem flag-Epitop zu konjugieren. Das flag-Epitop besteht aus der Aminosäuresequenz DYKDDDDK. Mit einem spezifischen polyklonalen Antikörper gegen das flag-Epitop (2.10.) kann die Protease so in transfizierten Zellen detektiert werden. Die verwendeten Oligonukleotide waren EcoRI-flag-HAT und NotI-HAT bzw. EcoRI-HAT und NotI-flag-HAT, die die flag-HAT-Sequenz noch mit den jeweiligen Schnittstellen der MCS des Vektors pCAGGS (c5) (2.8.2.) versehen haben.

![Abb.24 Kontroll-Gelelektrophorese HAT-flag 5' und HAT-flag 3' nach RT-PCR](image)

- Marker 5' 3'
- DNA-Fragmente nach RT-PCR der beiden Proben in der Größe der gesuchten DNA bei ca. 1,2 kb

![Abb.25 Gelelektrophorese zur Konzentrationsabschätzung vor Ligation](image)

- Marker 5' 3' pCAGGS
- Marker: Fragmentgrößenstandard 1 kb DNA ladder
- pCAGGS: Vektorplasmid pCAGGS+MCS (c5)
- 5'/3' : aufgereinigte RT-PCR-Produkte bei ca. 1,2 kb

Positive Klone wurden für die Maxipräparation verwendet. In der Maxipräparation wurde die DNA im großen Maßstab aufgereinigt und anschließend ihre Konzentration bestimmt. Die DNA wurde für weitere Verwendungen bei -20°C gelagert.
4.9. HAT-Nachweis in transient transfizierten Zellen mittels Immunfluoreszenz

Zur in vivo-Analyse wurden in mehreren Versuchsreihen MDCK-Zellen mit den beiden HAT-flag-Plasmiden transfiziert und nach 8 - 16 h fixiert und die Proteinexpression mit Hilfe der fluoreszenzimmunologischen Färbung (3.3.2.) analysiert. Als Kontrolle dienten normale MDCK(H)-Zellen. Der Transfektionserfolg wurde mittels EGFP-transfizierter Zellen überprüft.
Ergebnisse

Die Hälfte der transfizierten Zellen wurde nach der Fixierung mit Paraformaldehyd zusätzlich mit Triton-X 100 behandelt, um die Zellwände zu permeabilisieren. Die andere Hälfte wurde für die Oberflächenfärbung nur mit PFA fixiert.


**Abb. 29.** Immunfluoreszenzaufnahmen nach transienter Transfektion mit pCAGGS-HAT-flag-Plasmiden und dem EGFP-Plasmid zur Kontrolle; 20fache Vergrößerung
Die Versuchsreihe wurde in A549-Zellen mit gleichem Versuchsaufbau wiederholt, das Ergebnis entsprach denen der in MDCK-Zellen durchgeführten Versuche.
5. Diskussion

5.1. Überblick über die Zielsetzung dieser Arbeit


5.2. Klonierung von HAT aus humanen Atemwegsepithelzellen und
Etablierung stabil HAT-exprimierender Zellen

Die Human Airway Trypsin-like Protease (HAT) wurde ursprünglich aus Epithelzellen des Bronchialsystems von Patienten mit chronischen Atemwegserkrankungen isoliert, sie ist aber auch in humanen Bronchialepithelzellen Gesunder nachzuweisen. In diesen Geweben kann das Influenza A-Virus durch Spaltung des Hämagglutinin durch eine Wirtsprotease aktiviert werden. HAT wurde als trypsinähnliche Serinprotease, die im humanen
Diskussion

Respirationstrakt aktiv ist, beschrieben und erschien für die Untersuchungen zur Influenzavirusaktivierung im menschlichen Wirt interessant. Es gelang, die mRNA der Human Airway Trypsin-like Protease aus humanen Bronchialepithelzellen (NHBE) zu gewinnen und mittels RT-PCR zu klonieren. Das Gen wurde in das Vektorplasmid pIRESbleo3 eingebracht. Die Klonierung des Plasmids pIRESbleo-HAT war erfolgreich und wurde durch die Sequenzierung mit verschiedenen spezifischen Primern bestätigt.


5.3. Infektion der stabilen MDCK-HAT-Zellen mit Influenza A-Virus


Antikörper gegen HAT zum direkten Nachweis der Protease in den Zellen zur Verfügung standen, wurde zunächst die Aktivität von HAT in den stabilen Zellen untersucht.

### 5.4. Überprüfung der HAT-Aktivität


### 5.5. Das Plasmid pIRESbleoHAT-args


Die Aktivität von HAT wurde primär mittels des HAT-spezifischen Substrats Boc-Phe-Ser-Arg-MCA in der Spektrofluoreszenzanalyse überprüft. Eine Aktivität von HAT in den stabilen Zellen MDCK-HAT-args konnte hier nicht gezeigt werden. Auch in diesen Versuchsreihen, in denen das Plasmid pIRESbleoHAT-args verwendet wurde, stellte sich das Problem, dass die
Möglichkeiten zur Detektion der Protease in den Zellen unzureichend waren, da ein spezifischer Antikörper nicht vorlag.

5.6. Die Plasmide pCAGGS-HAT-flag5' und pCAGGS-HAT-flag3'

Mit den Konstrukten wurden A549- und MDCK-Zellen transient transfiziert. Der gegen das flag-Epitop gerichtete Immunfluoreszenz-Antikörper zeigte jedoch nur in wenigen Zellen eine spezifische Anfärbung, was für eine geringe Expression der Protease in den Zellen sprach. Die Transfektion selbst war erfolgreich, wie die Kontroll-Transfektion mit dem EGFP-Plasmid zeigte.

5.7. Weitere Ansätze zum Nachweis von HAT
Im Rahmen dieser Arbeit wurden verschiedene Ansätze verfolgt, um die Expression von HAT in den stabil und transient transfizierten Zellen nachzuweisen. So wurden von der AG Professor Garten Kaninchen gegen Peptidsequenzen der Protease immunisiert, um spezifische Antikörper zu gewinnen. Immunhistochemische Versuchsreihen zur Anfärbung von HAT mithilfe der Kaninchenserien in stabilen und transient transfizierten Zellen sowie die Auftrennung zellulärer Proteine in der SDS-Page und die Detektierung der Protease im Western Blot mittels der Seren zeigten jedoch unzureichende und zu unspezifische Bindungen. Daher wurden die Ergebnisse dieser Versuchsreihen hier nicht präsentiert.
5.8. Spaltung von HA durch HAT

In einer weiterführenden Arbeit am Institut für Virologie in Marburg ist durch die Koexpression von HA und HAT in Säugerzellen die Spaltung des Hämagglutinis durch HAT gelungen. Dafür wurden A549-Zellen, humane Zellen eines bronchialen Adenokarzinoms, mit dem pCAGGS-HAT-flag3'-Plasmid sowie mit dem pCAGGS-Vektor, in den das HA des A/HongKong/1/68 (H3N2) kloniert wurde, transient transfiziert. Zwei Tage nach der Transfektion wurden die zellulären Proteine mittels SDS-PAGE und Western Blot aufgetrennt und auf eine HA-Spaltung hin analysiert. Die Koexpression von HA und HAT in den Zellen führte zur Spaltung des HA\textsubscript{0} in zwei Polypeptide mit einem Laufverhalten, das dem von HA\textsubscript{1} und HA\textsubscript{2} in der trypsinbehandelten HA-Kontrolle entsprach (Böttcher et al., 2006).


\textbf{Abb.31. Western Blot: Spaltung von HA\textsubscript{0} in HA\textsubscript{1} und HA\textsubscript{2} durch HAT sowie durch Trypsin in der Kontrolle (Böttcher et al., 2006)}
vereinzelt infizierte Zellen detektiert werden konnten. Das Ergebnis sprach dafür, dass die Protease in der Lage ist, die Infektiosität des Influenza A-Virus zu aktivieren. Darüber hinaus war dieses Ergebnis mit drei verschiedenen HA-Subtypen humaner Influenza A-Viren (H1, H2, H3) reproduzierbar. Die Untersuchungen brachten den Nachweis, der in den Versuchsreihen dieser vorangehenden Arbeit nicht zu erbringen war.

**HAT**

Abb.32. Deutliches Muster der Virusausbreitung nach Infektion von HAT-exprimierenden Zellen mit Influenza A-Virus (Böttcher et al., 2006)


**5.9. Ausblick**

Die Therapie der Influenzavirusinfektion ist heute hauptsächlich symptomatisch. Amantadin, das das Uncoating der Viren verhindert, ist ein Virostatikum, das nur als postexpositionelle Prophylaxe im Zuge von Influenza A-Epidemien verabreicht wird. Die Präparate Oseltamivir und Zanamivir als Neuraminidaseinhibitoren stehen als Therapeutika der Virusgrippe zur Verfügung. Sie sind in der Lage, den Krankheitsverlauf zu mildern und die Krankheitsdauer abzukürzen, müssen aber für eine effektive Therapie innerhalb der ersten zwei Tage nach

Eine hochspezifische Hemmung der Aktivierungsproteasen wäre also ein neuer Therapieansatz. Indem man die Aktivierung des Virus durch den Wirt verhinderte, könnte der Krankheitsverlauf besonders in gefährdeten Patientenkollektiven mit geschwächter Abwehrlage und Komorbiditäten positiv beeinflusst werden. Schwere, häufig letal endende Verlaufsformen würden seltener zum Tragen kommen.

Unter dem Gesichtspunkt der zunehmenden Resistenzentwicklung des Influenzavirus gegen bereits vorhandene Therapeutika, welche gegen die virale Neuraminidase oder das M2-Protein gerichtet sind, wäre HAT als zelluläre Protease daher ein optimaler Ansatzpunkt für eine mögliche Therapie, da eine Resistenzbildung des Virus vermieden würde.

Es ist noch wenig bekannt über die Aktivierungsproteasen, die unter den Bedingungen einer natürlichen Influenzavirusinfektion im Menschen Hämagglutinin spalten. Die Expression der Typ II Transmembran-Serinprotease HAT im menschlichen Respirationstrakt ist nachgewiesen und es gibt zahlreiche Hinweise auf ihre komplexe Funktionen im respiratorischen Gewebe, sowohl membrangebunden als auch in der sekretorischen Form.

Die Regulation zellulärer Funktionen über PAR2 sowie die Stimulierung der humanen Fibroblastenproliferation und die vermehrte Expression bestimmter Muzingene durch HAT wurden bereits in der Einleitung dargestellt. In welchem Maß sich diese Funktionen und Veränderungen in der Kompartimentierung der Proteasen auf den Verlauf von Infektionen auswirken, und inwiefern dies für die Aktivierung des Influenza A-Virus Hämagglutinins bedeutsam sein könnte, ist zur Zeit noch Vermutungen anheim gestellt.

Die gewonnenen Erkenntnisse über die Spaltung von HA durch HAT tragen zum zunehmenden Verständnis der Influenzavirusinfektion im Menschen bei und sind richtungsweisend für weitere Untersuchungen, die neue Therapiemöglichkeiten eröffnen könnten.
6. Literaturverzeichnis


Allgemeine Literatur:


Elektronische Datenquellen (Websites):

http://www.cdc.gov/mmwr/preview/mmwrhtml/mm5145a2.htm

http://www.eurosurveillance.org/em/v07n12/0712-222.asp

WHO Fact Sheet N°211; Revised March 2003
http://www.who.int/mediacentre/factsheets/2003/fs211/en/

http://www.cdc.gov/flu/about/disease.htm
7. Sequenzen

7.1. pIRESbleo3

Molekül : pIRESbleo3, 4874 bp DNA, zirkulär
Beschreibung : CMV-Promotor, MCS, ECMV-IRES, Polyadenylierungssignal SV 40, Bleomycinresistenzgen, Ampicillinresistenzgen
Dateiname : pIRESbleo3
Ausdruck : 1 - 4874 (komplett), Format Einzelstrang

```
1  gacgggatcgg gagatctccc gatccctctat ggtcgaacctct cagtacaatc tgctctgatg
gagatctccc gatccctctat ggtcgaacctct cagtacaatc tgctctgatg
gacgggatcgg gagatctccc gatccctctat ggtcgaacctct cagtacaatc tgctctgatg
  61
cgcagcatgtt aagccagatat ctgctcgctgg cctgtgtgttt ggaggtcgctc gagtagatgcg
cgcagcatgtt aagccagatat ctgctcgctgg cctgtgtgttt ggaggtcgctc gagtagatgcg
cgcagcatgtt aagccagatat ctgctcgctgg cctgtgtgttt ggaggtcgctc gagtagatgcg
 121
ttagggctagtt ttacgctacat acaagggcaag ctaaggtttgcg ccagttaccgg atggcgttgg
ttagggctagtt ttacgctacat acaagggcaag ctaaggtttgcg ccagttaccgg atggcgttgg
ttagggctagtt ttacgctacat acaagggcaag ctaaggtttgcg ccagttaccgg atggcgttgg
 181
gattatgcggt tagtatgctaat ttatactcaac ctgggactttag cgcagagtttag cgccggtcctct

gtttttagt cttacgttaaa atggggttttag cgcagagtttag cgccggtcctct
 241
caggtggtaa ttttacagtta ctgggttttag cgcagagtttag cgccggtcctct
 301
tgccttactgc gcgttttggcgt cgggtttttct cccctcgtcc gacggttttga tgcgttccag
```

115
Sequenzen

1561 caggcagcgg aacccccccac ctggcccagcag tggcctcctgc ggccaaaagc cacgttgtata
1621 agataaccact gcaaaagcgg cacaacccccaa ctgccaccggt tggagttgga tagtttgtgaa
1681 aagagtcaaa tggctctcctc caagcgtatt caaacaagggg cttgaaagtgc cccgaaaggt
1741 accccatgtgt atggggtactgt atctggtggcc tccggccaaact cggctctctgc gcggcttaacat cggcttttac tgggtttaac ccgagaaaggt
1801 gaggttaaaa aacgcctcttc cccgccccgc ccaagggggg gacggtgggttg tttgttttaac ccgagaaaggt
1861 acgatgataa cgtctgcaaca cccacgttgg gggctctctgc ggtggtttaac ccgagaaaggt
1921 agggttgaggac ctcgggagga gctggtccttc cgagagagtc acctgtgcta gcggcttttaac ccgagaaaggt
1981 cgggttgaggac ctcgggagga gctggtccttc cgagagagtc acctgtgcta gcggcttttaac ccgagaaaggt
2041 acgatgataa gcttgccaca acccagcttg ccagctgggg cgccctctgg taaggtgagc aacggtggttttg tttgttttaac ccgagaaaggt
2101 ccagggacag ggtgtgcggg gccaacccctc ccgctctctgc ggtggtttaac ccgagaaaggt
2161 gctgtacacaa gatgtgcgca ctgggctcttc cagcccgtttgc ggtggtttaac ccgagaaaggt
2221 catgaccgag atggggtactgt atctggtggcc tccggccaaact cggctctctgc ggtggtttaac ccgagaaaggt
2281 caactcgcttg ctcgggagga gctggtccttc cgagagagtc acctgtgcta gcggcttttaac ccgagaaaggt
2341 tccgagggg gcccacgcggt ctcgggagga gctggtccttc cgagagagtc acctgtgcta gcggcttttaac ccgagaaaggt
2401 cattaacacat gttgagttt gttgagttt gttgagttt gttgagttt gttgagttt gttgagttt gttgagttt gttgagttt gttgagttt
2461 ctgaaacata aatggttgtt gagcaggttgt gttgagttt gttgagttt gttgagttt gttgagttt gttgagttt gttgagttt gttgagttt
2521 tataaaacta gaaacagctt gataactgtt gttgagttt gttgagttt gttgagttt gttgagttt gttgagttt gttgagttt gttgagttt
2581 agttggtgtt gttggtgtt gttggtgtt gttggtgtt gttggtgtt gttggtgtt gttggtgtt gttggtgtt gttggtgtt gttggtgtt
2641 gttggtgtt gttggtgtt gttggtgtt gttggtgtt gttggtgtt gttggtgtt gttggtgtt gttggtgtt gttggtgtt gttggtgtt
2701 gttggtgtt gttggtgtt gttggtgtt gttggtgtt gttggtgtt gttggtgtt gttggtgtt gttggtgtt gttggtgtt gttggtgtt
2761 cagccagctt ctcggtgctt gggctctctgc ggtggtttaac ccgagaaaggt
2821 aactcactatt aatggtgagt gctggtccttc ccgctctctgc ggtggtttaac ccgagaaaggt
2881 agtggtggtg tggcctctc ccgctctctgc ggtggtttaac ccgagaaaggt
2941 ccgctctctc ctcggtgctt gggctctctgc ggtggtttaac ccgagaaaggt
3001 ctcggtgctt gggctctctgc ggtggtttaac ccgagaaaggt
3061 tgcgctctctc ctcggtgctt gggctctctgc ggtggtttaac ccgagaaaggt
3121 tgcgctctctc ctcggtgctt gggctctctgc ggtggtttaac ccgagaaaggt
3181 gggccagca gggcaagca agaggttaaa gttggtgtt gttggtgtt gttggtgtt gttggtgtt gttggtgtt gttggtgtt gttggtgtt
3241 ctcggtgctt gggctctctgc ggtggtttaac ccgagaaaggt
3301 tgggtggtg tgggctctctc ctcggtgctt gggctctctgc ggtggtttaac ccgagaaaggt
3361 agagtcttgt gtcggctcttc ctcggtgctt gggctctctgc ggtggtttaac ccgagaaaggt
3421 actggtcttg ctcggtgctt gggctctctgc ggtggtttaac ccgagaaaggt
3481 acggatggtg ggtggtttaac ccgagaaaggt
3541 actacggtta cactagggc gacgaggggt ggtggtttaac ccgagaaaggt
3601 tgggctctctc ctcggtgctt gggctctctgc ggtggtttaac ccgagaaaggt
3661 ttcctctcgc gggctctctc ctcggtgctt gggctctctgc ggtggtttaac ccgagaaaggt
3721 tgggctctctc ctcggtgctt gggctctctgc ggtggtttaac ccgagaaaggt
3781 tggtggtgag ggtggtttaac ccgagaaaggt

116
7.2. pCAGGS+MCS(c5)

Molekül: pCAGGS+MCS (c5), 4759 bp DNA zirkulär
Beschreibung: CAG-Promotor (chicken-β-actin-promoter), MCS, β-Globin des Kaninchen codierende Gensequenz mit Polyadenylierungssignal, Ampicillinresistenzgen, SV40-ori
Dateiname: pCAGGS+MCS (c5)
Ausdruck: 1 - 4759 bp (komplett); Format Einzelstrang

| 3841 | caatctaaag tatatatgag taaactttggt ctgacagttta ccaatgtccta atcagtgagg |
| 3901 | cacctatctc agcaggtcag ctattttgcct catccatagt tgcttgagtc cccgtcgtgt |
| 3961 | agataactctc gatggcaggg ggccttaccct ctggccccccag tgctgcattag ataccgcgag |
| 4021 | accccacgctc accggccttga gattttactc caataacacc cggaccgagg aaggcgggac |
| 4081 | gcagaaagtg gctctggcgct ttttggatttg ccattcattcg ccctcggtttcc caacgcagtaaa |
| 4141 | ctgtagttgct atgttggtct gattttgtcct cgctgtcctcg cccttccgcag gacactgtcata |
| 4201 | accgaggttc atgtttgcttc aatgttgcag ccgtgtccatt ggttcctcag tctccctcga |
| 4261 | atcttttttc ggttttcttc ttttggatttg ccattcattcg cccttccgcag gacactgtcata |
| 4321 | gcagaaagtg gctctggcgct ttttggatttg ccattcattcg cccttccgcag gacactgtcata |
| 4381 | ataataacgc cggacatagc agaacttttaa aagtgcctcat cattggaaa cgtttcctcg |
| 4441 | gcgcaaacct cggaggtgat gcttttcttc ttcctgctttt cattgctcttc ccactttctgg |
| 4501 | caccacgttc atctttcgtc ttttggatttg ccattcattcg cccttccgcag gacactgtcata |
| 4561 | gacacttttc cggacatagc agaacttttaa aagtgcctcat cattggaaa cgtttcctcg |
| 4621 | atcttttttc ggttttcttc ttttggatttg ccattcattcg cccttccgcag gacactgtcata |
| 4681 | gcagaaagtg gctctggcgct ttttggatttg ccattcattcg cccttccgcag gacactgtcata |
| 4741 | caccacgttc atctttcgtc ttttggatttg ccattcattcg cccttccgcag gacactgtcata |
| 4801 | tatattctat tatttagttt ttatttttttt ggttttcttc ttcctgctttt cattgctcttc ccactttctgg |
| 4861 | gcgacattg cgctc
Sequenzen

2641 ttgcagctta taatgtttac aaataaagca atagcatcac aat للccca aataaaagcat
2701 ttttttcact gcatttcaagt tgtgtttgtt ccaaaacctat caatgtatct tatcatgtct
2761 ggatcgcctgct caattagtaa tcggcccaac gcgggtaaga gggcgttttg cgatttggcgc
2821 cttctccggct tcctcgcgctc tgtactcgcgt cggcttccggtc gtctgcttgcc ggacgacgcggt
2881 atcagctcacc tcaaaatggg atccacagaa atccacagcct caagtcagag
2941 ggtggcgaaac ccgagcaggctc ttacaaccgtt cccccctgaa atcagcgttc ccattctcgg
3001 ggtggcgaaac ccgagcaggctc ttacaaccgtt cccccctgaa atcagcgttc ccattctcgg
3061 ggtggcgaaac ccgagcaggctc ttacaaccgtt cccccctgaa atcagcgttc ccattctcgg
3121 ggtggcgaaac ccgagcaggctc ttacaaccgtt cccccctgaa atcagcgttc ccattctcgg
3181 ggtggcgaaac ccgagcaggctc ttacaaccgtt cccccctgaa atcagcgttc ccattctcgg
3241 ggtggcgaaac ccgagcaggctc ttacaaccgtt cccccctgaa atcagcgttc ccattctcgg
3301 ggtggcgaaac ccgagcaggctc ttacaaccgtt cccccctgaa atcagcgttc ccattctcgg
3361 ggtggcgaaac ccgagcaggctc ttacaaccgtt cccccctgaa atcagcgttc ccattctcgg
3421 ggtggcgaaac ccgagcaggctc ttacaaccgtt cccccctgaa atcagcgttc ccattctcgg
3481 ggtggcgaaac ccgagcaggctc ttacaaccgtt cccccctgaa atcagcgttc ccattctcgg
3541 ggtggcgaaac ccgagcaggctc ttacaaccgtt cccccctgaa atcagcgttc ccattctcgg
3601 ggtggcgaaac ccgagcaggctc ttacaaccgtt cccccctgaa atcagcgttc ccattctcgg
3661 ggtggcgaaac ccgagcaggctc ttacaaccgtt cccccctgaa atcagcgttc ccattctcgg
3721 ggtggcgaaac ccgagcaggctc ttacaaccgtt cccccctgaa atcagcgttc ccattctcgg
3781 ggtggcgaaac ccgagcaggctc ttacaaccgtt cccccctgaa atcagcgttc ccattctcgg
3841 ggtggcgaaac ccgagcaggctc ttacaaccgtt cccccctgaa atcagcgttc ccattctcgg
3901 ggtggcgaaac ccgagcaggctc ttacaaccgtt cccccctgaa atcagcgttc ccattctcgg
3961 ggtggcgaaac ccgagcaggctc ttacaaccgtt cccccctgaa atcagcgttc ccattctcgg
4021 ggtggcgaaac ccgagcaggctc ttacaaccgtt cccccctgaa atcagcgttc ccattctcgg
4081 ggtggcgaaac ccgagcaggctc ttacaaccgtt cccccctgaa atcagcgttc ccattctcgg
4141 ggtggcgaaac ccgagcaggctc ttacaaccgtt cccccctgaa atcagcgttc ccattctcgg
4201 ggtggcgaaac ccgagcaggctc ttacaaccgtt cccccctgaa atcagcgttc ccattctcgg
4261 ggtggcgaaac ccgagcaggctc ttacaaccgtt cccccctgaa atcagcgttc ccattctcgg
4321 ggtggcgaaac ccgagcaggctc ttacaaccgtt cccccctgaa atcagcgttc ccattctcgg
4381 ggtggcgaaac ccgagcaggctc ttacaaccgtt cccccctgaa atcagcgttc ccattctcgg
4441 ggtggcgaaac ccgagcaggctc ttacaaccgtt cccccctgaa atcagcgttc ccattctcgg
4501 ggtggcgaaac ccgagcaggctc ttacaaccgtt cccccctgaa atcagcgttc ccattctcgg
4561 ggtggcgaaac ccgagcaggctc ttacaaccgtt cccccctgaa atcagcgttc ccattctcgg
4621 ggtggcgaaac ccgagcaggctc ttacaaccgtt cccccctgaa atcagcgttc ccattctcgg
4681 ggtggcgaaac ccgagcaggctc ttacaaccgtt cccccctgaa atcagcgttc ccattctcgg
4741 ggtggcgaaac ccgagcaggctc ttacaaccgtt cccccctgaa atcagcgttc ccattctcgg

aaaaggtgcca cct
7.3. HAT

Molekül : Human Airway Trypsin-like Protease (HAT), 1226 bp DNA, linear
Dateiname : HAT
Beschreibung : Aminoterminus, Transmembrandomäne, SEA-Modul, Prodome, Serinproteasendomäne, Carboxyterminus
Ausdruck : 1 - 1226 bp (komplett); Format Einzelstrang

gagtgggaat cttcaaagcag ttgagtaggc agaaaaaga acctctttcat ttaaggattaa
aatgtatatgg ccagcagcttg taaccttcgac ttcaagatit ctgaatcccat atgtagatgt
 ttttcattgtc gtcgcagggg tagtgactct gcagctcacc tccactcc caagagagat
ttaatattttt gatcaaaaat cttactttta taggacgagt tttcaacctcc ttaatgttga
atataatagt cagtttaatt caccaagtctac acaggaataac agacttttga gtggagaata
tgaatctcttg attactaaaa cattcaaga atcaaatatta agaaatcagt tcatcagagc
tcatggtgcc aaactgaggg aagatggtag tggatgtag gcgcagctc actgcttcag aagcaactct aatcctcgtg actggattgc
cagtttcttgt cttcattttt caactgaaaa agaaactaga aatgtcctaa tttaacatct tgttacattaatatggttta acaaacactg tttaacctttt aaaggttttc tattttctcc
7.4. Human Airway Trypsin-like Protease, kloniert

Molekül : Human Airway Trypsin-like Protease (HAT), 1226 bp DNA, linear
Datumname : HAT
Beschreibung : Aminoterminus, Transmembrandomäne, SEA-Modul, Prodomäne, Serinproteasendomäne, Carboxyterminus
Ausdruck : 1 – 1226 bp (komplett); Format Einzelstrang; Sequenzierung aus dem klonierten Plasmid pIRESbleoHAT mit den Primern

- HAT-R 415 (reverse)
- HAT-R 752 (reverse)
- HAT-F 224 (forward)
- HAT-F 718 (forward)
- HAT-F 1094 (forward)
Sequenzen
### Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>µg</td>
<td>Mikrogramm</td>
</tr>
<tr>
<td>µl</td>
<td>Mikroliter</td>
</tr>
<tr>
<td>µM</td>
<td>mikromolar</td>
</tr>
<tr>
<td>µmol</td>
<td>Mikromol</td>
</tr>
<tr>
<td>A</td>
<td>Adenin; Adenosin; Ampère; Alanin</td>
</tr>
<tr>
<td>AA</td>
<td>Acrylamid</td>
</tr>
<tr>
<td>Abb.</td>
<td>Abbildung</td>
</tr>
<tr>
<td>Ac</td>
<td>Acetat</td>
</tr>
<tr>
<td>Ala</td>
<td>Alanin</td>
</tr>
<tr>
<td>AMC</td>
<td>Aminomethylcumarin</td>
</tr>
<tr>
<td>Amp</td>
<td>Ampicillin</td>
</tr>
<tr>
<td>APS</td>
<td>Ammoniumpersulfat</td>
</tr>
<tr>
<td>Arg</td>
<td>Arginin</td>
</tr>
<tr>
<td>AS</td>
<td>Aminosäure</td>
</tr>
<tr>
<td>Asp</td>
<td>Aspartat</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosin-5'-triphosphat</td>
</tr>
<tr>
<td>bidest.</td>
<td>bidestillata (zweifach destilliert)</td>
</tr>
<tr>
<td>Boc(-Aminosäure)</td>
<td>tert-Butoxycarbonyl(-Aminosäure)</td>
</tr>
<tr>
<td>bp</td>
<td>Basenpaare</td>
</tr>
<tr>
<td>BPB</td>
<td>Bromphenolblau</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovine Serum Albumin (Rinderserumalbumin)</td>
</tr>
<tr>
<td>bzw.</td>
<td>beziehungsweise</td>
</tr>
<tr>
<td>C</td>
<td>Cytosin; Cystein</td>
</tr>
<tr>
<td>C-Terminus</td>
<td>Carboxy-Terminus</td>
</tr>
<tr>
<td>CaCl₂</td>
<td>Calciumchlorid</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>-------------</td>
<td>---------------------------------------------------------------------------</td>
</tr>
<tr>
<td>CAG-Promotor</td>
<td><em>Chicken-β-Actin-Promotor</em> (β-Aktin-Promotor vom Huhn)</td>
</tr>
<tr>
<td>cDNA</td>
<td><em>Complementary DNA</em> (Komplementär-DNA)</td>
</tr>
<tr>
<td>CF</td>
<td>Cystische Fibrose</td>
</tr>
<tr>
<td>CMV</td>
<td>Cytomegalievirus</td>
</tr>
<tr>
<td>cRNA</td>
<td><em>Complementary RNA</em> (Komplementär-RNA)</td>
</tr>
<tr>
<td>CPE</td>
<td>cytopathischer Effekt</td>
</tr>
<tr>
<td>d.h.</td>
<td>das heißt</td>
</tr>
<tr>
<td>DABCO</td>
<td>1,4 Diazabicyklo- [2,2,2]- Oktan</td>
</tr>
<tr>
<td>DAPI</td>
<td>4,6-Diamido-2-phenylindol</td>
</tr>
<tr>
<td>DFP</td>
<td>Diisopropylfluorophosphat</td>
</tr>
<tr>
<td>ddNTP</td>
<td>Didesoxy-5’-Nukleotidtriphasphate</td>
</tr>
<tr>
<td>dest.</td>
<td><em>destillata</em> (destilliert)</td>
</tr>
<tr>
<td>DMEM</td>
<td><em>Dulbecco’s Modified Eagle’s Medium</em> (Nährmedium von Gibco)</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethylsulfoxid</td>
</tr>
<tr>
<td>DNA</td>
<td>Desoxyribonukleinsäure</td>
</tr>
<tr>
<td>DNase</td>
<td>Desoxyribonuklease</td>
</tr>
<tr>
<td>dNTP</td>
<td>Desoxy-5’-Nukleotidtriphasphate</td>
</tr>
<tr>
<td>DOPE</td>
<td>Dioleoylphosphatidylethanolamin</td>
</tr>
<tr>
<td>DOSPA</td>
<td>2,3-Dioleoyloxy-N-2[(sperminecarboxamido)ethyl]-N,N-dimethyl-1-h propanaminiumtrifluoroacetat</td>
</tr>
<tr>
<td>dsDNA</td>
<td>Doppelstrang-DNA</td>
</tr>
<tr>
<td>DTT</td>
<td>Dithiotreitol</td>
</tr>
<tr>
<td>EB</td>
<td>Elutionspuffer</td>
</tr>
<tr>
<td>ECMV</td>
<td>Encephalomyocarditis-Virus</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylendiamintetraacetat</td>
</tr>
<tr>
<td>EGFP</td>
<td><em>Enhanced Green Fluorescent Protein</em></td>
</tr>
<tr>
<td></td>
<td>(verstärktes grün-fluoreszierendes Protein)</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Deutscher Name</td>
</tr>
<tr>
<td>-----------</td>
<td>----------------</td>
</tr>
<tr>
<td>EGFR</td>
<td>Epidermal-Growth-Factor-Receptor (epidermaler Wachstumsfaktor-Rezeptor)</td>
</tr>
<tr>
<td>ENaC</td>
<td>Epithelial Na⁺ Channel (epithelialer Natriumkanal)</td>
</tr>
<tr>
<td>et al.</td>
<td>et alteri oder et alii (und andere)</td>
</tr>
<tr>
<td>f</td>
<td>forward (vorwärts)</td>
</tr>
<tr>
<td>FITC</td>
<td>Fluoreszinisothiocyanat</td>
</tr>
<tr>
<td>FKS</td>
<td>Fetales Kälberserum</td>
</tr>
<tr>
<td>FPV</td>
<td>Fowl Plaque Virus (Geflügelpest-Virus)</td>
</tr>
<tr>
<td>G</td>
<td>Glycin</td>
</tr>
<tr>
<td>G-Protein</td>
<td>Guanosintriphosphat-bindendes Protein</td>
</tr>
<tr>
<td>GPI</td>
<td>Glykosylphosphatidylinositol</td>
</tr>
<tr>
<td>H</td>
<td>Hämagglutinin; Wasserstoff</td>
</tr>
<tr>
<td>H₂O</td>
<td>Wasser</td>
</tr>
<tr>
<td>HA</td>
<td>Hämagglutinin</td>
</tr>
<tr>
<td>HAEC</td>
<td>Human Adenoid Epithelial Cells (Humane epitheliale Drüsenzellen)</td>
</tr>
<tr>
<td>HAT</td>
<td>Human Airway Trypsin-like Protease</td>
</tr>
<tr>
<td>HCl</td>
<td>Salzsäure</td>
</tr>
<tr>
<td>HEF-Protein</td>
<td>Hämagglutinin-Esterase-Fusions-Protein</td>
</tr>
<tr>
<td>His</td>
<td>Histidin</td>
</tr>
<tr>
<td>HRP</td>
<td>Horse Reddish Peroxidase (Meerettichperoxidase)</td>
</tr>
<tr>
<td>H₂SO₄</td>
<td>Schwefelsäure</td>
</tr>
<tr>
<td>Ig</td>
<td>Immunglobulin</td>
</tr>
<tr>
<td>IL</td>
<td>Interleukin</td>
</tr>
<tr>
<td>I.P.</td>
<td>Isoelektrischer Punkt</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Definition</td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
</tr>
<tr>
<td>IPT6</td>
<td>Isopentenyltransferase 6</td>
</tr>
<tr>
<td>IRES</td>
<td><em>Internal Ribosomal Entry Site</em> (Interne ribosomale Eintrittsstelle)</td>
</tr>
<tr>
<td>KCl</td>
<td>Kaliumchlorid</td>
</tr>
<tr>
<td>KH₂PO₄</td>
<td>Kaliumdihydrogenphosphat</td>
</tr>
<tr>
<td>LB-Medium</td>
<td>Luria-Bertani Medium</td>
</tr>
<tr>
<td>LDLRA-Domäne</td>
<td>LDL-Rezeptor-Klasse A-Domäne</td>
</tr>
<tr>
<td>M</td>
<td>Molar</td>
</tr>
<tr>
<td>M1</td>
<td>Matrixprotein 1</td>
</tr>
<tr>
<td>M2</td>
<td>Membranprotein 2 (Ionenkanalprotein)</td>
</tr>
<tr>
<td>MCA</td>
<td>7-Amino-4-Methylcumarin</td>
</tr>
<tr>
<td>MCS</td>
<td><em>Multiple Cloning Site</em> (Polylinker)</td>
</tr>
<tr>
<td>MgCl₂</td>
<td>Magnesiumchlorid</td>
</tr>
<tr>
<td>MnCl₂</td>
<td>Manganchlorid</td>
</tr>
<tr>
<td>MOPS</td>
<td>3-[N-Morpholino]propansulfonsäure</td>
</tr>
<tr>
<td>MPBST-Lösung</td>
<td><em>Milk-Phosphat-Buffered-Saline-Tween</em>-Lösung (mit Milchpulver versetzter Phosphatpuffer mit Zusatz von Tween)</td>
</tr>
<tr>
<td>mRNA</td>
<td>Messenger-RNA (Botschafter-RNA)</td>
</tr>
<tr>
<td>N</td>
<td>Neuraminidase; Stickstoff</td>
</tr>
<tr>
<td>N-Terminus</td>
<td>Aminoterminus</td>
</tr>
<tr>
<td>NA</td>
<td>Neuraminidase</td>
</tr>
<tr>
<td>NaCl</td>
<td>Natriumchlorid</td>
</tr>
<tr>
<td>NaN₃</td>
<td>Natriumazid</td>
</tr>
<tr>
<td>NaOH</td>
<td>Natriumhydroxid</td>
</tr>
<tr>
<td>NDS</td>
<td><em>Normal Donkey Serum</em> (Eselserum)</td>
</tr>
<tr>
<td>NEP</td>
<td>Nuklear-Export-Protein</td>
</tr>
<tr>
<td>NHBE-Zellen</td>
<td>Normale Humane Bronchialepithelzellen</td>
</tr>
<tr>
<td>---------------------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>NH₄OAc</td>
<td>Ammoniumacetat</td>
</tr>
<tr>
<td>(NH₄)₂SO₄</td>
<td>Ammoniumsulfat</td>
</tr>
<tr>
<td>NHS</td>
<td>Normal Horse Serum (Pferdeserum)</td>
</tr>
<tr>
<td>nm</td>
<td>Nanometer</td>
</tr>
<tr>
<td>NP</td>
<td>Nukleoprotein</td>
</tr>
<tr>
<td>NS1</td>
<td>Nichtstrukturprotein 1</td>
</tr>
<tr>
<td>O.D.</td>
<td>Optische Dichte</td>
</tr>
<tr>
<td>OPD</td>
<td>o-Phenylen diamino-Dihydrochlorid</td>
</tr>
<tr>
<td>OPTI-MEM</td>
<td>Optimal Minimal Essential Medium</td>
</tr>
<tr>
<td></td>
<td>(Nährmedium von Gibco)</td>
</tr>
<tr>
<td>PAR2</td>
<td>Protease-Aktivierter Rezeptor 2</td>
</tr>
<tr>
<td>PC6</td>
<td>Proprotein Convertase 6</td>
</tr>
<tr>
<td></td>
<td>(Proprotein-Konvertase 6)</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphat Buffered Saline</td>
</tr>
<tr>
<td></td>
<td>(Salzhaltiger Phosphatpuffer)</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase Chain Reaction</td>
</tr>
<tr>
<td></td>
<td>(Polymerasekettenreaktion)</td>
</tr>
<tr>
<td>PEG</td>
<td>Polyethylenglykol</td>
</tr>
<tr>
<td>PFA</td>
<td>Paraformaldehyd</td>
</tr>
<tr>
<td>Phe</td>
<td>Phenylalanin</td>
</tr>
<tr>
<td>PMSF</td>
<td>Phenylmethylsulfonylfluorid</td>
</tr>
<tr>
<td>PRSS</td>
<td>Protease Serine S1 Family</td>
</tr>
<tr>
<td></td>
<td>(Familie der Serinproteasen S1)</td>
</tr>
<tr>
<td>r</td>
<td>reverse (rückwärts)</td>
</tr>
<tr>
<td>rER</td>
<td>Rauhes Endoplasmatisches Retikulum</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonukleinsäure</td>
</tr>
<tr>
<td>RNP</td>
<td>Ribonukleoprotein</td>
</tr>
<tr>
<td>rpm</td>
<td>rounds per minute (Umdrehungen pro Minute)</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Definition</td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
</tr>
<tr>
<td>RT</td>
<td>Raumtemperatur, Reverse Transkriptase</td>
</tr>
<tr>
<td>SAP</td>
<td><em>Shrimp Alkaline Phosphatase</em> (alkalische Phosphatase, aus Eismeergarnelen isoliert)</td>
</tr>
<tr>
<td>SEA-Modul</td>
<td><em>Sea Urchin Sperm-Protein</em> (Protein des Seeigelsamens), Enterokinase und Agrin-Modul</td>
</tr>
<tr>
<td>SDS</td>
<td><em>Sodiumdodecylsulfate</em> (Natriumdodecysulfat)</td>
</tr>
<tr>
<td>Ser</td>
<td>Serin</td>
</tr>
<tr>
<td>SRCR-Domäne</td>
<td><em>scavenger receptor cysteine-rich</em>-Domäne (cystein-reiche Domäne des Phagozyten-Rezeptors)</td>
</tr>
<tr>
<td>ss</td>
<td><em>Single Strand</em> (Einzelstrang)</td>
</tr>
<tr>
<td>SV 40</td>
<td><em>Simian Vacuolating Virus 40</em> (Affenvirus 40)</td>
</tr>
<tr>
<td>T</td>
<td>Tyrosin, Temperatur</td>
</tr>
<tr>
<td>TBE-Puffer</td>
<td>Trisbase-Borsäure-EDTA-Puffer</td>
</tr>
<tr>
<td>TEMED</td>
<td>N,N,N,N-Tetramethylethyldiamin</td>
</tr>
<tr>
<td>TPCK-Trypsin</td>
<td>Tosyl-Phenylalanyl-Chlormethyl-Keton-Trypsin</td>
</tr>
<tr>
<td>TSS</td>
<td><em>Transformation and Storage Solution</em> (Transformations- und Aufbewahrungsösung)</td>
</tr>
<tr>
<td>TTSP</td>
<td>Typ II Transmembran Serin Proteasen</td>
</tr>
<tr>
<td>U</td>
<td><em>Units</em> (Einheiten)</td>
</tr>
<tr>
<td>vRNA</td>
<td>Virale Ribonukleinsäure</td>
</tr>
<tr>
<td>vRNP</td>
<td>Virales Ribonukleoprotein</td>
</tr>
<tr>
<td>X-Gal</td>
<td>X-Galaktose</td>
</tr>
<tr>
<td>z.B.</td>
<td>zum Beispiel</td>
</tr>
</tbody>
</table>
Verzeichnis der akademischen Lehrer

Meine akademischen Lehrer und Lehrerinnen waren Damen und Herren in Marburg:

Arnold, Aumüller, Bach, Barth, Basler, Baum, Becker, Beyer, Christiansen, Czubayko, Daut, Eilers, Feuser, Garten, Geus, Görg, Gotzen, Griss, Gudermann, Happle, Hellinger, Hesse, Hofmann, Jungclas, Katschinski, Kern, Klaus, Klenk, Klose, Koolman, Kretschmer, Krieg, Kroll, Kroh, Kuhlmann, Lammel, Lang, Lill, Löffler, Lohoff, Maier, Maisch, Mann, Mennel, Moll, Mueller, Mutters, Moosdorf, Neubauer, Oertel, Remschmidt, Renz, Roehm, Rothmund, Schäfer, Seitz, Seyberth, Schmidt, Schneyer, Steiniger, Suske, Vohland, Weihe, Werner, Westermann, Wulf
Danksagung

Meinem Doktorvater, Herrn Professor Dr. Garten, danke ich für die Ermöglichung dieser Arbeit, die Auswahl des Themas und die gute und zuverlässige Betreuung der Dissertation.

Herrn Professor Dr. Klenk danke ich für die vielen Anregungen in den zahlreichen Arbeitsgruppenbesprechungen und die zusätzliche Supervision meiner Arbeit.

Mein besonderer Dank gilt meinen Betreuern Dr. Mikhail Matrosovich und Dr. Tatyana Matrosovich, die während meiner eineinhalbjährigen Arbeit im Labor offen waren für die vielen Fragen einer in der laborwissenschaftlichen Arbeit primär unerfahrenen Medizinstudentin.

Dr. Tatyana Matrosovich danke ich insbesondere für die Unterstützung bei der praktischen Arbeit und Dr. Mikhail Matrosovich für seine geduldigen Erklärungen und immer neuen Ideen für weiterführende Versuchsansätze. Ihre sehr zuverlässige, freundliche und humorvolle Betreuung habe ich sehr zu schätzen gelernt.

Auch Eva Böttcher gilt mein Dank. Sie hat, nachdem das Ehepaar Matrosovich aus beruflichen Gründen nach London gegangen war, die Betreuung der schriftlichen Arbeit übernommen, hat sie Korrektur gelesen und mir durch ihre gute, konstruktive Kritik und ihre Unterstützung in der Diskussion sehr geholfen. Darüber hinaus war sie so freundlich, mir Bildmaterial Ihrer Diplomarbeit, in der sie die Erkenntnisse meiner Arbeit weitergeführt und zu einem erfolgreichen Ergebnis gebracht hatte, für die Diskussion meiner Dissertation zur Verfügung zu stellen.

Den vielen anderen Mitarbeitern des Instituts für Virologie möchte ich danken für die sehr angenehme Arbeitsatmosphäre, die vielen Anregungen sowie die große Hilfsbereitschaft, die mir entgegengebracht wurde. Nennen möchte ich hier vor allem Dr. Gülsah Gabriel für ihre fachlichen Ratschläge sowie Jennifer Uhlendorff für den Kurierdienst zwischen London und Marburg, Dr. Hosam Shams-El-Din für die Hilfe bei der Sequenzierung im TOPO®-Vector, Astrid Herwig für Ratschläge bei den Zellkulturtechniken und Katharina Kowalski für die Sequenzierungen.

Herrn Professor Dr. Wulf, Direktor der Abteilung für Anästhesie und Intensivtherapie am Universitätsklinikum Gießen und Marburg, Standort Marburg, danke ich für meine dreimonatigen Freistellung vom Dienst, die mir den Abschluss meiner Dissertation zu diesem Zeitpunkt erlaubt hat.

Meinen FreundInnen Katharina Hiller, Vanessa Wennekes und Heiko Held sowie Gerd Wurrmann und Martin Unger danke ich für das geduldige Zuhören, die freundlichen
Ermunterungen und die aufbauenden Worte ebenso wie für die Korrekturlesungen und die fachliche Hilfe beim Scannen der Gelphotographien und der Sequenzen.