Phänotypische Charakterisierung
von Gewichtsabnahme und
Appetitveränderungen bei Tumorpatienten

Inaugural-Dissertation zur Erlangung des
Doktorgrades der gesamten Humanmedizin dem
Fachbereich Medizin der Philipps-Universität Marburg

vorgelegt von

Sabiene Zimmer
aus Trier
Marburg, 2007
Diese Arbeit widme ich

meinem Vater Albert Zimmer
INHALT

I. EINLEITUNG .. 5

II. LITERATURÜBERSICHT .. 7

2.1. Definitionen alt und neu .. 7

2.2. Prävalenz der Tumorkachexie .. 9

2.3. Klinisches Erscheinungsbild der Tumorkachexie ... 10

2.4. Diagnostik .. 12

2.5. Pathomechanismen der Kachexieentstehung und therapeutische Ansätze 14

2.5.1. Erhöhung der Nahrungsaufnahme .. 15

2.5.2. Akute-Phase-Proteine, Nicht-Steroidale Antiphlogistika und Antioxidanzien 15

2.5.3. Die durch den Tumor sezernierten Mediatoren LMF und PIF 17

2.5.4. Cannabinoide und Endocannabinoidrezeptoren .. 18

2.5.5. Leptin, Neuropeptid Y und Ghrelin .. 18

2.5.6. Das melanocortinergene System und Melanocortinrezeptoren 19

2.5.7. Serotonin und Serotonin-Antagonisten ... 21

2.5.8. Veränderte Hormonspiegel: Glukokortikoide und Megestrolazetat 21

2.5.9. Uncoupled-Protein und Eikosanoide .. 22

2.5.10. Kombination einzelner therapeutischer Methoden .. 23

2.5.11. Zusammenfassung .. 24

2.6. Prognose .. 25

2.7. Krebsregister und statistische Angaben zu den verschiedenen Krebsarten 27

in Deutschland ... 27

2.7.1. Statistische Angaben über seltenere Krebsarten in Deutschland 29

2.7.1.1. Lymphome und B-Symptomatik ... 29

2.7.1.2. Leukämien ... 30

2.7.1.3. Myelodysplastische und Myeloproliferative Syndrome 30

2.8. Validität von Angaben zum Gewicht und Gewichtsverlauf in der Vergangenheit 31

2.9. Bedeutung des prämorbiden Body Mass Indexes ... 33

III. ZIEL DER ARBEIT .. 35

IV. MATERIAL UND METHODEN ... 36

4.1. Ein- und Ausschlusskriterien .. 36

4.2. Patientenrekrutierung ... 37

4.3. Allgemeiner Ablauf der Studie ... 37

4.3.1. Beschreibung Ambulanz und Ambulante Chemothearpie 37

4.3.2. Routineablauf in der Ambulanz ... 38

4.3.3. Ablauf der Studie ... 38
8.2. Studiendesign .. 68
8.3. Ergebnisse .. 68
8.4. Diskussion .. 69

LITERATURVERZEICHNIS: ... 71

ANHANG .. 77

A: Erhebungsbogen, Patienteninformation, Patienten-Einverständniserklärung

B: Abkürzungsverzeichnis
Verzeichnis der Tabellen und Abbildungen

Graphik 2.1.: Prozentualer Anteil ausgewählter Krebserkrankungen an der geschätzten Zahl der Krebsneuerkrankungen in Deutschland 2002 (Gesellschaft der epidemiologischen Krebsregister e.V. 2006) ..28

Graphik 2.2.: Prozentualer Anteil der Krebssterbefälle in Deutschland 2002 (Gesellschaft der epidemiologischen Krebsregister e.V. 2006) ..28

Tabelle 4.1.: Ausführliche Darstellung der Übereinstimmung der Kachexieeinteilung zu zwei verschiedenen Zeitpunkten ..42

Tabelle 4.2.: Zusammengefasste Darstellung der Übereinstimmung der Kachexiebeurteilung zu zwei verschiedenen Zeitpunkten ..42

Tabelle 4.3.: Erkrankungen und deren Häufigkeiten innerhalb der Patientenklientel der Ambulanz ..44

Tabelle 4.4.: Eckdaten der Studienpopulation ...45

Tabelle 4.5.: Verteilung der Erkrankungen innerhalb der Studienpopulation ...46

Tabelle 5.1.: Überblick über die Kachexieprävalenz in den verschiedenen Tumorgruppen ...48

Graphik 5.1.: Prozentuale Aufteilung der Tumorkachexie in die Kategorien 1 bis 5 ...48

Tabelle 5.2.: Beziehung zwischen Appetitveränderungen und Kachexieprävalenz ...49

Tabelle 5.3.: Beziehung zwischen Appetitabnahme und Kachexieprävalenz ...50

Tabelle 5.4.: Beziehung zwischen Appetitabnahme und Tumorart ...50

Tabelle 5.5.: Verteilung prämorbider BMI-Werte innerhalb der Studienpopulation ...51

Graphik 5.2.: Beziehung zwischen prämorbiden BMI und Tumorkachexie ...52

Graphik 5.3.: Beziehung zwischen höchstem BMI im Erwachsenenalter und Tumorkachexie ...52

Tabelle 5.6.: Prozentuale Anteile der Appetitabnahme in einzelnen BMI-Gruppen ...53

Tabelle 5.7.: Durchschnittliche BMI-Werte der häufigsten Tumorarten zu verschiedenen Zeitpunkten ...54

Tabelle 5.8.: Kachexieprävalenz in Stadium A und B des M. Hodgkin ...54

Tabelle 5.9.: Kachexieprävalenz in Stadium A und B der Non-Hodgkin-Lymphome ...55

Tabelle 8.1: Vier-Felder-Tafel für die Assoziation: Heterozygot für das 103Ile-Allel/Wildtyp versus Tumorkachexie ja/nein ...69
I. Einleitung

Ein Fragebogen wird entworfen, der sowohl Fragen zur Tumorerkrankung und zur Therapie als auch zur retrospektiven Gewichts- und Appetitanamnese zu definierten Zeitpunkten enthält. Ergänzt werden diese Angaben durch Daten aus den jeweiligen Patientenakten.

II. Literaturübersicht

2.1. Definitionen alt und neu

Unterschiede in den einzelnen Definitionen bestehen vor allem in der Höhe des Gewichtsverlustes, im beschriebenen Zeitraum, innerhalb dessen die Gewichtsabnahme erfolgt, und in vorhandenen bzw. nicht vorhandenen Begleitsymptomen wie Hyalbuminämie, Anämie und Unwohlsein. Das eindeutige Vorliegen einer malignen Grunderkrankung ist die Voraussetzung für die Diagnose einer Tumorkachexie.

2.2. Prävalenz der Tumorkachexie

Obwohl es möglich ist, Tumorarten zu identifizieren, bei denen die Wahrscheinlichkeit, im Laufe der Erkrankung eine Kachexie zu entwickeln, erhöht ist, gibt es große Unterschiede zwischen den einzelnen Patienten. Dieselbe Tumorart kann zu sehr unterschied-

Die Größe des Tumors korreliert überraschenderweise nicht mit dem Ausmaß des Gewichtsverlustes. Sehr große Tumoren gehen nicht zwangsläufig mit einer Kachexie einher, andererseits kann sie sich selbst dann entwickeln, wenn die Tumormasse weniger als 0,01% des Körpergewichtes des Patienten beträgt (Tisdale 2003).

Zusammenfassend sind es vor allem Patienten mit Lungentumoren und Malignomen des oberen Gastrointestinaltraktes, die an einer Tumorkachexie leiden, wohingegen Patienten mit Mammatumoren und hämatologischen Erkrankungen seltener betroffen sind.

2.3. Klinisches Erscheinungsbild der Tumorkachexie

Der zuvor beschriebene Begriff des Wasting-Syndroms charakterisiert das klinische Erscheinungsbild des tumorkachektischen Patienten, das durch die Kombination aus Anorexie und Kachexie gekennzeichnet ist. Diese ungünstige Kombination führt zu Leistungsabfall, Muskelschwäche, einer starken Verminderung der Lebensqualität und schließlich zum Tod (Inui 2002). Eine allgemein anerkannte Einteilung, die die Tumorkachexie mitberücksichtigt, stellt die sogenannte A-/B-Symptomatik dar, die folgende drei Symptome beinhaltet: Fieber, Nachtschweiß und Gewichtsverlust von mehr als 10% des Körpergewichtes in einem definierten Zeitraum (meist ½ Jahr). Obwohl diese Einteilung primär im Rahmen der Lymphome vorgenommen wird, kann der Symptomenkomplex grundsätzlich im Rahmen jedes Malignoms beobachtet werden (Kim et al. 2003; siehe Kapitel 2.7.1.1: Lymphome und B-Symptomatik).

Bei gesunden Menschen wird während langer Hungerperioden zunächst Fettgewebe abgebaut. Die aus dem Fettgewebe freigesetzten Ketonkörper dienen in diesem Zustand dazu, den Glukosemangel des Gehirns auszugleichen. Der Abbau von körpereigenen Proteinen (z.B. Muskelproteinen) erfolgt erst zu einem sehr späten Zeitpunkt, wenn die Fettreserven weitgehend aufgebraucht sind. Bei Patienten, die unter dem ausziehenden Geschehen der Tumorkachexie leiden, kommt es neben dem Abbau von Fettgewebe bereits zu Beginn des katabolischen Zustandes zu einem substanziellen Abbau von Pro-

Longitudinale Studien am Tiermodell haben gezeigt, dass der Grundumsatz im Rahmen einer bösartigen Erkrankung drei Stufen durchläuft: Initial findet sich eine hyperbolische Phase, die mit einem erhöhten Kalorienverbrauch assoziiert ist, gefolgt von einer normobolischen, übergehend in eine präterminale hypobolische. Es gibt Anlass zu der Vermutung, dass diese Phasen auch beim malignen erkrankten Menschen durchlaufen werden (Fearon und Moses, 2002).

12

Das Wasting-Syndrom ist bei verschiedenen Patienten, selbst wenn sie die gleiche Krankheit im gleichen Stadium aufweisen, sehr unterschiedlich ausgeprägt. Es gibt keine tumorspezifische Symptomatik der Kachexie (Fearon und Moses 2002).

2.4. Diagnostik

2.5. Pathomechanismen der Kachexieentstehung und therapeutische Ansätze

Unabhängig von der primären Tumorthерапie gibt es verschiedene Ansätze und Versuche, die Kachexie gezielt zu beeinflussen, da die effektivste Therapie, die Grunderkrankung – den Krebs – zu heilen, oft nicht möglich ist. Zunächst müssen Symptome wie
Übelkeit, Erbrechen, orale Mukositiden und gastrointestinal Obstruktionen erkannt und angegangen werden (Inui 2002).

Die Tumorkachexie ist einerseits durch verminderte Nahrungsaufnahme und andererseits durch gesteigerten Energieverbrauch und einen damit verbundenen Abbau von Muskel- und Fettgewebe gekennzeichnet. Sie bietet somit prinzipiell zwei therapeutische Angriffsmöglichkeiten. Im Folgenden werden der derzeitige Wissensstand über die Entstehung der Tumorkachexie und die etablierten Behandlungsmöglichkeiten dargestellt.

2.5.1. Erhöhung der Nahrungsaufnahme

2.5.2. Akute-Phase-Proteine, Nicht-Steroidale Antiphlogistika und Antioxidanzien

Insgesamt klingen die Resultate ermutigend, müssen allerdings in kontrollierten Studien weiter erforscht werden.

2.5.3. Die durch den Tumor sezernierten Mediatoren LMF und PIF

Es gibt somit Hinweise darauf, dass LMF und PIF Mediatoren des Protein- und Triglyceridabbaus im Rahmen der Tumorkachexie sind. Weitere Forschungsergebnisse und daraus folgende eventuelle therapeutische Ansätze bleiben abzuwarten.
2.5.4. Cannabinoide und Endocannabinoidrezeptoren

2.5.5. Leptin, Neuropeptid Y und Ghrelin

Leptin ist ein sowohl von peripheren Adipozyten als auch von gastrointestinalen Zellen gebildetes Hormon, dessen Spiegel Einfluss auf den Ruheenergieverbrauch des Körpers hat. Es wird als Rückkopplung über die vorhandenen Fettreserven und die Menge und Zusammensetzung der jeweiligen Mahlzeiten ausgeschüttet. Im Rattenmodell kann die Gabe von Leptin zu Anorexie und Gewichtsverlust führen. Als Gegenspieler des Neu-

2.5.6. Das melanocortinerge System und Melanocortinrezeptoren

Im Tiermodell führt eine gezielte Deletion von MC4R bei Mäusen zu einem sogenannten Fettleibigkeitssyndrom, charakterisiert durch Hyperphagie, Hyperinsulinismus und reduzierten Energieverbrauch (Huzar et al. 1997).

In einem anderen Tierexperiment haben Mäuse mit Bronchialkarzinomen nach Applikation eines inversen MC4R-Agonisten eine signifikante Zunahme der Nahrungsaufnahme und der Körper-Protein-Menge gezeigt (Nicholson et al. 2006).

2.5.7. Serotonin und Serotonin-Antagonisten

2.5.8. Veränderte Hormonspiegel: Glukokortikoide und Megestrolazetat

2.5.9. Uncoupled-Protein und Eikosanoide

Eikosanoide (EPA) sind vor allem in Fischöl enthaltene Säuren, die die Transkription verschiedener am Ubiquitinweg beteiligter Proteine beeinflussen und im Tierversuch
den Ubiquitin-Proteasom-Weg abschwächen, ohne einen Effekt auf die jeweilige Tu-
morgröße zu haben (Tisdale et al. 2002). Zusätzlich weisen Eikosanoide ähnlich den
NSAR einen antiinflammatorischen Effekt auf und wirken somit außerdem über eine
Verminderung der Interleukin-Konzentration (Uomo et al. 2006; Bruera et al. 2003).
Geringe Dosen in Kombination mit aminosäurereicher Substitution (als Kombination
aus Katabolismus-Minderung und Anabolismus-Steigerung) haben eine Erhöhung der
fettfreien Körpermasse bei tumorkachektischen Patienten zur Folge, ohne die jeweilige
Tumorgröße zu beeinflussen. Sowohl Fischöl allein als auch als zusätzlicher Nahrungs-
bestandteil kann den Gewichtsverlust bei Patienten mit Pankreaskarzinomen stabilisie-
ren (Bruera et al. 2003). Die Studienlage ist widersprüchlich und der tatsächliche therapeu-
tische Nutzen derzeit noch unklar (Tisdale 2002). Es gibt Plazebo-kontrollierte Stu-
dien, in denen eine Verbesserung der Lebensqualität und Appetitzunahme beobachtet
worden ist, allerdings auch Daten, die keinerlei Nutzen der Eikosanoide postulieren
(Bruera et al. 2003). Weitere Studien, die einen eventuellen Benefit für den tumorka-
chektischen Patienten zeigen, bleiben abzuwarten.

2.5.10. Kombination einzelner therapeutischer Methoden
Der Einsatz der NSAR als Monotherapie hat bereits vielversprechende Resultate bezüg-
lich der Normalisierung des Metabolismus tumorkachektischer Patienten geliefert. Man
hat versucht, die Wirkung dieser Behandlung durch die Kombination mit hochkalori-
scher Nahrung zu verbessern. Die Gabe von Ibuprofen zur Reduktion des entzündlichen
Geschehens in Kombination mit Megestrolazetat zur Erhöhung der Nahrungsaufnahme
can zu einer Stabilisierung des Körpergewichtes und einer Verbesserung der Lebens-
qualität führen (Fearon und Moses 2002). Die Gabe von Eikosanoiden zusammen mit
hochkalorischer Nahrung stabilisiert Appetit, Gewicht, BMI und Lebensqualität. Diese
Kombination kann eine Zunahme der Proteinmasse des Körpers und damit eine Remis-
sion des kachektischen Zustandes induzieren (Fearon und Moses 2002). Des Weiteren
werden günstige Ergebnisse für die Kombination von Megestrolazetat mit Kortikoiden
beschrieben (Uomo et al. 2006).
Die Kombination einzelner Präparate scheint vielversprechend, allerdings bleiben ein-
deutige Behandlungsschemata abzuwarten. Eine weitere wichtige Möglichkeit, die me-
dikamentöse und alimentäre Therapie zu unterstützen, besteht darin, den Patienten zu
körperlicher Bewegung und somit zu Muskelaufbau anzuregen bzw. bettlägerige Patien-
ten durch Physiotherapie in der Synthese von Muskelproteinen zu unterstützen (Hemming und Maher 2005).

2.5.11. Zusammenfassung

Die Notwendigkeit, die Tumorkachexie zu behandeln, steht außer Frage. Da durch die Kachexie selbst das Krankheitsbild oft verschlimmert und die Prognose wesentlich verschlechtert wird, kann der Verlauf der Erkrankung durch die Behandlung dieses kom-
plexen Syndroms positiv beeinflusst werden. Es bleibt abzuwarten, welche Ergebnisse kontrollierte Studien in Zukunft bringen und inwiefern betroffenen Patienten durch die Erforschung der Pathomechanismen geholfen werden kann.

2.6. Prognose

In einer Studie an Patienten mit Nierenzellkarzinom (Renal Cell Carcinoma: RCC) ist gezeigt worden, dass die Kachexie einen wesentlichen Einfluss auf die Überlebenszeit hat. Bei nicht metastasiertem RCC beträgt die 2-Jahres-Überlebensrate 95%, wenn keine Kachexie vorhanden ist, versus 79% bei vorhandener Kachexie. Kachektische Patienten weisen keine höheren Rezidivraten auf, im Falle eines Rezidives verschlechtert allerdings die Kachexie die Prognose (Kim et al. 2003).

Komplikationsraten im Rahmen operativer Eingriffe liegen bei kachektischen Patienten weit höher als bei Patienten in vergleichbarer Situation ohne den kachektischen Zustand (Marks et al. 2001). Möglicherweise sprechen Kachexiepatienten schlechter auf Chemo-
therapien an und leiden stärker unter deren Toxizität (Dewys et al. 1980; Tisdale 2002; Uomo et al. 2006). In einer Studie mit 3047 Patienten mit verschiedenen onkologischen Erkrankungen ist untersucht worden, welchen prognostischen Wert ein vorheriger Gewichtsverlust auf den Erfolg einer Chemotherapie hat. In der Gruppe der kachektischen Patienten haben sich niedrigere Ansprechraten gezeigt als in der Gruppe der nichtkachektischen, wobei die Ergebnisse lediglich bei Patientinnen mit Mammakarzinomen signifikant gewesen sind (Dewys et al. 1980). Es zeigt sich also, dass sich nicht nur die Therapie der Kachexie als schwierig erweist, sondern dass bei Tumorkachexiepatienten auch die eigentliche Krebsbehandlung eingeschränkter und mit geringerem Erfolg durchführbar ist.

Zusammenfassend lässt sich sagen, dass die Tumorkachexie den Krankheitsverlauf beeinflusst und einen prognostisch sehr ungünstigen Charakter bezüglich Überlebenszeit, Lebensqualität, Komplikationsraten und Ansprechen auf verschiedene Therapieformen hat.
2.7. Krebsregister und statistische Angaben zu den verschiedenen Krebsarten in Deutschland

Wie aus der Graphik 2.1. hervorgeht, in welcher der prozentuale Anteil der Krebsneuerkrankungen in Deutschland für das Jahr 2002 abgebildet ist, steht bei den Männern Prostatakrebs mit 22,3% an erster Stelle, gefolgt von Malignomen des Darmes (16,3%), der Lunge (14,9%) und der Harnblase (8,6%), während es bei den Frauen vor allem Malignome der Brust (26,8%) sind, gefolgt von Tumoren des Darmes (17,4%) und der Lunge (6,1%).

Anders sieht es bei der Mortalitätsrate aus (siehe Graphik 2.2.): Während beim Mann die höchste Mortalität mit 26,3% bei den Patienten mit Lungenkrebs, gefolgt von den an Darm- (12,8%) und Prostatakrebs Erkrankten (10,4%) liegt, gibt es bei den Frauen die höchsten Todesraten bei Brustkrebs mit 17,8%, gefolgt von Tumoren des Darmes (14,9%) und der Lunge (10,4%).
Graphik 2.1.: Prozentualer Anteil ausgewählter Krebserkrankungen an der geschätzten Zahl der Krebsneuerkrankungen in Deutschland 2002 (Gesellschaft der epidemiologischen Krebsregister e.V. 2006)

Graphik 2.2.: Prozentualer Anteil der Krebssterbefälle in Deutschland 2002 (Gesellschaft der epidemiologischen Krebsregister e.V. 2006)
Zusammenfassend lässt sich sagen, dass die am häufigsten in Deutschland auftretenden Krebsarten die der Prostata, der Mamma, der Lunge und des Darms sind, wobei unter Darm Tumoren von Kolon, Rektum, Sigmoid und Anus subsumiert werden (Gesellschaft der epidemiologischen Krebsregister in Deutschland e.V. 2006).

2.7.1. Statistische Angaben über seltenere Krebsarten in Deutschland
Da die vorliegende Studie in einer hämatologisch-/ onkologisch- und immunologischen Ambulanz durchgeführt wurde und somit mit einem höheren Anteil an Lymphom- und Leukämiepatienten zu rechnen war, wird an dieser Stelle kurz auf diese Erkrankungen eingegangen.

2.7.1.1. Lymphome und B-Symptomatik

schweiß und/oder Gewichtsverlust von mehr als 10% des Körpergewichtes in einem
definierten Zeitraum (meist ½ Jahr) (Kim et al. 2003).

Diese Stadieneinteilung ist im Jahr 1971 vom „Komitee für das Staging des M. Hodgkin“ in Ann Arbor (USA) eingeteilt worden und hat sich ursprünglich nur auf den M. Hodgkin bezogen (Rappaport et al. 1971), mittlerweile gilt sie für alle Lymphome. Es liegen keine Daten darüber vor, wie hoch der Prozentsatz der Erkrankten mit Stadium B innerhalb der verschiedenen Lymphomarten in Deutschland liegt (Gesellschaft der epidemiologischen Krebsregister in Deutschland e.V. 2006).

Der Zusatz A-/B-Symptomatik kann derzeit für alle malignen Erkrankungen angewendet werden. Das Besondere dieser Stadieneinteilung ist, dass dies das einzige Staging-System maligner Tumoren ist, in dem Symptome wie Gewichtsverlust, Nachtschweiß und Fieber berücksichtigt werden.

2.7.1.2. Leukämien

2.7.1.3. Myelodysplastische und Myeloproliferative Syndrome

Unter der Bezeichnung Myelodysplastisches Syndrom (MDS) versteht man eine heterogene Gruppe klonaler neoplastischer Erkrankungen der hämatopoetischen Zellen im Knochenmark, wie zum Beispiel die Refraktäre Anämie (mit/ohne Ringsideroblasten).

Diese sind gekennzeichnet durch eine periphere Zytopenie und eine veränderte Zellproliferation im Knochenmark. Die Myelodysplastischen Syndrome gehen häufig in akute oder chronische Leukämien über. Bis zu 40-50% aller AML-Patienten durchlaufen eine myelodysplastische Vorphase. Die klinische und zytogenetische Diskriminierung zwi-
schen AML und Myelodysplastischem Syndrom ist nicht immer eindeutig (Cheson et al. 2000).

Der Begriff des Myeloproliferativen Syndroms (MPS) subsumiert die hämatopoetischen Stammzellerkrankungen Polyzythämia vera, essentielle Thrombozythämie, Osteomyelofibrose und die Chronisch Myeloische Leukämie (CML), die in einer Leuko-/Erythro- und/oder Thrombozytose im peripheren Blut resultieren. Mit Ausnahme der CML liegen die molekularen Mechanismen dieser Gruppe weitgehend im Dunkeln. Bei 1-10% der Patienten mit einer Polyzythämia vera kommt es zu einer leukämischen Transformation, meist in eine AML. In 25% der Fälle geht die essentielle Thrombozythämie in eine Osteomyelofibrose über, die wiederum selbst in ca. 20% der Fälle bereits innerhalb der ersten 10 Jahre in eine AML übergeht. Die Osteomyelofibrose hat von allen Myeloproliferativen Syndromen die schlechteste Prognose mit einer mittleren Überlebenszeit von 3,5-5,5 Jahren. Vor allem in fortgeschrittenen Stadien klagen die Patienten über B-Symptome.

Außer der CML werden die Myeloproliferativen Syndrome nicht zu den Krebserkrankungen gezählt und werden wie auch das MDS nicht in der klinisch angewandten Internationalen Klassifikation der Krankheiten (ICD) mit dem Buchstaben C (Bezeichnung der Krebserkrankungen) gekennzeichnet. Da sowohl die myelodysplastischen als auch die myeloproliferativen Erkrankungen mit unterschiedlichen Häufigkeiten in Leukämien übergehen, können sie als fakultative Präkanzerosen angesehen werden (Rüfer et al. 2003).

2.8. Validität von Angaben zum Gewicht und Gewichtsverlauf in der Vergangenheit

Dennoch ist in einigen wenigen Studien gezeigt worden, dass die Selbsteinschätzung von Patienten und Gesunden eine durchaus zuverlässige Quelle zur Erhebung von Daten bezüglich des Körpergewichtes und der Körpergröße darstellt.

In einer Studie zu Gesundheit und Ernährung (Perry et al. 1995) sind 1.931 Patienten zu einem bestimmten Zeitpunkt gewogen und 10 Jahre später zu ihrem damaligen Gewicht befragt worden. Auch hier zeigt sich neben einer positive Korrelation zwischen den gemessenen und geschätzten Werten (Männer: r=0,73; Frauen: r= 0,74) die Tendenz beider Geschlechter dazu, ihr damaliges Körpergewicht zu unterschätzen. Ähnliche Resultate sind in einer deutschen Studie zur Reproduzierbarkeit der Selbsteinschätzung des Gewichtsverlaufs in der Vergangenheit beobachtet worden (Klippstein-Grobusch et al. 1998).

In einer Langzeitstudie (Payette et al. 2000) zu Gesundheit und Altern sind 465 kognitiv gesunde, kognitiv eingeschränkte und partiell demente Menschen zu ihrem/ihrer aktuellen Gewicht und Größe befragt und die Ergebnisse direkt mit den gemessenen Werten verglichen worden. Die Korrelation liegt bei r≥0,9 (gesund: r=0,91, kognitiv eingeschränkt: r=0,86, dement: r=0,85).

2.9. Bedeutung des prämorbiden Body Mass Indexes

Der BMI wird nach folgender Formel berechnet:

\[
\text{BMI} = \frac{\text{Körpergewicht (kg)}}{\text{Körpergröße (m) x Körpergröße (m)}}
\]

Gemäß der WHO lassen sich folgende Gewichtsklassen mit Hilfe des BMI unterscheiden:

- BMI < 18,5 = Untergewicht
- BMI 18,5–24,9 = Normalgewicht
- BMI 25–29,9 = Präadipositas
- BMI 30–34,9 = Adipositas Grad 1
- BMI 35–39,9= Adipositas Grad 2
- BMI ≥ 40 = Adipositas Grad 3
- BMI ≥ 45 = Morbide Adipositas (starke Fettleibigkeit)
III. Ziel der Arbeit

In dieser Arbeit soll eine Klassifikation erarbeitet werden, mit der exemplarisch an einem ausgesuchten Patientenkollektiv das Vorliegen einer Tumorkachexie anhand objektiver Kriterien bestimmt werden kann und anhand der folgende Fragestellungen untersucht werden:

2. Die Beziehung zwischen Appetitveränderungen und der Entwicklung eines CACS wird untersucht. Inwiefern stehen sie miteinander in Verbindung? Können sie auch unabhängig voneinander auftreten?

IV. Material und Methoden

4.1. Ein- und Ausschlusskriterien

Für die molekulargenetische Fragestellung (Susanne Knoll: „Molekulare Mechanismen zur Entstehung einer Tumorkachexie am Beispiel des Melanocortin-4-Rezeptors“) ist die Anzahl von 500 Patienten berechnet worden, somit ist dies die Anzahl der Patienten, die an der Befragung teilgenommen haben und in die phänotypische Charakterisierung miteingegangen sind.
4.2. Patientenrekrutierung
Im Zeitraum von Oktober 2003 bis November 2004 sind über 550 Patienten aus der Klinik für Hämatologie/Onkologie und Immunologie der Philipps-Universität Marburg während der Sprechstunde in der Ambulanz bzw. in der Ambulanten Chemotherapie über die Studie aufgeklärt worden, von denen sich 525 Patienten dazu bereit erklärt haben, an der Studie teilzunehmen. Die anderen Patienten haben sich aus verschiedenen Gründen gegen die Teilnahme an der Studie entschieden: Aufgrund von Unwohlsein, Zeitmangel wegen zahlreicher diagnostischer Termine wie Ultraschall, Röntgen etc., aus Angst vor Datenmissbrauch, aus Desinteresse, aus Frustration gegenüber der Medizin und dem ärztlichen Personal, aber auch, wenn Angehörige nicht einverstanden gewesen sind.
Durchschnittlich sind zwischen vier und zehn zufällig (ohne Kenntnis von Geschlecht, Alter, Erkrankung) ausgewählte Patienten pro Tag befragt worden. Die Befragung hat an unterschiedlichen Tagen über den Befragungszeitraum verteilt stattgefunden und ist in Zusammenarbeit mit Frau Susanne Knoll durchgeführt worden.

4.3. Allgemeiner Ablauf der Studie

4.3.1. Beschreibung Ambulanz und Ambulante Chemotherapie
Die Ambulanz befindet sich im Klinikum der Philipps-Universität Marburg, Ebene +2 (Öffnungszeiten sind montags bis donnerstags 7:30 Uhr bis 15:30 Uhr und freitags 7:30-14:00 Uhr). Am Montag- und Donnerstagvormittag findet zusätzlich die Knochenmarktransplantations(KMT)-Sprechstunde statt. Die Ambulanz umfasst drei Behandlungsräume, ein Labor, einen Anmeldungsbereich, der einen Arbeitsplatz für zwei Arzthelferinnen bietet, und ein Wartezimmer. Leiter ist Prof. A. Neubauer mit Privatsprechstunde mittwochs vormittags, zuständig für die Ambulanz ist OA PD N. Schwella. Weiterhin arbeiten in der Ambulanz vier Assistenzärzte (im oben genannten Zeitraum: Dr. med. E. Wollmer, Dr. med. A. Peilgrun, Dr. med. C. Kullmer, Dr. med. S. Napiralski) und drei Arzthelferinnen (B. Schneider, I. Wagner, K. Schellenberg). Vereinzelt sind andere Ärzte aufgrund eigener Sprechstunden und Studien der Hämatologie/

4.3.2. Routineablauf in der Ambulanz
Der Routineablauf während eines Aufenthaltes in der Ambulanzsprechstunde bedeutet für den Patienten die Anmeldung, eine Blutentnahme (so notwendig), eventuell einen Gang zur Diagnostik (Röntgen, Ultraschall etc.), eine Sprechstunde beim Arzt, gegebenenfalls der Gang zur AC und die Vereinbarung eines neuen Termins.

4.3.3. Ablauf der Studie
lichkeit gehabt, mit Hilfe der jeweiligen Patientenakten die erhobenen Daten vervollständigen zu können.

4.3.4. Entwicklung einer Ambulanzstatistik
Da keine Statistiken über Patientenzahlen, Erkrankungen und Besuchs frequenz der einzelnen Patienten in der Ambulanz vorgelegen haben, ist mithilfe der Bücher, die die Anmeldung jedes Patienten dokumentieren, eine Statistik über den oben genannten Befragungszeitraum erarbeitet worden; durch Intranet/Orbis, Open Med und Arztbriefe ist es zusätzlich möglich gewesen zu den Eckdaten der Patienten auch eine Statistik über deren Erkrankungen anzulegen.

4.4. Verwendete Instrumente

4.4.1. Einschätzung und Bewertung der Kachexie
Die Einschätzung wurde nach folgenden Kriterien vorgenommen:

können mitverursachende therapeutische/mechanische Gründe nicht ausgeschlossen werden.

3: wahrscheinliches Vorliegen einer Tumorkachexie: Gewichtsverlust von mindes-
tens 5%, aber weniger als 10% des prämorbiden Gewichtes vor Diagnosestellung inner-
halb eines Jahres und/ oder während Fortschreiten der Erkrankung, den sich der Patient
nicht erklären kann und der evtl. sogar der Grund für den Arztbesuch gewesen ist, evtl.
durch therapeutische/mechanische Gründe mitverursacht.

4: wahrscheinlich kein Vorliegen einer Tumorkachexie: Gewichtsverlust von weni-
ger als 5% des prämorbiden Gewichtes innerhalb eines Jahres vor Diagnosestellung
bzw. ein Gewichtsverlust, der mit hoher Wahrscheinlichkeit auf die therapeutischen
(Operationen, Chemotherapie, Strahlentherapie, KMT etc.)/mechanischen, diätetischen
Maßnahmen des Patienten oder andere Erkrankungen (chronische Schmerzzustände,
Depression etc.) zurückgeführt werden kann.

5: sicherer Ausschluss einer Tumorkachexie: kein Gewichtsverlust während des
Krankheitsverlaufes und der Therapie.

4.4.2. Entwicklung eines Fragebogens zur Erfassung von Gewicht- und Gewichts-
verlauf
Der Fragebogen gliedert sich in verschiedene Bereiche, die folgende sechs Hauptpunkte
beinhalten:
1. Eckdaten des Patienten (Fallnummer, Datum, Geburtsjahr, Geschlecht)
Die in die Studie eingeschlossenen Patienten werden von 1–525 durchnummmeriert.
2. Einteilung in Tumorklassen, Tumorart, Tumorlokalisation und Tumorstadium des
Patienten, ergänzt durch Daten aus Patientenakte(n)/Arztbrief(en) (v.a. Tumorstadium,
Therapie und Diagnosedatum).
Die verschiedenen Erkrankungen sind nach Tumorklassifikation in die Gruppen A bis H
unterteilt worden, dies unter Berücksichtigung der in Kapitel 2.7. beschriebenen Statis-
tiken und des hämatologischen Schwerpunktes der Ambulanz (A–H: Lunge, Mamma,
kolorektale Karzinome, andere häufige GI-Tumoren, Prostata, Lymphome, Leukämien,
sonstige Tumoren). Die Einteilung beinhaltet neben den statistisch häufigsten Tumoren
(siehe Kapitel 2.7.: Krebsregister und statistische Angaben zu den verschiedenen Krebs-
arten in Deutschland) wie Kolon-, Brust- und Lungentumoren, vor allem gastrointesti-
nale und hämatologische Malignome.

4. Therapie des Patienten, insbesondere Art der Therapie (Chemo-, Strahlentherapie, Operation, andere, z.B. Knochenmarkstransplantationen, Antikörpertherapie, Hormontherapie etc.) bzw. keine Therapie.

5. Appetitveränderungen, Zu- und Abnahme, Beschreibung der Veränderungen.

Ein Musterfragebogen befindet sich im Anhang.

4.4.3. Reliabilität des Fragebogens

Tabelle 4.1.: Ausführliche Darstellung der Übereinstimmung der Kachexieeinteilung zu zwei verschiedenen Zeitpunkten

<table>
<thead>
<tr>
<th>Aktuelle Einschätzung (Kontrolle)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>Gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>41</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>46</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>14</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>4</td>
<td>38</td>
<td>3</td>
<td>0</td>
<td>46</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>222</td>
<td>2</td>
<td>225</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>182</td>
<td>184</td>
</tr>
<tr>
<td>Gesamt</td>
<td>48</td>
<td>24</td>
<td>39</td>
<td>226</td>
<td>184</td>
<td>N=521</td>
</tr>
</tbody>
</table>

Tabelle 4.2.: Zusammengefasste Darstellung der Übereinstimmung der Kachexiebeurteilung zu zwei verschiedenen Zeitpunkten

<table>
<thead>
<tr>
<th>Aktuelle Einschätzung (Kontrolle)</th>
<th>Kachexie</th>
<th>Keine Kachexie</th>
<th>Gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kachexie</td>
<td>109</td>
<td>3</td>
<td>112</td>
</tr>
<tr>
<td>Keine Kachexie</td>
<td>2</td>
<td>407</td>
<td>409</td>
</tr>
<tr>
<td>Gesamt</td>
<td>111</td>
<td>410</td>
<td>N=521</td>
</tr>
</tbody>
</table>

Zur Kontrolle der Beurteilungsübereinstimmung ist der kappa-Koeffizient nach Cohen berechnet worden ($\kappa=0.971$, $u=22.17$). Obwohl die beiden Beurteilungen durch dieselben Personen erfolgt sind und diese Auswertung nicht im Sinne des traditionellen κ-Koeffizienten verstanden werden kann, ist die Aussage statistisch signifikant und eine zufällige Übereinstimmung nahezu ausgeschlossen. Die Methode kann somit als reliabel angesehen werden.

4.4.4. Auswertung der Fragebögen

Die Auswertung der Fragebögen ist mittels Microsoft Excel 97 unter Windows NT 4.0. Tabellenkalkulation erfolgt und die statistische Auswertung mit Herrn Dr. Schérag aus dem Institut für Medizinische Biometrie der Philipps-Universität Marburg besprochen worden.

4.5. Statistische Methoden zur Auswertung der molekulargenetischen Ergebnisse

Die statistische Auswertung der molekulargenetischen Ergebnisse sind zusammen mit dem Institut für Medizinische Biometrie und Epidemiologie der Philipps-Universität Marburg durchgeführt worden und können nachgelesen werden in der Dissertation von Frau Susanne Knoll.
4.6. Molekulargenetische Analysen und Verarbeitung der Blutproben

4.7. Statistischer Gesamtüberblick über die Patienten klientel der Ambulanz und Ambulanten Chemotherapie

Die statistische Darstellung der Patienten klientel der Ambulanz bezieht sich auf den Zeitraum vom 30.10.03 bis zum 30.11.04, innerhalb dessen die an der Studie teilnehmenden Patienten befragt worden sind.

4.7.1. Eckdaten: Anzahl, Alter, Geschlechterverteilung

Im oben genannten Zeitraum sind insgesamt 1.552 Patienten in der Hämatologisch-Onkologischen Ambulanz vorstellig geworden, darunter 890 Männer (57,3%) und 662 Frauen (42,7%). Das Durchschnittsalter beträgt sowohl bei den Männern als auch bei den Frauen 63,4 Jahre. Durchschnittlich hat jeder dieser Patienten die Ambulanz im angegebenen Zeitraum siebenmal besucht (zwischen 1 und 75 Mal). An dieser Studie haben von den 1.552 Patienten 521 teilgenommen (33,6%).

4.7.2. Erkrankungen

Im Rahmen der Studie sind die Patienten in die Gruppen A bis H des Fragebogens eingeteilt worden. Zur Erfassung des etwas breiteren Krankheitsspektrums der normalen Klientel der Ambulanz sind im Rahmen der Ambulanzstatistik die Gruppen I bis K ergänzt worden:

I: nicht maligne hämatologische Erkrankungen
J: sonstige nicht maligne Erkrankungen
K: keine Erkrankung/ keine Angaben/ Stammzellspender

Da außerdem Patienten mit Myelodysplastischen und Myeloproliferativen Syndromen befragt worden sind, die nicht direkt zu den Krebserkrankungen gezählt werden (siehe Kap. 2.7.1.3.: Myelodysplastische und Myeloproliferative Syndrome), werden diese in der Gruppe G1 (leukämische Vorstufen) getrennt von der Gruppe der Leukämien zusammengefasst. Unter H sind vor allem CUP (Cancer of Unknown Primary) und urogenitale Malignome subsumiert.

Tabelle 4.3.: Erkrankungen und deren Häufigkeiten innerhalb der Patientenklientel der Ambulanz

<table>
<thead>
<tr>
<th>Klasse</th>
<th>Tumorgruppe</th>
<th>m</th>
<th>%m</th>
<th>w</th>
<th>%w</th>
<th>Gesamt</th>
<th>%Gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Bronchialkarzinom</td>
<td>91</td>
<td>10,2</td>
<td>24</td>
<td>3,7</td>
<td>115</td>
<td>7,4</td>
</tr>
<tr>
<td>B</td>
<td>Mammakarzinom</td>
<td>3</td>
<td>0,3</td>
<td>70</td>
<td>10,6</td>
<td>73</td>
<td>4,7</td>
</tr>
<tr>
<td>C</td>
<td>Kolorektales Karzinom</td>
<td>128</td>
<td>14,4</td>
<td>72</td>
<td>10,9</td>
<td>200</td>
<td>12,9</td>
</tr>
<tr>
<td>D</td>
<td>Weitere häufige gastrointestinale Tumoren</td>
<td>83</td>
<td>9,3</td>
<td>27</td>
<td>4,1</td>
<td>110</td>
<td>7,1</td>
</tr>
<tr>
<td>E</td>
<td>Prostatakarzinom</td>
<td>7</td>
<td>0,8</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>0,5</td>
</tr>
<tr>
<td>F</td>
<td>Lymphome</td>
<td>276</td>
<td>31</td>
<td>199</td>
<td>30,1</td>
<td>475</td>
<td>30,6</td>
</tr>
<tr>
<td>G</td>
<td>Leukämien</td>
<td>93</td>
<td>10,4</td>
<td>57</td>
<td>8,7</td>
<td>150</td>
<td>9,7</td>
</tr>
<tr>
<td>G1</td>
<td>Vorstufen für Leukämie</td>
<td>22</td>
<td>2,5</td>
<td>36</td>
<td>5,5</td>
<td>58</td>
<td>3,7</td>
</tr>
<tr>
<td>H</td>
<td>Sonstige Tumoren</td>
<td>94</td>
<td>10,6</td>
<td>54</td>
<td>8,3</td>
<td>148</td>
<td>9,5</td>
</tr>
<tr>
<td>I</td>
<td>Nicht maligne hämatol. Erkrankungen</td>
<td>51</td>
<td>5,7</td>
<td>71</td>
<td>10,2</td>
<td>122</td>
<td>7,9</td>
</tr>
<tr>
<td>J</td>
<td>Sonstige nicht maligne Erkrankungen</td>
<td>30</td>
<td>3,5</td>
<td>46</td>
<td>7</td>
<td>76</td>
<td>4,9</td>
</tr>
<tr>
<td>K</td>
<td>Keine Angaben/ keine Erkrankung / Stammzellspender</td>
<td>12</td>
<td>1,3</td>
<td>6</td>
<td>0,9</td>
<td>18</td>
<td>1,1</td>
</tr>
<tr>
<td>gesamt</td>
<td></td>
<td>890</td>
<td>100</td>
<td>662</td>
<td>100</td>
<td>1552</td>
<td>100</td>
</tr>
</tbody>
</table>

4.8. Statistischer Gesamtüberblick über die befragten Patienten

4.8.1. Gesamtüberblick

Bei den 521 Patienten handelt es sich um 218 Frauen (41,9%) und 303 Männer (58,1%). Diese Verteilung der Geschlechter spiegelt die tatsächliche Geschlechterverteilung der Klientel der Ambulanz wider.

In Tabelle 4.4. sind nach Männern und Frauen getrennt Anzahl und prozentueller Anteil der teilnehmenden Patienten aufgeführt. Des Weiteren beinhaltet die Tabelle Mittelwerte und Standardabweichungen für das Lebensalter bei Diagnosestellung, Body Mass Index, Körpergröße und Körpergewicht zu den Zeitpunkten bei Befragung, ein Jahr vor Diagnose, vor Therapie und den jeweils höchsten Wert während des Erwachsenenlebens des Patienten.

Das Durchschnittsalter liegt bei 58,8 Jahren (m: 58,1; w: 59,2 Jahre), der durchschnittliche BMI zum Zeitpunkt der Diagnosestellung bzw. vor Therapie beträgt 26,1 kg/m² (m: 26,5; w: 25,7 kg/m²). Laut WHO-Einteilung ist somit der Durchschnitt der an der Studie teilnehmenden Patienten übergewichtig (siehe Kap. 2.9.: Bedeutung des prämorbiden Body Mass Indexes).

<table>
<thead>
<tr>
<th>Tabelle 4.4.: Eckdaten der Studienpopulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Männer</td>
</tr>
<tr>
<td>Anzahl</td>
</tr>
<tr>
<td>Anteil (%)</td>
</tr>
<tr>
<td>Durchschnittsalter (Jahre)</td>
</tr>
</tbody>
</table>
| **BMI (kg/m²)**
 bei Befragung (gemessene Daten) | 26,1 +/- 4,1 | 25,5 +/- 4,6 | 25,8 +/- 4,3 |
 1 Jahr vor Diagnose | 26,99 +/- 3,7 | 26,7 +/- 4,7 | 26,9 +/- 4,1 |
 bei Diagnose/ vor Therapie | 26,5 +/- 4,2 | 25,7 +/- 4,8 | 26,1 +/- 4,5 |
 höchster BMI | 29,2 +/- 4,4 | 28,7 +/- 4,6 | 28,9 +/- 4,5 |
| **Körpergewicht (kg)**
 bei Befragung (gemessen) | 81,3 +/- 14,7 | 68,7 +/- 13,1 | 75,0 +/- 15,3 |
 1 Jahr vor Diagnose | 84,1 +/- 13,4 | 71,9 +/- 12,6 | 77,9 +/- 14,4 |
 bei Diagnose/ vor Therapie | 82,5 +/- 15,0 | 69,1 +/- 13,0 | 75,8 +/- 15,7 |
 höchstes Gewicht | 91,0 +/- 15,2 | 77,2 +/- 12,7 | 85,2 +/- 15,7 |
| **Körpergröße (cm)**
 bei Befragung (gemessen) | 176,4 +/- 7,3 | 164,1 +/- 6,7 | 170,3 +/- 9,3 |
4.8.2. Erkrankungen und deren Häufigkeiten innerhalb der Studienpopulation

In der untenstehenden Tabelle 4.5. sind die verschiedenen Tumorarten in den erwähnten Klassen A bis H aufgeführt, nebenstehend die Angaben der jeweiligen Inzidenz der verschiedenen Erkrankungen innerhalb der Studienpopulation.

Tabelle 4.5.: Verteilung der Erkrankungen innerhalb der Studienpopulation

<table>
<thead>
<tr>
<th>Klasse</th>
<th>Tumorgruppe</th>
<th>Anzahl [n]</th>
<th>% gesamt</th>
<th>Männer [n]</th>
<th>% Männer</th>
<th>Frauen [n]</th>
<th>% Frauen</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Bronchialkarzinom</td>
<td>37</td>
<td>7,1</td>
<td>28</td>
<td>9,3</td>
<td>9</td>
<td>4,1</td>
</tr>
<tr>
<td>B</td>
<td>Mammakarzinom</td>
<td>32</td>
<td>6,2</td>
<td>0</td>
<td>0</td>
<td>32</td>
<td>15</td>
</tr>
<tr>
<td>C</td>
<td>Kolorektales Karzinom</td>
<td>90</td>
<td>17,3</td>
<td>55</td>
<td>18,2</td>
<td>35</td>
<td>16</td>
</tr>
<tr>
<td>D</td>
<td>Weitere häufige Gastrointestinale Tumoren</td>
<td>39</td>
<td>7,5</td>
<td>31</td>
<td>10,3</td>
<td>8</td>
<td>3,7</td>
</tr>
<tr>
<td></td>
<td>Magenkarzinom</td>
<td>10</td>
<td>1,9</td>
<td>8</td>
<td>2,6</td>
<td>2</td>
<td>0,9</td>
</tr>
<tr>
<td></td>
<td>Pankreaskarzinom</td>
<td>14</td>
<td>2,7</td>
<td>10</td>
<td>3,3</td>
<td>4</td>
<td>1,9</td>
</tr>
<tr>
<td></td>
<td>Ösophaguskarzinom</td>
<td>15</td>
<td>2,9</td>
<td>13</td>
<td>4,3</td>
<td>2</td>
<td>0,9</td>
</tr>
<tr>
<td>E</td>
<td>Prostatakarzinom</td>
<td>4</td>
<td>0,8</td>
<td>4</td>
<td>1,2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>F</td>
<td>Lymphome</td>
<td>206</td>
<td>40</td>
<td>121</td>
<td>39,6</td>
<td>85</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>M. Hodgkin</td>
<td>28</td>
<td>5,5</td>
<td>14</td>
<td>4,6</td>
<td>14</td>
<td>6,4</td>
</tr>
<tr>
<td></td>
<td>NHL, inklusive:</td>
<td>178</td>
<td>34,5</td>
<td>106</td>
<td>35</td>
<td>72</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>CLL</td>
<td>23</td>
<td>4,4</td>
<td>15</td>
<td>4,9</td>
<td>8</td>
<td>3,7</td>
</tr>
<tr>
<td></td>
<td>Immunozytom</td>
<td>4</td>
<td>0,8</td>
<td>2</td>
<td>0,7</td>
<td>2</td>
<td>0,9</td>
</tr>
<tr>
<td></td>
<td>Plasmozytom</td>
<td>45</td>
<td>8,6</td>
<td>28</td>
<td>9,2</td>
<td>17</td>
<td>7,9</td>
</tr>
<tr>
<td>G</td>
<td>Leukämien</td>
<td>59</td>
<td>11,3</td>
<td>37</td>
<td>12,3</td>
<td>22</td>
<td>10</td>
</tr>
<tr>
<td>G1</td>
<td>Leukämische Vorstufen</td>
<td>20</td>
<td>3,8</td>
<td>7</td>
<td>2,3</td>
<td>13</td>
<td>6</td>
</tr>
<tr>
<td>H</td>
<td>Sonstige Tumoren</td>
<td>34</td>
<td>6,5</td>
<td>21</td>
<td>6,9</td>
<td>13</td>
<td>6</td>
</tr>
<tr>
<td>Gesamt</td>
<td>n = 521</td>
<td>100</td>
<td>303</td>
<td>100</td>
<td>218</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>
5.1. Kachexieprävalenz innerhalb der Studienpopulation

Eine Tumorkachexie liegt bei 112 (21,5%) der 521 Patienten vor. Besonders hoch ist der Anteil an kachektischen Patienten in der Gruppe mit Tumoren des oberen Gastrointestinaltraktes, mit der höchsten Ausprägung bei Patienten mit Ösophagus- (53,3%) und Pankreaskarzinomen (35,7%). Ebenfalls überdurchschnittlich häufig betroffen sind Patienten, die unter Bronchial- (27%), kolorektalen Karzinomen (28,9%) und M. Hodgkin (28,6%) leiden.

Seltener von einer Tumorkachexie betroffen sind vor allem Patienten mit Mammakarzinomen (12%) und mit Leukämien (13,6%). Keiner der Patienten mit Immunozytom (4 Patienten) oder CLL (23 Patienten) hat Anzeichen einer Kachexie gezeigt.
<table>
<thead>
<tr>
<th>Klasse</th>
<th>Tumorgruppe</th>
<th>Gesamt [n]</th>
<th>Kachexie [n]</th>
<th>% Kachexie</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Bronchialkarzinom</td>
<td>37</td>
<td>10</td>
<td>27,03</td>
<td>3</td>
<td>1</td>
<td>6</td>
<td>15</td>
<td>12</td>
</tr>
<tr>
<td>B</td>
<td>Mammakarzinom</td>
<td>32</td>
<td>4</td>
<td>12,5</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>9</td>
<td>19</td>
</tr>
<tr>
<td>C</td>
<td>Kolorektales Karzinom</td>
<td>90</td>
<td>26</td>
<td>28,9</td>
<td>14</td>
<td>5</td>
<td>7</td>
<td>50</td>
<td>14</td>
</tr>
<tr>
<td>D</td>
<td>Weitere häufige Gastrointestinale Tumo-</td>
<td>39</td>
<td>15</td>
<td>38,5</td>
<td>6</td>
<td>4</td>
<td>5</td>
<td>20</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>ren</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Magenkarzinom</td>
<td>10</td>
<td>2</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Pankreaskarzinom</td>
<td>14</td>
<td>5</td>
<td>35,7</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Ösophaguskarzinom</td>
<td>15</td>
<td>8</td>
<td>53,3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>E</td>
<td>Prostatakarzinom</td>
<td>4</td>
<td>1</td>
<td>25</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>F</td>
<td>Lymphome</td>
<td>206</td>
<td>35</td>
<td>17</td>
<td>13</td>
<td>4</td>
<td>18</td>
<td>79</td>
<td>92</td>
</tr>
<tr>
<td></td>
<td>M. Hodgkin</td>
<td>29</td>
<td>8</td>
<td>28,6</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>11</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>NHL, inklusive:</td>
<td>27</td>
<td>15,2</td>
<td>9</td>
<td>3</td>
<td>15</td>
<td>68</td>
<td>83</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CLL</td>
<td>24</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Immunozytom</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Plasmozytom</td>
<td>44</td>
<td>8</td>
<td>17,8</td>
<td>2</td>
<td>1</td>
<td>5</td>
<td>12</td>
<td>25</td>
</tr>
<tr>
<td>G</td>
<td>Leukämien</td>
<td>59</td>
<td>8</td>
<td>13,6</td>
<td>2</td>
<td>1</td>
<td>5</td>
<td>30</td>
<td>21</td>
</tr>
<tr>
<td>G1</td>
<td>Vorstufen für Leukämie</td>
<td>20</td>
<td>5</td>
<td>25</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>H</td>
<td>Sonstige Tumoren</td>
<td>34</td>
<td>8</td>
<td>23,5</td>
<td>5</td>
<td>3</td>
<td>0</td>
<td>15</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Gesamt</td>
<td>521</td>
<td>112</td>
<td>46</td>
<td>20</td>
<td>46</td>
<td>225</td>
<td>184</td>
<td></td>
</tr>
</tbody>
</table>

Graphik 5.1.: Prozentuale Aufteilung der Tumorkachexie in die Kategorien 1–5

- dunkelgrau (1–3): Kachexie: 21,5%
- hellgrau (4–5): Keine Kachexie: 78,5%
5.2. Appetitveränderungen

Appetitveränderungen spielen eine wichtige Rolle im Leben von Krebspatienten. Inwiefern eine Beziehung zwischen Kachexie und Appetitveränderungen, sowie ein etwaiger Unterschied der Appetitveränderungen innerhalb der einzelnen Tumorgruppen besteht wird im Folgenden dargestellt.

5.2.1. Appetitveränderungen der Patienten vor und während der Erkrankung

Tabelle 5.2.: Beziehung zwischen Appetitveränderungen und Kachexieprävalenz

<table>
<thead>
<tr>
<th>Einschätzung</th>
<th>Appetitveränderungen</th>
<th>Keine Veränderungen</th>
<th>Keine Angaben</th>
<th>Gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kachexie</td>
<td>74</td>
<td>36</td>
<td>2</td>
<td>112</td>
</tr>
<tr>
<td>Keine Kachexie</td>
<td>181</td>
<td>220</td>
<td>8</td>
<td>409</td>
</tr>
<tr>
<td>Gesamt</td>
<td>255</td>
<td>256</td>
<td>10</td>
<td>n=521</td>
</tr>
</tbody>
</table>

5.2.2. Beziehung zwischen Appetitabnahme und Kachexieprävalenz

Insgesamt geben 236 der befragten Patienten eine Appetitabnahme an (siehe Tabelle 5.3.). Bei 116 Patienten ist diese durch die Therapie erklärbar, bei den restlichen 120 Fällen ist die Therapie dafür nicht verantwortlich gewesen. Von diesen 120 unter Appetitverlust leidenden Patienten ist es bei 51 außerdem zu einer Tumorkachexie gekommen (42,5%). Bei den Patienten ohne Appetitveränderungen ist dies nur in 14% (36 von 156) der Fall gewesen.
Tabelle 5.3.: Beziehung zwischen Appetitabnahme und Kachexieprävalenz

<table>
<thead>
<tr>
<th>Einschätzung</th>
<th>Kachexie</th>
<th>Keine Kachexie</th>
<th>Gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abnahme</td>
<td>72</td>
<td>164</td>
<td>236</td>
</tr>
<tr>
<td>Generelle Abnahme, nicht weiter differenziert</td>
<td>37</td>
<td>61</td>
<td>98</td>
</tr>
<tr>
<td>Abnahme vor Therapiebeginn</td>
<td>14</td>
<td>8</td>
<td>22</td>
</tr>
<tr>
<td>Abnahme durch Therapie erklärbbar</td>
<td>21</td>
<td>95</td>
<td>116</td>
</tr>
<tr>
<td>Keine Abnahme</td>
<td>36</td>
<td>220</td>
<td>256</td>
</tr>
<tr>
<td>Gesamt</td>
<td>108</td>
<td>384</td>
<td>n=492</td>
</tr>
</tbody>
</table>

5.3.2. Beziehung zwischen Appetitabnahme und Tumorart

Tabelle 5.4.: Beziehung zwischen Appetitabnahme und Tumorart

<table>
<thead>
<tr>
<th>Klasse</th>
<th>Tumorgruppe</th>
<th>Gesamt [n]</th>
<th>Appetit- abnahme</th>
<th>%Appetit- abnahme</th>
<th>Abnahme generell</th>
<th>Abnahme nicht therapiebedingt</th>
<th>Abnahme therapiebedingt</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Bronchialkarzinom</td>
<td>37</td>
<td>16</td>
<td>43,2</td>
<td>7</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>B</td>
<td>Mammakarzinom</td>
<td>32</td>
<td>7</td>
<td>21,9</td>
<td>2</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>C</td>
<td>Kolorektales Karzinom</td>
<td>90</td>
<td>35</td>
<td>38,9</td>
<td>17</td>
<td>3</td>
<td>15</td>
</tr>
<tr>
<td>D</td>
<td>Weitere häufige gastrointestinal Tumoren</td>
<td>39</td>
<td>20</td>
<td>51,3</td>
<td>10</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>E</td>
<td>Prostatakarzinom</td>
<td>4</td>
<td>2</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>F</td>
<td>Lymphome</td>
<td>206</td>
<td>106</td>
<td>51,5</td>
<td>45</td>
<td>11</td>
<td>50</td>
</tr>
<tr>
<td>G</td>
<td>Leukämien</td>
<td>59</td>
<td>28</td>
<td>47,5</td>
<td>10</td>
<td>2</td>
<td>16</td>
</tr>
<tr>
<td>G1</td>
<td>Vorstufen für Leukämie</td>
<td>20</td>
<td>8</td>
<td>40</td>
<td>3</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>H</td>
<td>Sonstige Tumoren</td>
<td>34</td>
<td>14</td>
<td>41,2</td>
<td>4</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>Gesamt</td>
<td></td>
<td>521</td>
<td>236</td>
<td>45,3</td>
<td>98</td>
<td>22</td>
<td>116</td>
</tr>
</tbody>
</table>

5.3. Verteilung der prämorbiden BMI-Werte

In Tabelle 5.5. wird eine Übersicht über die Verteilung der Studienpatienten anhand der WHO-Klassifizierung des Body Mass Indexes gezeigt (siehe Kap. 2.9.: Bedeutung des prämorbiden Body Mass Indexes). 66,4% der Patienten weisen einen prämorbiden BMI
von mehr als 24.9 kg/m² auf. Die Gruppe der Patienten, die übergewichtig sind, ist mit 44,1% am größten, während der Anteil prämorbid untergewichtiger Patienten nur 1% beträgt, der von Patienten mit Adipositas per magna 0,5%.

Tabelle 5.5.: Verteilung prämorbidober BMI-Werte innerhalb der Studienpopulation

<table>
<thead>
<tr>
<th>BMI in kg/m²</th>
<th>Prozentueller Anteil</th>
<th>Anzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td><18,49</td>
<td>Untergewicht</td>
<td>1,00%</td>
</tr>
<tr>
<td>18,5–24,9</td>
<td>Normalgewicht</td>
<td>32,60%</td>
</tr>
<tr>
<td>25–29,9</td>
<td>Präadipositas</td>
<td>44,10%</td>
</tr>
<tr>
<td>30–39,9</td>
<td>Adipositas Grad 1-2</td>
<td>21,80%</td>
</tr>
<tr>
<td>>40</td>
<td>Adipositas ab Grad 3</td>
<td>0,50%</td>
</tr>
<tr>
<td>Gesamt</td>
<td></td>
<td>100%</td>
</tr>
</tbody>
</table>

5.3.1. Beziehung zwischen prämorbidem BMI und der Entwicklung einer Tumorkachexie

Graphik 5.2. stellt die Einteilung des Body Mass Indexes (zum Befragungszeitpunkt) in die fünf verschiedenen Gruppen dar und die Verteilung der kachektischen und nicht kachektischen Patienten innerhalb derselben. Die prozentualen Anteile an kachektischen Patienten in den Gruppen der unter-, normal-, übergewichtigen und adipösen Patienten unterscheiden sich kaum und liegen zwischen 19,9% und 24,1%. In der Gruppe der Patienten mit Adipositas Grad 3 ist der Anteil der kachektischen Patienten von 0% aufgrund der geringen Fallzahl (3 Patienten) nicht aussagekräftig.
Ergebnisse

Graphik 5.2.: Beziehung zwischen prämorbiden BMI und Tumorkachexie
weiß: Kachexie (Pat. der Gruppen 1-3)
grau: keine Kachexie (Pat. der Gruppen 4-5)

Graphik 5.3.: Beziehung zwischen höchstem BMI im Erwachsenenalter und Tumorkachexie
weiß: Kachexie (Pat. der Gruppen 1-3)
grau: keine Kachexie (Pat. der Gruppen 4-5)

Graphik 5.3. zeigt die prozentualen Anteile der Patienten mit Tumorkachexie innerhalb der einzelnen BMI-Gruppen ausgehend vom höchsten BMI während des Erwachsenenlebens der Patienten. Der höchste Anteil kachektischer Patienten ist in der Gruppe der Normalgewichtigen zu finden (27,5%), wohingegen in der Gruppe der Adipositas Grad 3 nur 7,7% an einer Tumorkachexie erkrankt sind. Geht man vom Höchst-Body Mass
Index des Erwachsenenalters aus, so zeigen sich größere Unterschiede innerhalb der einzelnen Gruppen als bei der Berücksichtigung des prämorbiden BMI, der P-Wert ist jedoch mit 0,18 nicht signifikant.

5.3.2. Beziehung zwischen prämorbiden BMI und Appetitveränderungen

Tabelle 5.6. stellt die Beziehung zwischen prämorbiden BMI und einer Appetitabnahme dar. Appetitzunahme und Patienten, die keine Angaben über eventuelle Veränderungen gemacht haben, werden nicht berücksichtigt. Da die Zahlen in den Gruppen der Untergewichten sehr niedrig sind, ist in diesen Fällen eine Beurteilung nicht sinnvoll. Die prozentualen Verteilungen in den anderen Gruppen zeigen nur geringe Abweichungen voneinander. Sie liegen zwischen 4,1% und 5,1% für die Appetitabnahme, die therapieunabhängig stattgefunden hat und bei 17,7% und 26% für die generelle Abnahme. „Generelle Abnahme“ bedeutet, dass die Patienten zwar einen Appetitverlust bemerkt haben aber nicht genau spezifizieren konnten, zu welchem Zeitpunkt oder im Zusammenhang mit welchen Ereignissen dieser stattgefunden hat. Insgesamt haben in allen Gruppen zwischen 47% und 58,7% der Patienten einen Appetitverlust beklagt.

Tabelle 5.6.: Prozentuale Anteile der Appetitabnahme in einzelnen BMI-Gruppen

<table>
<thead>
<tr>
<th>BMI in kg/m²</th>
<th>Abnahme gesamt</th>
<th>Abnahme generell</th>
<th>Abnahme therapiebedingt</th>
<th>Abnahme therapieunabhängig</th>
<th>Keine Abnahme</th>
</tr>
</thead>
<tbody>
<tr>
<td><18,49</td>
<td>50%</td>
<td>25%</td>
<td>25%</td>
<td></td>
<td>50%</td>
</tr>
<tr>
<td>18,5 - 25</td>
<td>51,7%</td>
<td>17,7%</td>
<td>29,9%</td>
<td>4,1%</td>
<td>48,3%</td>
</tr>
<tr>
<td>25 - 30</td>
<td>47%</td>
<td>21,4%</td>
<td>20,5%</td>
<td>5,1%</td>
<td>53%</td>
</tr>
<tr>
<td>30 - 40</td>
<td>58,7%</td>
<td>26%</td>
<td>27,9%</td>
<td>4,8%</td>
<td>41,3%</td>
</tr>
<tr>
<td>>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100%</td>
</tr>
</tbody>
</table>

5.3.3. BMI zu verschiedenen Zeitpunkten innerhalb der Gruppen mit den häufigsten Neoplasien

5.4. Lymphome Hodgkin/ Non-Hodgkin A/B

Das Besondere an der Stadieneinteilung der Lymphomerkrankungen ist die Einteilung in die Stadien A und B nach Ann Arbor (siehe Kapitel 2.7.1.1.: Lymphome und B-Symptomatik). Die Tabellen 5.7. und 5.8. stellen dar, inwiefern die klinische Einteilung nach Ann Arbor mit der Kachexieeinteilung übereinstimmt.

Tabelle 5.8.: Kachexieprävalenz in Stadium A und B des M. Hodgkin

<table>
<thead>
<tr>
<th>M. Hodgkin</th>
<th>Kachexie</th>
<th>Keine Kachexie</th>
<th>Gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>7</td>
<td>6</td>
<td>13</td>
</tr>
<tr>
<td>A</td>
<td>1</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>Gesamt</td>
<td>8</td>
<td>21</td>
<td>N=29</td>
</tr>
</tbody>
</table>
Tabelle 5.9.: Kachexieprävalenz in Stadium A und B der Non-Hodgkin-Lymphome

<table>
<thead>
<tr>
<th>Non Hodgkin Lymphome</th>
<th>Kachexie</th>
<th>Keine Kachexie</th>
<th>Gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>4</td>
<td>10</td>
<td>14</td>
</tr>
<tr>
<td>A</td>
<td>13</td>
<td>63</td>
<td>76</td>
</tr>
<tr>
<td>Gesamt</td>
<td>17</td>
<td>73</td>
<td>N=90</td>
</tr>
</tbody>
</table>
VI Diskussion

6.1. Diskussion der Methode

zwischen Einschätzung 3 und 4 (Kachexie – Keine Kachexie) von Bedeutung gewesen sind, ist es in den allermeisten Fällen kein Problem gewesen, den Patienten der einen oder anderen Gruppe zuzuordnen.

Ein Kritikpunkt an der Kachexieeinteilung könnte sein, dass sie das Kriterium der Appetitveränderung nicht berücksichtigt und somit möglicherweise eine beginnende Kachexie bei einzelnen Patienten nicht erkannt worden ist, weil diese eventuell einen Appetitverlust, aber keinen für unsere Einteilung ausreichenden Gewichtsverlust gehabt haben.

Die eigentliche Durchführung der Befragung hat sich deshalb als etwas problematisch herausgestellt, da uns kein eigener Raum für die Befragung zur Verfügung gestanden hat und somit meist vor jedem Gespräch ein leerstehender Raum (Arztzimmer, leeres Wartezimmer, etc.) gesucht werden musste. Das Rekrutieren der Patienten ist ohne Schwierigkeiten erfolgt und die Zusammenarbeit mit den Ärzten und Arzthelferinnen in der Hämatologisch-Onkologischen Ambulanz ist kollegial und freundschaftlich gewesen. Die meisten Patienten sind gerne dazu bereit gewesen, an der Befragung teilzu-

6.2. Diskussion der Ergebnisse

Die phänotypische Charakterisierung und Kachexieeinteilung der Patienten der Hämatologisch/Onkologischen Ambulanz ermöglichen eine ausführliche und verlässliche Bearbeitung und Diskussion der in Kapitel III (Ziele der Arbeit) vorgestellten Fragestellungen.

6.2.1. Kachexieprävalenz in der Studienpopulation und bezogen auf einzelne Tumorarten

Von den 521 in die Studie eingeschlossenen Patienten sind 112 als kachektisch eingeschult worden. Dies entspricht einem prozentualen Anteil von 21,5%. In der Literatur liegen die Prävalenzangaben für Gewichtsverluste meist höher, bei bis zu 33% (Tisdale 2002; Deans and Wigmore 2005). Allerdings gründet keine dieser Angaben auf kontrollierten klinischen Studien, in denen die Kachexie anhand eindeutiger Kriterien diagnostiziert worden ist. Zumeist werden Gewichtsverluste beschrieben, ohne dass diese Gewichtsverluste definiert werden oder die Methode, mit welcher die Patientendaten erhoben worden sind, erläutert wird. Vor allem Patienten mit Tumoren des oberen Gastrointestinaltraktes sind von der Tumorkachexie betroffen, insbesondere mit Tumoren des Ösophagus (53,3%), Pankreas (35,7%) und mit kolorektalen Karzinomen (28,9%). Ebenfalls überdurchschnittlich häufig leiden Patienten mit M. Hodgkin (28,6%) und Tumoren der Lunge (27%) darunter.

6.2.2. Zusammenhang zwischen Appetitveränderungen und Tumorkachexie

6.2.3. Zusammenhang zwischen prämorbidem BMI und der Entwicklung einer Tumorkachexie

Der durchschnittliche prämorbide BMI der Studienpopulation beträgt 26,9 +/- 4,1 kg/m². 66,4% weisen einen BMI oberhalb der Grenze für Normalgewichtigkeit (>=25 kg/m²) auf. Innerhalb der einzelnen Tumorgruppen bestehen keine wesentlichen Unter-

Der Anteil kachektischer Patienten ist in der Gruppe der prämorbiden Normalgewichtigen am höchsten (24,1%), wobei es nur geringe Abweichungen zwischen den einzelnen Gruppen gibt. Geht man nicht vom prämorbiden Gewicht sondern vom höchsten Gewicht im Erwachsenenalter der Patienten aus, so zeigt sich ein größerer, jedoch nicht signifikanter Unterschied zwischen den Gruppen. Patienten, die nie mehr gewogen haben als ihr Normalgewicht, entwickeln möglicherweise häufiger eine Tumorkachexie (27,5%) als solche die eine Adipositas Grad 3 während ihres Lebens aufweisen können (7,7%).

6.2.4. Übereinstimmung der Lymphomklassifikation nach Ann Arbor mit der Kachexieeinteilung

Die Einteilung der Patienten mit M. Hodgkin und Non-Hodgkin-Lymphomen, die nach der Ann Arbor-Klassifikation unter anderem in A- und B-Stadien erfolgt, ist die einzige Einteilung maligner Erkrankungen, die einen eventuellen Gewichtsverlust mitberücksichtigt. Es war zu erwarten, dass ein hoher Anteil der Studienpopulation Lymphompatienten sein würden. Da die Ann Arbor-Klassifikation die einzige Tumorklassifikation
ist, die einen Gewichtsverlust miteinbezieht, bietet sie sich als Vergleichsmöglichkeit für unsere Kachexieeinschätzung an.

Bei den an der Studie teilnehmenden Patienten ist die A-/B-Einteilung anhand folgender Kriterien vorgenommen worden:

A: Kein Gewichtsverlust oder Nachtschweiß oder erhöhte Temperaturen

B: Gewichtsverlust von 10% in 6 Monaten und/oder Nachtschweiß und/oder erhöhte Temperaturen (Rappaport et al. 1971).

Es muss also nicht zwingend ein Gewichtsverlust vorgelegen haben, um den Patienten Stadium B zuzuordnen. Die Chronisch Lymphatische Leukämie, die zu den niedrig malignen Non-Hodgkin-Lymphomen zählt, wird nicht nach Ann Arbor eingeteilt ((Tsimberidou et al. 2006; siehe Kapitel 2.7.1.1.: Lymphome und B-Symptomatik). Bei den Patienten mit M. Hodgkin ist die Einteilung nach Ann Arbor in 100% der Fälle vorgenommen worden (29 Patienten), bei den Non-Hodgkin-Lymphomen in 58,8% der Fälle. Dies liegt vermutlich daran, dass die Einteilung ursprünglich nur für die Hodgkin-Lymphome vorgesehen war und nicht von allen Ärzten auch für andere Krankheiten übernommen wird.

In der Gruppe der Hodgkin-Lymphome sind nach den im Rahmen dieser Arbeit definierten Kriterien 28,6% der Patienten von einer Kachexie betroffen gewesen, in der der Non-Hodgkin-Lymphome lediglich 15,2%.

Eine weitere Erklärung dafür, dass die Kachexie in einem so hohen Anteil bei Patienten mit Stadium B diagnostiziert worden ist, könnte sein, dass Ärzte eher dazu neigen, auf das augenscheinlichere Symptom des Gewichtsverlustes zu achten als auf Fieber oder Nachtschweiß. Einige Patienten mit Stadium A sind als kachektisch eingestuft worden.
Möglicherweise ist bei diesen Patienten der Gewichtsverlust bei Diagnosestellung nicht bemerkt worden, oder der Gewichtsverlust hat im weiteren Verlauf der Erkrankung therapieunabhängig stattgefunden, so dass zum Zeitpunkt der Diagnose möglicherweise kein Stadium B vorgelegen hat oder.

Zusammenfassend kann man sagen, dass das Symptom des Gewichtsverlustes eine entscheidende Rolle in der Einteilung der Lymphome in die Stadien A und B spielt, aber es lässt sich aus der hohen Übereinstimmung zwischen diagnostizierter Tumorkachexie und Stadium B nicht auf eine eindeutige Ätiologie dieses Zusammenhanges schließen. Ausgehend von der Einteilung der Lymphome wäre es, bis eine einheitliche Definition gefunden ist, von großem Vorteil, wenn bei sämtlichen Tumorklassifikationen die Züge A und B mitberücksichtigt und verwendet würden, so wie es bisher nur sporadisch der Fall ist.

6.3. Schlussfolgerungen und Ausblick

Bis all diese Fragen geklärt sind, muss es dennoch eine Übergangslösung geben, mit dem Krankheitsbild umzugehen, es zu erkennen und mit den derzeitigen Behandlungs- methoden zu versuchen es zu beeinflussen.

Eine einheitliche Definition der Tumorkachexie, zum Beispiel in der Form, wie sie für diese Studie verwendet worden ist, würde nicht nur dazu beitragen, die klinische Forschung in diesem Bereich zu erleichtern und zu verbessern. Sie dient außerdem als diagnostisches Werkzeug im klinischen Alltag und erhöht die Aufmerksamkeit des Arztes, mit der er der Tumorkachexie als eigenständiges Krankheitsbild begegnet, sie diagnostiziert und therapiert. Dies gilt insbesondere bei Patienten, die den genannten Risikogruppen zugeordnet werden und über Gewichtsverlust und -veränderungen berichten.

Die hier vorgenommene Einteilung, eventuell dann unter Mitberücksichtigung der Appetitveränderungen sowie ein entsprechender Fragebogen können dazu genutzt werden, weitere klinische Forschungsvorhaben durchzuführen. Solange die therapeutischen Möglichkeiten nicht gezielter und grundlagenbasierter entwickelt werden können, sind kontrollierte Studien bezüglich der Wirksamkeit der momentan verfügbaren Therapie- möglichkeiten der Kachexie dringend erforderlich.
VII Zusammenfassung

Die Tumorkachexie ist ein eigenständiges Krankheitsbild, das vor allem durch Auszehrung und körperlichen Verfall im Rahmen maligner Erkrankungen gekennzeichnet ist. Problematisch ist die Tatsache, dass es keine einheitliche Definition für die Tumorkachexie und keinen validierten Fragebogen zur Erhebung derselben. In dieser Arbeit ist eine dem Stand der Literatur entsprechende praktikable Einteilung der Tumorkachexie und im Rahmen der vorliegenden Untersuchung ein geeigneter Fragebogen zur Erfassung von Gewichts- und Appetitveränderungen entwickelt worden.

Mit Hilfe der verwendeten Instrumente haben sich folgende Ergebnisse gezeigt:

1.) Insgesamt hat bei 21,5% der Patienten eine Kachexie vorgelegen. Vor allem Patienten mit Tumoren der Lunge (27%), mit M. Hodgkin (28,6%) und mit Tumoren des Gastrointestinaltraktes, insbesondere des Ösophagus und Pankreas (35,7%), sind häufig von einer Tumorkachexie betroffen. Der höchste Anteil an kachektischen Patienten zeigt sich in der Gruppe derer mit Ösophaguskarzinomen (53,3%).

2.) Zwar können Tumorkachexie und Appetitverlust auch unabhängig voneinander auftreten, dennoch scheint ein Zusammenhang zwischen diesen beiden Phänomenen zu bestehen. Patienten, die bereits bei Diagnosestellung unter Appetitveränderungen leiden, haben ein höheres Risiko, im Laufe ihrer Erkrankung eine Tumorkachexie zu entwickeln, als solche, deren Appetit unverändert ist.

In Zukunft wird es unbedingt notwendig sein, die Ursachen und Pathomechanismen der Tumorkachexie genauer zu erforschen und damit genauer verstehen zu können, warum wer in welchem Ausmaß davon betroffen ist und inwiefern spezifische therapeutische Ansätze möglich sind. Gezielte Therapien können erst entwickelt werden, wenn genau verstanden wird, welche Faktoren und Mediatoren auf welchem Weg an der Entstehung beteiligt sind. Bis dahin ist es vor allem klinisch von entscheidender Bedeutung, eine einheitliche Definition der Tumorkachexie zu entwickeln, anhand derer einerseits klinische Forschung betrieben werden kann und andererseits eindeutigere Diagnosestellungen möglich sind. Wichtig ist hierbei auch die Berücksichtigung von Appetitveränderungen und nicht nur ein ausschließliches Konzentrieren auf das Gewicht.
VIII. Die Rolle des MC4R-Val103Ile-Polymorphismus in der Entstehung einer Tumorkachexie

Die Befragung des Patientenkollektivs und die statistische Ausarbeitung sind in Zusammenarbeit mit Frau Susanne Knoll erfolgt, die in ihrer Dissertation ausführlich auf die molekularen Mechanismen zur Entstehung einer Tumorkachexie am Beispiel des Val103Ile-Polymorphismus des Melanocortin-4-Rezeptorgens (MC4R) in der untersuchten Patientengruppe eingegangen. Ein kurzer Überblick über den Inhalt der Arbeit von Frau Knoll wird hier gegeben.

8.1. Einleitung und wissenschaftliche Grundlagen

Verschiedene periphere und zentrale Mechanismen werden für die Gewichtsregulation verantwortlich gemacht, unter anderem das melanocortinerge System mit spezieller Bedeutung des Melanocortin-4-Rezeptors (siehe Kapitel 2.5.6.: Das melanocortinerge System und Melanocortinrezeptoren).

Es wird vermutet, dass das Ile103-Allel zu einer höheren Rezeptoraktivität führt. Kürzlich ist beobachtet worden, dass das Ile103-Allel eine zwar moderate, aber statistisch signifikante Reduktion der Aktivität des Antagonisten Agouti-related-Protein hAGRP (87-132) zur Folge hat (Xiang et al. 2006). Zugleich scheint die Aktivität des Melaninstimulierenden-Hormons β-MSH, einem potenoten Agonisten des MC4R (Biebermann et al. 2006), zu steigen (Xiang et al. 2006). Sowohl die Aktivitätsminderung des Antagonisten als auch die Aktivitätssteigerung des Agonisten sind kompatibel mit einer erhöhten MC4R-Funktion, die zu einem durchschnittlich niedrigeren Gewicht beitragen.

In einer weiteren Studie konnte gezeigt werden, dass bei 229 nicht diabetischen Personen mittleren Alters das Ile103-Allel mit hohem Energieverbrauch assoziiert ist (Rutangen et al. 2004), der im Gleichklang mit der negativen Assoziation zur Adipositas steht.
Bei kardiovaskulären Patienten sind bei Ile103-Allelträgern im Vergleich zu Wildtyp-Trägern reduzierte Triglyzeridspiegel gefunden worden (Brönner et al. 2006).

Bisher gibt es keine Studien, die eine potenzielle Rolle des Val103Ile-Polymorphismus bei der Entstehung einer Tumorkachexie untersuchen. In dieser Arbeit ist folgende Hypothese überprüft worden: Krebspatienten mit besagtem Polymorphismus entwickeln mit einer höheren Wahrscheinlichkeit eine Kachexie als Patienten mit Wildtyp.

8.2. Studiendesign
Das Studiendesign und die verwendeten Instrumente sind ausführlich im Kapitel IV „Material und Methoden“ beschrieben worden und können dort nachgelesen werden.

8.3. Ergebnisse
Bei 509 der 521 in die Studie eingeschlossenen Patienten konnte eine molekulargenetische Analyse bezüglich des Vorhandenseins des Val103Ile-Polymorphismus durchgeführt werden.

Die ausführlichen Ergebnisse unter Berücksichtigung der verschiedenen malignen Erkrankungen unter Einschluss der leukämischen Vorstufen MDS und MPS (siehe Kapitel 2.7.1.3.: Myelodysplastische und Myeloproliferative Syndrome), sowie Kachexieanteil, Angaben zu Appetitveränderungen, BMI etc. sind in der Dissertation von Frau Susanne Knoll zu finden. An dieser Stelle folgt eine kurze Zusammenfassung der wichtigsten Ergebnisse:

Von den 509 Patienten sind 25 Patienten (4,9%) heterozygot für den beschriebenen Polymorphismus. Von diesen haben zwei eine Tumorkachexie entwickelt (beide sind an einer Vorstufe der Leukämie erkrankt). Bei den anderen 484 Patienten mit Wildtyp ist dies bei 105 (21,7%) der Fall gewesen.

Im Gegensatz zur formulierten Hypothese ist keine signifikante Assoziation zwischen den Ile103-Trägern und der Entwicklung einer Tumorkachexie gefunden worden (Fisher's exakter Test, 2-seitig, p-Wert=0,13). Ein explorativer Post-hoc Ausschluss der 20 Patienten mit leukämischen Vorstufen (siehe Tabelle 8.1), die – strikt gesehen – keine Malignome darstellen, führt zu dem Trend einer negativen Assoziation zwischen dem Ile103-Allel und einer Tumorkachexie (Fisher's exakter Test, 2-seitig, p-Wert=0,0068).
Tabelle 8.1: Vier-Felder-Tafel für die Assoziation: Heterozygot für das 103Ile-Allel/Wildtyp versus Tumorkachexie ja/nein

<table>
<thead>
<tr>
<th></th>
<th>Kachexie N= 107 (102)</th>
<th>Keine Kachexie N= 402 (387)</th>
<th>Gesamt N= 509 (489)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heterozygot für das 103Ile-Allel</td>
<td>2 (0)</td>
<td>23 (23)</td>
<td>25 (23)</td>
</tr>
<tr>
<td>Wildtyp</td>
<td>105 (102)</td>
<td>379 (364)</td>
<td>484 (466)</td>
</tr>
</tbody>
</table>

Die Zahlen in Klammern geben die Patientenanzahl nach Ausschluss der leukämischen Vorstufen wieder.

8.4. Diskussion

Bisher gibt es keine Studien, die eine potenzielle Rolle des Val103Ile-Polymorphismus bei der Entstehung einer Tumorkachexie untersuchen. Es ist die Hypothese überprüft worden, ob Krebspatienten mit dem Val103Ile-Polymorphismus eher eine Kachexie entwickeln als Patienten mit Wildtyp.

Überraschenderweise konnte eine signifikante Assoziation zwischen diesen Items nicht bestätigt werden (p=0,13). Bei einem explorativen Post-hoc Ausschluss der 20 Patienten mit leukämischen Vorstufen zeigt sich ein Trend zu einer negativen Assoziation zwischen dem Ile103-Allel und dem Auftreten einer Tumorkachexie (p-Wert<0,05); Patienten mit dem Ile103-Allel haben weniger häufig eine Tumorkachexie entwickelt als Patienten mit dem Wildtyp.

Wenn diese Beobachtung nicht auf das übliche Problem der Post-hoc Subgruppenanalysen (Schulz and Grimes 2005) zurückzuführen ist, könnte man spekulieren, dass es eine negative Korrelation zwischen dem Ile103-Allel und der Entstehung einer Tumorkachexie bei Patienten mit nicht hämatologischen/soliden Malignomen gibt.

Die kürzlich gefundenen Ergebnisse (Xiang et al. 2006; Biebermann et al. 2006), das Ile103-Allel führe zu einer moderaten Reduktion der Aktivität des Antagonisten hAGRP(87-132) und zu einer Aktivitätssteigerung des Agonisten von ß-MSH mit der Folge einer erhöhten MC4R-Funktion, können den möglichen „protektiven Effekt“ vor der Entstehung einer Tumorkachexie nicht erklären.

Erklärungsansätze sind:
1. Möglicherweise werden durch den Tumor selbst oder durch die Patient-Tumor-Interaktion Kachexie fördernde Faktoren produziert, die eine höhere Affinität zu der Val103-Variante haben.

2. Alternativ könnte die Anwesenheit eben erwähnter Faktoren oder Interaktionen die Bindungseigenschaften für MC4R-Antagonisten (z.B. AGRP) bei Ile103-Trägern verbessern.

Um das Risiko der Ile103-Träger für die Entwicklung verschiedener Kachexieformen abzuklären, bedarf es weiterer Studien bei Patienten vor allem mit soliden Tumoren und im Vergleich zu nicht-soliden Malignomen. Aufgrund der Trägerfrequenz von 1,3 – 5,1% in der Gesamtbevölkerung sind hierfür große Probandenzahlen nötig.

Literaturverzeichnis:

Bortz, J.: Kurzgefasste Statistik für die klinische Forschung. 2. Auflage, Berlin 2003

equilibrium test confirm that functionally relevant mutations are compatible with a major gene effect for extreme obesity. J Clin Endocrinol Metab 2003, 88:4258-67.

Knoll, S.: Molekularen Mechanismen zur Entstehung einer Tumorkachexie am Beispiel des Melanocortin-4 Rezeptors, noch nicht veröffentlicht.

Anhang

A: Erhebungsbogen
 Patienteninformation
 Patienten-Einverständniserklärung
Erhebungsbogen

Kodierung: MR __ __ __

I.)
1.1 Aktuelles Datum: __________

1.2 Geburtsjahr: 19 __ __

1.3 Geschlecht: O männlich O weiblich

II.)
2.1 Tumorlokalisation: A Lunge O
B Mamma O
C kolorektal O
D andere häufige GI O
E Prostata O
F Lymphome O
G Knochenmark O
H sonstige O

2.2 Tumor: __________

2.3 Stadium: bei Diagnose __________

2.4 Wann wurde jetzige Tumorerkrankung erstmals diagnostiziert? ______

III.)
3.1 aktuell gemessene Körperhöhe: ______cm

3.2 aktuell gemessenes Körpergewicht: ______kg

Gewichtsanamnese

3.3 erfragtes Gewicht:

höchstes Gewicht im Erwachsenenalter: ___ ___ kg

1 Jahr vor Diagnosestellung ___ ___ kg

bei Diagnosestellung ___ ___ kg

bzw. vor Therapiebeginn ___ ___ kg
IV.)
4.1 Behandlung:

<table>
<thead>
<tr>
<th>Behandlung</th>
<th>ja</th>
<th>O</th>
<th>nein</th>
<th>O</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemotherapie:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strahlentherapie</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sonstige:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>keine</td>
<td></td>
<td></td>
<td></td>
<td>O</td>
</tr>
</tbody>
</table>

4.2 Gewichtsveränderungen währenddessen ___________________

V.)
5.1 Veränderungen beim Appetit?

<table>
<thead>
<tr>
<th>Veränderung</th>
<th>wann?</th>
<th>therapieabh.?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zunahme</td>
<td>O</td>
<td>_____________</td>
</tr>
<tr>
<td>Abnahme</td>
<td>O</td>
<td>_____________</td>
</tr>
<tr>
<td>Keine Veränderung</td>
<td>O</td>
<td>_____________</td>
</tr>
<tr>
<td>Sonstiges</td>
<td>___________</td>
<td></td>
</tr>
</tbody>
</table>

VI.)
6.1 Bitte kreuzen Sie an, ob Ihrer Einschätzung nach das aktuelle Gewicht des/r Patienten/in Folge einer Tumorkachexie ist:

<table>
<thead>
<tr>
<th>Einschätzung</th>
<th>O</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 eindeutig ja</td>
<td>O</td>
</tr>
<tr>
<td>2 höchstwahrscheinlich ja</td>
<td>O</td>
</tr>
<tr>
<td>3 wahrscheinlich ja</td>
<td>O</td>
</tr>
<tr>
<td>4 wahrscheinlich nicht</td>
<td>O</td>
</tr>
<tr>
<td>5 nein</td>
<td>O</td>
</tr>
</tbody>
</table>
Informationen zur Studie „Molekulargenetische Mechanismen der Kachexie“

Unsere Untersuchung zielt darauf ab, die Erbanlagen zu identifizieren, die mit einem erhöhten Risiko für die Entwicklung einer Kachexie einhergehen.

Der Sie untersuchende Arzt/Ärztin wird Sie kurz zu Ihrem bisherigen Gewichtsverlauf befragen. Nur hierdurch ist es möglich, festzustellen, ob und inwieweit Ihr aktuelles Gewicht unterhalb Ihres Gewichtes vor Erkrankungsbeginn liegt.

Sowohl die Blutprobe als auch der Erhebungsbogen, auf denen Angaben zu Ihrer Grundkrankung und dem Gewichtsverlauf festgehalten sind, werden vollständig anonymisiert. Dies bedeutet, dass keinerlei Untersuchungsergebnisse mit Ihren persönlichen Daten in Verbindung gebracht werden können. Sowohl die Ergebnisse der molekulargenetischen Untersuchungen als auch die Daten des Erhebungsbogens werden statistisch ausgewertet. Hierbei kann auch die Hinzuziehung einer externen Forschungsstelle erfolgen, wobei hier ebenfalls keinerlei Rückführung auf Ihre persönlichen Daten möglich ist.

Wir möchten uns bei Ihnen für die Teilnahme an unserer Untersuchung sehr bedanken!

Prof. Dr. Neubauer
Prof. Dr. Hebebrand
Einverständniserklärung in die Untersuchung „Molekulargenetische Mechanismen der Kachexie“

Ich erkläre mich damit einverstanden, an der oben genannten Untersuchung teilzunehmen. Ich bin über die Untersuchung informiert worden und habe das entsprechende Informationsblatt erhalten und gelesen. Ich bin damit einverstanden, daß für molekulargenetische Untersuchungen 10 Milliliter Blut entnommen werden, und dass die Daten für wissenschaftliche Zwecke in anonymisierter Form gespeichert werden. Ich bin darüber informiert worden, dass ich jederzeit und ohne Angabe von Gründen von dieser Studie zurücktreten kann, ohne dass mir hieraus Nachteile entstünden.

.. ..
Ort, Datum Unterschrift
B Abkürzungsverzeichnis
<table>
<thead>
<tr>
<th>AC</th>
<th>Ambulante Chemotherapie</th>
</tr>
</thead>
<tbody>
<tr>
<td>AG</td>
<td>Arbeitsgemeinschaft</td>
</tr>
<tr>
<td>AGRP</td>
<td>englisch: Agouti-Related-Peptide</td>
</tr>
<tr>
<td>AIDS</td>
<td>englisch: Aquired Immune Deficiency Syndrome-erworbenes Immun-Defizit-Syndrom</td>
</tr>
<tr>
<td>ALL</td>
<td>Akute Lymphatische Leukämie</td>
</tr>
<tr>
<td>AML</td>
<td>Akute Myeloische Leukämie</td>
</tr>
<tr>
<td>BIA</td>
<td>Bioelektische Impedanzmessung</td>
</tr>
<tr>
<td>BMI</td>
<td>englisch: Body Mass Index –Körpermassenindex in kg/m²</td>
</tr>
<tr>
<td>CACS</td>
<td>englisch: Cancer Anorexia Cachexia Syndrome-Krebs Anorexie Kachexie Syndrom</td>
</tr>
<tr>
<td>CLL</td>
<td>Chronisch Lymphatische Leukämie</td>
</tr>
<tr>
<td>CML</td>
<td>Chronisch Myeloische Leukämie</td>
</tr>
<tr>
<td>CRP</td>
<td>C-reaktives Protein</td>
</tr>
<tr>
<td>CUP</td>
<td>englisch: Cancer of unknown primary: Krebs unbekannten Ursprungs</td>
</tr>
<tr>
<td>EKG</td>
<td>Elektrokardiogramm</td>
</tr>
<tr>
<td>EPA</td>
<td>Eicosapentaensäure</td>
</tr>
<tr>
<td>Ess.TZH</td>
<td>essentielle Thrombozythämie</td>
</tr>
<tr>
<td>G/A Genotyp</td>
<td>Guanin/Adenosin-Genotyp</td>
</tr>
<tr>
<td>ICD</td>
<td>International Classification of Diseases</td>
</tr>
<tr>
<td>Ile</td>
<td>Isoleucin</td>
</tr>
<tr>
<td>II</td>
<td>Interleukin</td>
</tr>
<tr>
<td>KI</td>
<td>Konfidenzintervall</td>
</tr>
<tr>
<td>KMT</td>
<td>Knochenmarktransplantation</td>
</tr>
<tr>
<td>LMF</td>
<td>Lipid-mobilisierender Faktor</td>
</tr>
<tr>
<td>MC3-R</td>
<td>Melanocortin3-Rezeptor</td>
</tr>
<tr>
<td>MC4-R</td>
<td>Melanocortin4-Rezeptor</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Deutscher Begriff</td>
</tr>
<tr>
<td>-----------</td>
<td>------------------</td>
</tr>
<tr>
<td>MDS</td>
<td>Myelodysplastisches Syndrom</td>
</tr>
<tr>
<td>MPS</td>
<td>Myeloproliferatives Syndrom</td>
</tr>
<tr>
<td>mRNA</td>
<td>englisch: messenger Ribonuclein Acid</td>
</tr>
<tr>
<td>MSH</td>
<td>Melanotropin</td>
</tr>
<tr>
<td>MüZ</td>
<td>Mittlere Überlebenszeit</td>
</tr>
<tr>
<td>NHL</td>
<td>Non-Hodgkin-Lymphom</td>
</tr>
<tr>
<td>NPY</td>
<td>Neuropeptid Y: Neurotransmitter</td>
</tr>
<tr>
<td>NSAP</td>
<td>Nicht-steroidale Antiphlogistika</td>
</tr>
<tr>
<td>NSAR</td>
<td>Nicht-steroidale Antirheumatika</td>
</tr>
<tr>
<td>OMF</td>
<td>Osteomyelofibrose</td>
</tr>
<tr>
<td>POMC</td>
<td>Pro-Opio-Melanocortin</td>
</tr>
<tr>
<td>PCR</td>
<td>englisch: Polymerase Chain Reaction: Polymerasekettenreaktion</td>
</tr>
<tr>
<td>PCV</td>
<td>Polycythämia vera</td>
</tr>
<tr>
<td>PIF</td>
<td>Proteolyse-induzierende-Faktor</td>
</tr>
<tr>
<td>POMC</td>
<td>Pro-Opio-Melanocortin: Genort mit verschiedenen Nukleotidsequenzen, u.a. für α-MSH</td>
</tr>
<tr>
<td>RCC</td>
<td>englisch: Renal Cell Carcinoma: Nierenzellkarzinomen</td>
</tr>
<tr>
<td>RFLP</td>
<td>Restriktions-Fragment-Längen-Polymorphismus</td>
</tr>
<tr>
<td>SHU9119</td>
<td>Antagonist am MC3-/MC4-Rezeptor</td>
</tr>
<tr>
<td>TB-Ratten</td>
<td>Tumour-Bearing Ratten</td>
</tr>
<tr>
<td>THC</td>
<td>Tetrahydrocannabinol</td>
</tr>
<tr>
<td>TM</td>
<td>Tumor</td>
</tr>
<tr>
<td>TNFα</td>
<td>Tumor-Nekrose-Faktor-α</td>
</tr>
<tr>
<td>UCP</td>
<td>Englisch: Uncoupled-Protein</td>
</tr>
<tr>
<td>WHO</td>
<td>englisch: World Health Organization: Weltgesundheitsorganisation</td>
</tr>
</tbody>
</table>
Verzeichnis der akademischen Lehrer

Meine akademischen Lehrer an der Philipps-Universität Marburg waren die nachfolgenden Damen und Herren, denen ich hiermit herzlich danke:

Danksagung

Herrn Prof. Hebebrand danke ich für die sehr engagierte und persönliche Betreuung dieser Arbeit und die freundliche und ermutigende Zusammenarbeit.

Herrn Prof. Neubauer danke ich für die gute Zusammenarbeit mit seinem Institut und die engagierte Betreuung.

Frau Dr. Hinney danke ich für die Unterstützung bei den molekulargenetischen Aspekten dieser Arbeit und die gute Zusammenarbeit.

Besonderer Dank gilt natürlich den Patienten der hämatologisch-onkologischen Ambulanz, die freiwillig an der Untersuchung teilgenommen haben und fast ausnahmslos dazu bereit waren, Blut für molekulargenetische Untersuchungen zu geben.

Susanne Knoll danke ich für die hervorragende Zusammenarbeit, die konstruktive Kritik und Unterstützung.

Abschließend möchte ich ganz besonders meinem Vater und Maria, meiner Mutter und dem Rest meiner Familie und Freunde dafür danken, dass sie mich immer voll Vertrauen, Interesse, Liebe und finanziell unterstützt haben.