Hyperbolizität in der komplexen Analysis und der algebraischen Geometrie

In dieser Arbeit werden ganze Abbildungen in den projektiven Raum betrachtet, die mehrkomponentige Hyperflächen bestimmten Grades meiden, und es wird deren algebraische Entartung bzw. Konstanz gezeigt. Hauptresultat ist der Beweis eines Spezialfalls der Kobayashi-Vermutung, nämlich der Nachweis der...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Raufuß, Anke
Beteiligte: Schumacher, Georg (Prof. Dr.) (BetreuerIn (Doktorarbeit))
Format: Dissertation
Sprache:Deutsch
Veröffentlicht: Philipps-Universität Marburg 2006
Reine und Angewandte Mathematik
Schlagworte:
Online Zugang:PDF-Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In dieser Arbeit werden ganze Abbildungen in den projektiven Raum betrachtet, die mehrkomponentige Hyperflächen bestimmten Grades meiden, und es wird deren algebraische Entartung bzw. Konstanz gezeigt. Hauptresultat ist der Beweis eines Spezialfalls der Kobayashi-Vermutung, nämlich der Nachweis der Hyperbolizität des Komplements einer sechskomponentigen Fläche von Grad sieben im dreidimensionalen projektiven Raum (ebenso einer Fläche mit fünf Komponenten, von denen keine eine Ebene ist). Dies wird mit elementaren Methoden und sehr direkt mit Hilfe des Umparametrisierungslemmas von Brody erreicht.