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To Julia



Truth is I thought it mattered,
I though that music mattered,

But does it bollocks,
Not compared to our people matter.

Chumbawamba
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Zusammenfassung

Bevor wir in der Lage sind Sehobjekte zu erkennen, müssen wir diese
von ihrem Hintergrund trennen. Dies bedarf eines schnellen Mech-
anismus, der feststellt ob und an welchem Ort ein Objekt vorliegt -
unabhängig davon um was für ein Objekt es sich handelt.

Vor wenigen Jahren wurden Kantenzugehörigkeitsneurone
(border-ownership neurons) im Sehkortex wacher Affen gefunden
(Zhou et al., 2000), die wahrscheinlich eine Rolle in obig erwähn-
ter Aufgabe spielen. Kantenzugehörigkeitsneurone antworten mit
erhöhter Feuerrate, wenn sie die Kante eines Objekts kodieren,
das sich von der Kante aus zu einer bestimmten, der vom Neuron
bevorzugten, Seite erstreckt. Im Gegensatz dazu feuert das Neuron
mit reduzierter Aktivität, wenn die kodierte Kante Teil eines Objek-
tes ist, welches sich zur anderen, nicht bevorzugten Seite erstreckt.
Diese Selektivität für die Lage eines Stimulusobjekts bezüglich einer
Kante wird Kantenzugehörigkeit (border ownership) genannt. Zhou
et al. (2000) fanden in den Arealen V1, V2 und V4 des Sehkortex
Kantenzugehörigkeitsneurone, die auf orientierte Kontrastkanten
und Linien antworteten.

Um den oben beschriebenen schnellen Mechanismus zu erk-
lären, habe ich ein Neuronales Netzwerkmodell entwickelt, das
das Vorhandensein von Stimulusobjekten detektiert. Mein Modell
bestent aus den folgenden Arealen:

• Areal-1: Kodierung orientierter Kanten

• Areal-2: Kodierung von Kurvenverläufen

• Areal-3: Detektion des Vorhandenseins von Stimulusobjekten

Vorwärtsverschaltungen und laterale Verbindungen unterstützen in
meinem Modell die Kodierung von Gestalteigenschaften wie z.B.
Ähnlichkeit, guter Verlauf und Konvexität. Die Modellneurone des
Areals 3 feuern, wenn ein Objekt im Stimulus vorliegt und kodieren
dessen Position unabhängig von der Form des Objekts.
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Rückkopplungen von Areal-3 auf Areal-1 unterstützen Ori-
entierungsdetektoren, die die Kontur eines möglichen Objekts
kodieren. Diese Rückkopplungen verursachen in unserem Mod-
ell den experimentell beobachteten Kantenzugehörigkeitseffekt.
Rückkopplung von Kantenzugehörigkeit wirkt direkt auf Neu-
rone, die die konvexen Stellen der Kontur eines Objekts kodieren.
Neurone, die konkave Teile der Kontur kodieren, erreicht die
Rückkopplung indirekt über laterale Verbindungen innerhalb des
Kantenzugehörigkeits-Areals.

Meine Simulationen zeigen, dass Kantenzugehörigkeits-
Rückkopplungen mit Hebb’schem Lernen gelernt werden können.
Dies ist eine Bestätigung meiner Netzwerkarchitektur.

Mein Netzwerk ist ein umfassendes Modell, das mehrere Aspekte
der Objektdetektion und -kodierung beinhaltet. Hiermit lassen sich
die experimentellen Beobachtungen von Kantenzugehörigkeit re-
produzieren. Desweiteren arbeiten die Mechanismen unseres Mod-
ells schnell und sie verbessern signifikant die Figur-Hintergrund-
Trennung, die benötigt wird, um in nachfolgenden Schritten Objek-
terkennung leisten zu können.
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Abstract

Before we can recognize a visual object our visual system has to seg-
regate it from its background. This requires a fast mechanism for es-
tablishing the presence and location of objects independent of their
identity.

Recently, border-ownership neurons were recorded in monkey vi-
sual cortex which might be involved in this task (Zhou et al., 2000).
Border-ownership neurons respond with increased rates when an
object surface extends to one specific side of the contour they en-
code. Conversely, the rate decreases when the contour belongs to
an object extending to the other side. This selectivity for object po-
sition relative to a contour is called border-ownership. Zhou et al.
(2000) found border-ownership neurons that encode oriented con-
trast edges or lines in areas V1, V2, and V4 of visual cortex in awake
monkeys.

In order to explain the basic mechanisms required for fast coding
of object presence I developed a neural network model of visual cor-
tex consisting of these three areas:

• Area 1: encoding orientation contours

• Area 2: encoding curvatures

• Area 3: detecting the presence of stimulus objects

In my model feed-forward and lateral connections support coding of
Gestalt properties including similarity, good continuation and con-
vexity. Model neurons of the highest area (Area-3) respond to the
presence of an object and encode its position, invariant of its form.

Feedback connections from Area-3 to Area-1 facilitate orientation
detectors activated by contours belonging to potential objects, and
thus generate the experimentally observed border-ownership prop-
erty. Border-ownership feedback is transmitted directly to neurons
encoding convex contours of an object and indirectly via lateral con-
nections into concavities.
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Contents

My simulations show that the border-ownership connections of
my model can be learned with Hebbian learning. This confirms my
networks architecture.

In conclusion, my network is an encompassing model bringing
together several aspects of object detection and coding. The model
reproduces the experimental observations of border-ownership by
Zhou et al. (2000). Further, border-ownership feedback control acts
fast and significantly improves the figure-ground segregation re-
quired for the consecutive task of object recognition.
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Chapter 1

Introduction

Parts of this chapter and of Chapters 3, 4 and 8 are accepted for publication
in the journal “Biosystems”, 2006, special edition “Neural Coding”.

1.1 Object Coding in Visual Cortex

In order to recognise an object, we need to separate it from its back-
ground. This separation implies grouping together the features of the
object. Knowing which features belong to the object would greatly
support separating them from the background. WeI suggest a model
of how higher visual processes aid early figure ground segregation
to achieve just that.

1.1.1 Dorsal and Ventral Pathways and Feedback

Cortical visual processing is often divided into two major pathways.
The dorsal (Where?) pathway is thought to extract information about
object presence, position and size from visual stimuli. In contrast,
the ventral (What?) pathway is more concerned with the encoding
of form and identity of objects. The pathways differ with respect to
their input. The dorsal pathway receives magno-cellular input with
short delay, the ventral pathway receives both fast magno- and slow
parvo-cellular input (see e.g., Schmolesky et al., 1998; Lamme and
Roelfsema, 2000; Bullier, 2001). Dorsal pathway neurons have been

IThe research presented in this dissertation was done by me, the author, i.e. I
developed the computer models, ran the simulations and evaluated the results.
Nonetheless, I have chosen to write this publication in the first person plural (we)
since this work was only possible through the continuous collaboration with my
colleagues in the NeuroPhysics group. Parts of this dissertation were previously
jointly published with them.
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Figure 1.1: Averaged activity of a border-ownership neuron
preferring objects stretching from its classical receptive field
(cRF) to the left recorded in awake monkey. Modified from
Zhou and coworkers (2000).

assumed to encode presence of objects and their position in visual
scenes independent of their form (identity) (Bullier, 2001; Goodale
and Milner, 1992). As has been previously discussed (Vidyasagar,
1999; Bullier, 2001), we suggest that there is feedback from higher
area dorsal neurons, which detect an object’s presence and location,
to neurons in lower primary visual cortex (V1) encoding the object’s
contour and surface. Short-latency magnocellular input to the dor-
sal pathway and fast feed-forward (Thorpe et al., 1996) and feed-
back connections (Hupe et al., 2001) would allow feedback to coin-
cide with the longer-latency input from the retina to area V1 of the
parvocellular pathway. Such a mechanism could provide neurons in
early areas with information about the probability of object presence
in the current stimulus, including object size and position, invariant
of form. In addition, it would aid figure-ground segregation in V1
and ventral stream areas receiving input from V1.

1.1.2 Border-Ownership

One important step in segregating object from ground is to identify
the contour of the object. From the perception of bistable pictures
(Rubin, 1921) we know that an object’s contour is perceived as part of
the object. Recently, Zhou et al. (2000) studied neurons encoding ori-
ented contrast edges or lines in areas V1, V2, and V4 of visual cortex
in awake monkeys. A large percentage of those neurons responded
with increased rates when an object surface extended to one specific
side of the contour. Conversely, the rate decreased when the con-
tour belonged to an object extending to the other side. This selectivity
for object position relative to a contour was termed border-ownership
(BO). Figure 1.1 shows two stimuli (A,B) in which the same con-
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1.1 Object Coding in Visual Cortex

tour belongs to different objects. Note that the local stimulus prop-
erties, including orientation and contrast (Figure 1.1C), are identical.
Nonetheless, the activity is higher for stimulus A than for stimulus B
(Figure 1.1D). Zhou et al. (2000) found that the difference between re-
sponses to preferred and non-preferred object sides emerged already
before the peak of the onset response (Figure 1.1D) and was only
weakly dependent on object size. Even when stimuli with mislead-
ing local cues were presented (e.g., at the inner side of a C-shaped
stimulus) the neurons responded according to their preference with
respect to object side.

Several mechanisms have been suggested to explain the BO effect
(Kikuchi and Akashi, 2001; Nishimura and Sakai, 2004; Li, 2005), all
focussed on area V2. However, BO neurons have been found even
in primary visual cortex. Since BO neurons were mostly found in ar-
eas V2 and V4 (> 50%) (Zhou et al., 2000) and only few in V1 (18%),
above models focussed on V2. BO properties in V1 were assumed
to receive fast feedback connections from V2 (Girard et al., 2001).
Models by Li (2005), Kikuchi and Akashi (2001) and Nishimura and
Sakai (2004) assumed that BO properties arise by feed-forward con-
nections to, and lateral connections in, V2. Li (2005) discussed that
feedback of attention from higher areas could influence lateral pro-
cesses coding BO. Li also suggested that this could be achieved by
modulation of neurons encoding an object’s contour. Thus, switches
in perception, as in the example of Rubin’s vase (Rubin, 1921), could
be explained by feedback only to the contour of one of two objects
sharing a contour. There have been two approaches explaining BO
by intra-areal connectivity: (1) cascades of activation running along
the object’s contour (Kikuchi and Akashi, 2001; Li, 2005) and (2) long-
range connections between neurons encoding opposite contours of
the object (Nishimura and Sakai, 2004). Our model differs from those
approaches in that we explain BO by feedback from higher areas of
the dorsal visual pathway.

1.1.3 Feedback Models

Besides many feed-forward models of the visual system mainly deal-
ing with object recognition (e.g., Riesenhuber and Poggio, 1999),
there are a number of models, suggesting recurrent feedback net-
works for improving figure-ground segregation. One locally lim-
ited model suggested feedback from inhibitory interneurons to re-
duce mainly uncorrelated noise, since neurons encoding an object
facilitate each other by lateral connections (Eckhorn et al., 1992). A
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A continuity B convexity closed
contour

C

Figure 1.2: Examples of Gestalt laws. Gestalt laws describe
properties common to objects occurring in natural stimuli.
They aid the grouping of stimuli to objects and allow the de-
tection of the presence of objects. Gestalt laws are implicitly
encoded in the structure of the visual system.

frequently implemented feedback mechanism uses integration over
greater lateral distances due to the larger classical receptive fields
(cRFII) in higher visual areas and feedback from these areas to aid
figure-ground segregation in lower areas (Gove et al., 1995; Weitzel
et al., 1997; Neumann and Sepp, 1999; Bayerl and Neumann, 2004).

1.1.4 Gestalt Rules

Object perception adheres to certain empirical rules which have been
formalised in Gestalt theory (Wertheimer, 1923). Gestalt laws (Figure
1.2) describe which local visual features support perceptual group-
ing. We (as others, e.g., Wörgötter et al., 2004) assume that Gestalt
properties are manifest in the wiring and therefore we included three
Gestalt laws on the network level in order to aid object coding.

To investigate the possible mechanisms underlying border-
ownership properties, we have developed a neural network model
of the primate visual system. In this model we show how early area
neurons can exhibit different border-ownership properties despite
identical cRFs. For that purpose we modelled basic properties of
the dorsal and parts of the ventral stream of the visual system nec-
essary for coding object presence. Feedback from the highest area
of the dorsal pathway provides lower area neurons with informa-
tion that enables them to encode BO properties and thus, enhance
figure-ground segregation.

IIThe classical receptive field (cRF) of a neuron is the area of visual space in which
a stimulus presentation leads to a response of this neuron.

8



1.2 Chapter Overview

1.2 Chapter Overview

Here we give a brief overview over the content of each chapter.
Chapter 2: The model neuron used throughout our networks is Model Neuron and

Basic Circuitrydescribed. Characteristic modes of operation are demonstrated for
a single neuron and an excitatory-inhibitory neuron pair. Saturation
properties and dependence on decay time constant are shown for the
linking synapse. Effects of divisive inhibition are discussed.

Chapter 3: The architecture of our model is introduced: The net- Model Architecture
work areas, cRF properties and inter- and intra-areal connections.
The network parameters are physiologically motivated. Further, the
stimulus input and its filtering is described.

Chapter 4: We describe the behaviour of the network responding Results of the Main
Border-Ownership
Model

to the presentation of a range of stimuli in order to demonstrate ob-
ject presence detection (in Area-3) and the effect of BO-feedback (in
Area-1b). Further, the object detection performance of the model in
scenes with noisy input is analysed.
Chapter 5: Lateral conduction delays are added to the previous
border-ownership model. This allows better comparison with other
models. The model with delays predicts later BO property differenti-
ation in concave than in convex parts of a stimulus object’s contour.

Chapter 6: We investigate the effect of adding feedback connec- Closed
Feedback-Looptions from Area-3 to Area-1a on the model’s performance. We show

that with this closed loop, figure-ground segregation in Area-1a is
improved.

Chapter 7: The connection architecture of our model is supported Learning Feedback
by showing that feedback connections can be learned with a biolog-
ically plausible learning rule. We used a Hebbian learning rule. In
a simple network we show the main principles necessary for learn-
ing feedback modulation. Finally, we demonstrate, that our network
model learns connections which are similar to the hand wired con-
nections which we used in previous chapters.

Chapter 8: Our model reproduces basic properties of object- Discussion
presence coding in the dorsal visual pathway. We demonstrate how
feedback from a higher level visual area can specifically facilitate
activity of neurons at lower stages of the processing hierarchy.
This modulation can indicate border-ownership and improve figure-
ground segregation.

We compare the properties of our model with electrophysiolog-
ical results of Zhou et al. (2000). We show how our results relate to
other physiological and psychophysical findings and discuss, what
our model predicts and which cortical areas could correspond to
the modules of our model. Further, we compare our model with

9



1 Introduction

other models on BO and discuss implications of BO coding to figure-
ground segregation.

Chapter 9: We recapitulate key results of our model and discussConclusions
future perspectives.

10



Chapter 2

Methods

Outline

The model neuron used throughout our networks is described. Char-
acteristic modes of operation are demonstrated for a single neu-
ron and an excitatory-inhibitory neuron pair. Saturation properties
and dependence on decay time constant are shown for the linking
synapse. Effects of divisive inhibition are discussed.

2.1 Conceptual Modelling of Functional
Mechanisms

The goal of our network is to model basic functional mechanisms of
the visual cortex. To achieve this goal drastic abstractions have to be
taken from what is known about the brains anatomy and physiology.
This is due to two main reasons:

1. A model has to abstract from what is describes, because a one-
to-one copy of the entity modelled would not yield any new
insight that is not available from the entity itself. Since many
basic mechanisms of the functional organisation of visual cor-
tex are still unknown, models suggesting basic mechanisms are
needed to further understanding.

2. In order to model several thousands of neurons with numeric
simulations, the neuron building blocks have to be simple
enough so that the model can be computed by the available
computing resources.

11



2 Methods

Thus, our aim is not to develop a comprehensive model of visual
cortex but rather try to demonstrate basic functional mechanisms in
an abstracted model.

2.2 Model Neuron Definition

The basic building block of our model is a modified version of the
Marburg Model Neuron (Eckhorn et al., 1990). We changed the neu-
ron type from a spike encoder to a graded response neuron with a
threshold. Graded response models assume that the activity of a neu-
ron can be expressed by its firing rate, which we measure in spikes per
second.

The model neuron receives excitatory (feeding) F (t), inhibitory
I(t) and modulatory (linking) L(t) input. In each discrete time step,
new input is added to the input value of this previous time step,
which, before, is exponentially decreased. The excitatory input Fi(t)
for neuron i computes to:

Fi(t) =

(
∑

i,j

wi,jOj(t − 1)

)
+ Fi(t − 1)e−1/τf (2.1)

with the output Oj from Neuron j in the previous timestep, wi,j the
coupling strength between neurons j and i, and τf the time constant
for the decay of activity over time. The computation for the decay
of subtractive inhibitory input with two time constants (n=1,2) and
of divisive (sometimes referred to as: shunting) inhibitory input with
one time constant (n=3) is analogous:

In,i(t) =

(
∑

i,j

wi,jOj(t − 1)

)
+ In,i(t − 1)e−1/τi,n (2.2)

The modulatory input is additionally bounded above by a saturation
function:

Li(t) =

(
∑

i,j

wi,jOj(t − 1)

)
(
Lmax − Li(t − 1)e1/τl

)

+ Li(t − 1)e−1/τl (2.3)

with the maximum linking value Lmax = 3. Thus Li is bounded be-
low and above:

12



2.3 Model Neuron Dynamics

Li(t) ∈ [0,Lmax] (2.4)

The membrane potential is computed from the above as follows:

Mi(t) =
Fi(t)(1 + Li(t)) − I1,i(t) − αI2,i(t)

I3,i(t)
+ σn(t) (2.5)

with α = 1
2

weighing the slow inhibitory decay half as much as the
fast decay. Further, Gaussian-distributed noise n(t) with mean value
0 and standard deviation 1 of the distributed is added. The linking
modulation is similar to the excitatory modulatory mechanism sug-
gested by Neumann and Sepp (1999). We use two types of transfer
functions in our models: A linear response function with slope m and
threshold θ:

Oi(t) =

{
mi(Mi(t) − θi) if Mi(t) ≥ θi

0 if Mi(t) < θi
(2.6)

Alternatively, the neuron’s output is computed with a saturation
function beyond threshold θ:

Oi(t) =

{
µmax(Mi(t)−θi)
K+(Mi(t)−θi)

if Mi(t) ≥ θi

0 if Mi(t) < θi

(2.7)

The saturation function used is a Monod type function with maxi-
mum µmax and the half-saturation constant K:

y =
µmaxx

K + x
(2.8)

2.3 Model Neuron Dynamics

The dynamics of the model neuron and small neuron assemblies are
shown in order to demonstrate the properties of the network’s basic
building block.

Extra-cellular recordings of neuronal activity yields very noisy Comparing Neuron
Model Activity to
Extra-Cellular
Recordings

data. Extracting the response to a given stimulus from the neuronal
activity is a challenging task. It is commonly solved by either record-
ing the activity of several neurons with one electrode and computing

13
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Figure 2.1: Excitatory neuron dynamics. A model neuron
stimulated by constant excitatory input (feeding) for 150 ms
with a stimulus onset at 10 ms.

the multi unit activity (MUAI) or local field potential (LFPII). Another
approach is to average several responses of one neuron to the same
stimulus rendering the neurons average activity over time.

Zhou et al. (2000), whose experimental results we wanted to re-
produce with our model, used the latter approach. They averaged
over multiple runs and in part over neurons showing the same prop-
erties. The activity of our graded response neurons, given in spikes
per second, is comparable to the average activities computed by Zhou
et al. (2000).

When an excitatory neuron is activated by a steady stimulus theExcitatory Neuron
neuron’s output increases until a certain rate of saturation. Once the
stimulus is switched off, the rate relaxates to 0 spikes/s. In Fig. 2.1
an excitatory neuron’s response to a 150 ms lasting stimulus (from
10ms to 160ms) is plotted. The neuron has a feeding time constant τf

of 15 ms, a threshold θ = 6 and a slope of m = 2. After a neuron has
been active it takes some time, the relative refractory period, until the
membrane potential relaxates to its resting state. During the relative
refractory period more input is required to drive the neuron than in
its resting state.

2.3.1 Excitatory-Neuron-Inhibitory-Neuron Unit

The brain codes redundantly, i.e. several neurons encode the same or
very similar information. Since our model is designed to show basic

Iraw signals bandpassed at 1-10kHz; full wave rectified; low passed at 140Hz
(Frien and Eckhorn, 2000)

IIlow-pass filtering at 1-140Hz (Frien and Eckhorn, 2000)
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2.3 Model Neuron Dynamics

mechanisms, we abstained from such redundancies. Unlike in the
brain, e.g., the cRFs of the neurons of our lowest layer show nearly
no overlap. Further, Area-1 neurons only encode 4 orientations.

In order to reproduce the dynamics found in the recordings by
Zhou et al. (2000) we model inhibitory effects by complementing
each excitatory neuron with an inhibitory neuron. This inhibitory
neuron receives excitatory input from the excitatory neuron and in
turn inhibits the same excitatory neuron. In visual cortex excitatory
and inhibitory neurons are found at a ratio of 4 to 1 (Braitenberg and
Schüz, 1991). In our model the ratio is 1 to 1. This ratio does not im-
ply that the mechanism suggested by us requires such a ratio but is
due to having no redundancies and requiring at least one excitatory
and one inhibitory neuron for every cRF modelled. Since we con-
ceptually model functional mechanisms, we are save to make these
abstractions.

Inhibitory input is processed in our model neuron according Inhibitory Neuron
Parametersto equation 2.2 with two input traces with different time constants,

one short (τ = 5 ms, ie. t1/2 ≈ 3.5 ms III) and one long (20 ms, ie.
t1/2 ≈ 14 ms), both in the range of GABAA receptors (see e.g. Rossi
and Hamann, 1998).

We have chosen to use graded response neurons since the mecha- Graded Response
Neurons vs. Spike
Coding Neurons

nisms suggested by us to explain border-ownership coding and other
phenomena do not require information about spike times. So a neu-
ron model rendering neuronal firing rate suffices. Hence the more
difficult to control spike coding neurons were not required.

In our model we use neurons with two different characteristics. Neurons with Higher
and Lower Tonic
Answer

One type shows a strong transient (bandpass) and a weaker tonic (low
pass) response (Type 1), whereas the other type expresses a tonic ac-
tivity close to the maximum of the transient answer response (Type
2). In Figure 2.2 the response of an excitatory neuron is plotted to a
stimulus with onset at 10 ms lasting for 100 ms. In one simulation
(solid line) the neuron was inhibited with a weight w of .08 (Type
2), whereas the inhibition strength in the other simulation was w=.3
(dotted, Type 1). We used a linear transfer function (Equation 2.6).

2.3.2 Divisive Inhibition

Another type of inhibition used in this model is divisive inhibition,
see I3,i in equation 2.5. We use divisive inhibition for local normali-
sation. This is achieved by lateral connections of Gaussian strength
with a limited range. In a scene with overall high activity neurons

IIItime constant τ relates to half life t1/2 by t1/2 = −ln( 1

2
) τ ≈ .693 τ
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Figure 2.2: Two modes of operation of an excitatory neu-
ron. The response rate of an excitatory neuron stimulated
from t =10 ms to t =110 ms varies depending on the strength
of inhibition winhi−exci it receives form the inhibitory neuron it
excites. The excitatory neuron had a slope of m=2, a thresh-
old of θ=6, a feeding time constant τf=15 and inhibitory time
constants τi,1=5 and τi,2=17. The inhibitory neuron had the
following properties: slope m=2, threshold θ=8, feeding time
constant τf=13. The weight from excitatory to inhibitory neu-
ron had a strength of w =.04.
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2.3 Model Neuron Dynamics
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Figure 2.3: Linking strength Li depends on presynaptic
output rate Oj, coupling strength wi,j and time constant
τl. Linking Li converges over time (limt→∞ Li(t)) for a given
time constant τl, showing a saturation function characteristic
dependent on input wi,jOj.

hamper each other significantly, resulting in a reduced overall activ-
ity. In a regime with low activity there is very little divisive inhibition
and thus the rate of the relatively salient stimuli is in the range of the
neurons of the former scenario.

2.3.3 Lateral Linking

The effect of linking (Equation 2.3) depends on the output rate Oj

of presynaptic neuron j and the coupling strength wi,j to the postsy-
naptic neuron i.

Due to the factor Lmax − Li(t − 1)e1/τl in equation 2.3 the link-
ing potential Li(t) is bounded above to Lmax. The dynamics of Li(t)
further depends on the postsynaptic decay defined by time constant
τl.

In Figure 2.3 converged (limt→∞) linking strength Li is plotted
for the scenario of presynaptic activation by just one neuron j for
some sample linking time constants τl. Due to the upper bound, the
membrane potential of a neuron can be increased by linking up to a
factor of 4 (1 + Lmax = 1 + 3, see Equation 2.5).
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2 Methods

Saturation of linking strength was introduced to limit the effect of
linking. This contributes to the stability of our network. When neu-
rons are recurrently connected by linking connections, e.g. two neu-
rons mutually linked to each other laterally, without upper bound
and depending on their activity and linking strength, they could in-
crease each other’s rate infinitely. By having an upper bound, this
is avoided. Physiologically an upper bound for linking strength is
plausible: Since the mechanisms in chemical synapses are limited
(number of vesicles, number of postsynaptic receptors, magnitude
of depolarisation) the strength of a synapse is limited (Markram and
Tsodyks, 1996; Chance et al., 1998).

The time constants τl=10 and τl=50 used in Figure 2.3 are the
ones also used throughout our models presented here. The time con-
stant values lie in the range measured by Jensen et al. (1996) for
NMDA (N-methyl-D-aspartate) channels. Jensen et al. (1996) found
two types of channels both having multiplicative effects, one with
time constants in the rage of 15 to 50 ms and one of around approxi-
mately 150 ms.

2.4 Feedback Effect Quantification

Figure 4.8 shows results of simulations with and without feedback.
With identical stimuli (Figure 4.8.A) for the same neuron (Figure
4.8.B) the difference in activity (Figure 4.8.C) is due to the feedback.

With the normalised accumulated feedback effect Efb we quantify the
difference in activity between simulations with and without feed-
back to Area-1b:

Efb(t) =

∫ τ1+t

τ1
Af (τ) − An(τ)dτ

t
∫ τ1+t

τ1
An(τ)dτ

(2.9)

with time of response onset τ1, window of integration ∆τ = t,
activity with feedback Af and without feedback An. The effect is nor-
malised to the activity without feedback.

The feedback effect Efb(t) is plotted in 4.8.D. Figures 4.8.E/F
show the average activation of a layer of BO neurons with a preferred
contour orientation of 90◦ and BO preference to the left.
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Chapter 3

Model Architecture

Outline

The architecture of our model is introduced: The network areas, cRF
properties and inter- and intra-areal connections. The network pa-
rameters are physiologically motivated. Further, the stimulus input
and its filtering is described.

3.1 Model Architecture

Our model consists of 4 topologically organised areas (Figure 3.1):

• Area 1a: Orientation detection

• Area 2: Curvature detection

• Area 3: Convex object detection

• Area 1b: Orientation detection and border-ownership coding

Via the feed-forward path (Area-1a ⇒ Area-2 ⇒ Area-3) Area-3
codes object presence and position. Feedback from Area-3 to Area-1b
allows border-ownership coding in Area-1b.

In the entire network we use three basic principles for connecting
neurons:

• forward convergence (orientation ⇒ curvature ⇒ convex ob-
ject)

• lateral inhibition between neurons encoding contradicting
stimuli (e.g. different orientation at the same position)
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3 Model Architecture

Neuron excitatory inhibitory
transfer function slope m 2 (A1,A3) 2
saturation maximum µmax 30 (A2)
half-saturation constant K 3 (A2)
threshold θ/ spikes

s 6 (A1,A2) 47 (A3) 10 (A1,A3) 20 (A2)
τe/ms (excitatory) 5 (A1) 30 (A2,A3) 13 (A1) 7 (A2,A3)
τl/ms (linking/facilitatory) 50 10 (A1) 50 (A2,A3)
τ1/ms (subtractive inhibitory short) 5 -
τ2/ms (subtractive inhibitory long) 17 -
τ3/ms (divisive inhibition) 100 -
σ 1.5 (A1) .5 (A2,A3) .5

Table 3.1: Model parameters. The slopes, thresholds and
time constants of neurons in all areas (A1, A2, A3) are listed.

• lateral support between neurons coding correlated stimuli at
different retinal positions (implemented with linking connec-
tions)

The parameters used in the model can be found in Table 3.1.

3.2 Stimulus Input

Stimuli have a size of 90x90 pixels and are presented for 100 ms. Ob-
jects are composed of lines, representing their contours. The stimuli
are filtered by 5x5-sized filters with Gabor-shaped luminance sensi-
tivity profiles of 4 different orientations: 0◦, 45◦, 90◦ and 135◦ (Figure
3.2). After filtering, background brightness is added to the stimulus
in order to elicit maintained activity in the networkI. Further, Gaus-
sian white noise (GWN) σ is added to the membrane potential of
every neuron in the network. Together, background brightness and
GWN σ elicit an average activity of about 3 spikes per second. Uncor-
related spatiotemporal noise is introduced to the network by adding
noise to the neurons’ membrane potential (Appendix: Equation 2.5).
The result is sampled, yielding a 30x30 pixel input to the network.

3.3 Area-1: Orientation Detection

Area-1 codes the local orientation of luminance contours (Figure 3.1:
Area-1a/b). It consists of neurons with cRF properties corresponding

IBackground brightness was set to 40% of the objects brightness in all experi-
ments unless otherwise noted.
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3.3 Area-1: Orientation Detection

cRFs of BO-neurons

active neuron

inactive neuron

excitatory connection

modulatory connection

Area 3

Area 2

object presence,
size, and location

curvature

Area 1a
simple cells

BO-simple cells

Area 1b

visual Input

feedback

short latency

long latency

Figure 3.1: Network architecture with antagonistic border-
ownership (BO) neurons in area 1b. Through feed-forward
convergence, cRF size increases from lower to higher areas
in the hierarchy (Area-1a ⇒ Area-2 ⇒ Area-3). Area-3 pro-
vides modulatory feedback to Area-1b. Neurons activated by
the exemplary disc stimulus are highlighted in black.
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3 Model Architecture

1.0-0.5 1.0-0.51.0-0.55 1.0-0.55

90°45°0° 135°

Figure 3.2: Input filters. The orientation selective simple cell
properties of the lowest layer are modelled by filtering the in-
put stimuli. As filters we used these 5x5-sized Gabor-shaped
luminance sensitivity profiles of 4 different orientations.

to orientation-selective simple cells (Hubel and Wiesel, 1962) encod-
ing a fixed orientation preferences (0◦, 45◦, 90◦ or 135◦). Area-1 con-
sists of two subareas, Area-1a and 1b, which are identical, except
that in Area-1b there are two neurons with identical cRFs for every
1a-neuron. These pairs of Area-1b neurons receive individual feed-
back from the highest area of the hierarchy (Area-3). In addition, they
inhibit each other (Figure 3.3.D).

Area-1 covers the simulated visual field of 30x30 neurons with
non-overlapping cRFs. Area-1 is structured in layers. Neurons en-
coding the same orientation preference are in one layer, with the ex-
ception that BO neurons in Area-1b encoding the same orientation
but opposing BO preferences are in separate layers. Every Area-1
layer consists of 30x30 pairs of 1 excitatory and 1 inhibitory neuron.
Also in the remaining network every excitatory neuron is accompa-
nied by an inhibitory neuron.

Lateral connections in Area-1 fulfill several functions: Local nor-Lateral Connections
malisation, sharpening of contrasts and implementation of Gestalt
properties. In Figure 3.3 all lateral connections (except divisive inhi-
bition) of an example Area-1a resp. Area-1b neuron (on Figure 3.3
with white background) are shown. In the basic model no delays are
implemented. (For simulations with delays see Chapter 5).

We included surround inhibition in order to enhance luminanceDivisive Inhibition
contrast locally (Knierim and van Essen, 1992). This undirected in-
hibition of divisive inhibition type (see Chapter 2, Equation 2.5) is
distributed according to a Gaussian profile with a half-width of 4
neurons distance, reaching as far as 6 neurons. Divisive inhibition
leads to local normalisation.

Hansen and Neumann (2004) discuss shunting inhibition as neu-
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3.3 Area-1: Orientation Detection

ral correlate of divisive inhibition. Though there has been some cri-
tique (Holt and Koch, 1997) that shunting transmitted by GABAA

and GABAB has subtractive effects on the firing rate rather than di-
visive, Hansen and Neumann (2004) point out evidence for shunt-
ing nonetheless being a candidate for explaining divisive inhibition:
Mitchell and Silver (2003) and Prescott and Koninck (2003) showed
that for large synaptic input with high variance and dendritic satu-
ration, shunting can have divisive effects. There are several mecha-
nisms explaining shunting on a cellular level. One type of shunting is
suggested to be transmitted by GABAB (Molyneaux and Hasselmo,
2002), which is relatively slow (Molyneaux and Hasselmo (2002):
ca.100-200ms). We chose our divisive inhibition decay time constant
to be 100ms. Due to the long decay, divisive inhibition will mainly
take effect during the tonic response. For the network effects of our
divisive inhibition it is not necessary to use slow inhibition, though.

Both types of surround inhibition, parallel subtractive inhibition
and radial divisive inhibition, will take little effect during the tran-
sient and more effect during the tonic response. This is mainly due
to inhibition taking effect via an inhibitory interneuron. By the time
this is activated (threshold) and an excitatory neuron receives feed-
back from it, the excitatory neuron’s transient answer is finished.

Neurons with collinearly and curvilinearly arranged cRFs facili- Lateral Modulation
tate each other (Figure 3.3.A/C). BO neurons (Area-1b) only link to
BO neurons with the same BO preference. The coupling strength has
a Gaussian profile (Figure 3.3.E). This lateral connectivity profile is
a possible network-level implementation of the Gestalt law of conti-
nuity (Figure 1.2.A) and is supported by physiological findings (e.g.,
Ts’o et al., 1986). The linking decay time constant is 50ms, accord-
ing to fast NMDA channel time constants found in experiments (for
details see Chapter 2.3.3).

An effect further supporting the Gestalt property of continuity Parallel Orientation
Inhibitionis the inhibition of neurons with iso-orientation tuning with cRFs in

parallel (parallel-cRF inhibition) (Figure 3.3.B). In Area-1a the range
of inhibition is r=1, in Area-1b it is r=3. The longer range of the lat-
ter was chosen to counterbalance the BO feedback: Since feedback
is divergent, not only neurons encoding a stimulus object’s contour
but also neurons in their surround receive feedback. Thus, also neu-
rons not encoding the object would show a higher firing rate if they
did not receive parallel cRF inhibition. Since inhibition from neurons
encoding the object’s contour is strongest, neurons encoding the sur-
round are the losers in a soft winner-take-all (WTA) competition.

The two types of surround inhibition, parallel subtractive
(parallel-cRF) inhibition and radial divisive inhibition, complement
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3.4 Area 2: Curvature Detectors

each other. Divisive inhibition inhibits the surround in general (inde-
pendent of orientation), whereas parallel inhibition inhibits a subset
of neurons in a soft winner-take-all (WTA) (Itti et al., 2000) manner,
thus increasing the contrast of contours. The network would also
work with only one of these mechanisms, but not as well.

Therefore, all lateral connections in Area-1 either strengthen
the contrast of continuous contours (figure) or inhibit the surround
(ground). These mechanisms support local figure-ground segrega-
tion.

3.4 Area 2: Curvature Detectors

Area-2 neurons are activated by curved contours (curvatures). Each
of four layers of curvature detectors encodes curvatures of a different
orientation (Figure 3.1: Area-2). CRF properties of neurons in Area-
2 result from converging connections from Area-1a neurons, each of

Figure 3.3 (facing page): Lateral connectivity in Area-1a
and Area-1b for an example neuron. A-D: For an exemplary
neuron for each of the two areas its lateral connections are
shown schematically. The exemplary neurons are marked with
white background. All neurons are symbolised by a rectan-
gle with a bar indicating their preferred orientation inside. Fur-
ther, for Area-1b the direction of BO preference is indicated
by a semicircle. Neurons with red background are facilitated
by linking, neurons with blue background are inhibited. A/C:
Neurons with linearly and curvilinearly arranged cRFs facili-
tate each other, thus the encoding of contours is supported.
In Area-1b (C) only neurons with the same or similar BO pref-
erence are linked. E: The lateral coupling profile with coupling
strengths is plotted for a neuron with horizontal orientation
preference located at position x=5 (horizontal) and y=2 (verti-
cal). The coupling strength is weighted with a Gaussian. The
linear coupling reaches to up to a distance of 5 neurons. The
curvilinear coupling facilitates two neurons in each quadrant.
B: Neurons with the same orientation tuning whose cRF is
parallel adjacent to the source neuron are inhibited. This inhi-
bition reaches to each side with a distance of 1 (Area-1a) resp.
3 (Area-1b). D: The neurons with identical cRF properties but
differing in BO preference (i.e. the BO neuron’s antagonist) is
also inhibited. Not shown: Lateral divisive inhibition.
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3 Model Architecture

which encode a segment of a curve.
In Area-2, for each of 4 curvatures, there is a layer of 7x7 excita-

tory/inhibitory neuron pairs.
Area-2 neurons are curvature detectors with complex cell proper-

ties: Area-2 neurons respond (1) specifically to curvatures and (2) to
a range of curvatures within their cRF.

Figure 3.4 illustrates the convergence from Area-1a to Area-2 for
example curvature detectors. Area-1a neurons of three different ori-
entation selectivities converge on each Area-2 neuron. In order for an
Area-2 neuron to be selective to a particular range of curvatures from
a confined region, several mechanisms are used:

Several neurons of each Area-1a neuron orientation preferenceMAX-Operation
converge on one Area-2 neuron. In order to avoid that Area-1a neu-
rons only of the same orientation preference suffice to bring an
Area-2 neuron above threshold, we implemented a MAX-operation
(Riesenhuber and Poggio, 1999). This is done by computing the high-
est firing rate of each group of neurons with the same orientation
preference converging on the same Area-2 neuron. For the example
shown in Figure 3.4 this means that the maximum firing rate of all
neurons marked yellow is computed and the same for the neurons
highlighted blue and red. After the MAX-operation the convergence
of the different orientations is computed with an AND-gate.

The activation converging on one Area-2 neuron from differentAND-Gate
orientation selective Area-1b neurons is multiplied (AND-operation).
Input from all three Area-1 orientation detector types converging on
an Area-2 neuron is a necessary condition for it to fire. If there is only
input from one or two orientation types, on the other hand, the Area-
2 neuron is not activated. In order to bring an Area-2 neuron above
threshold, activity significantly above spontaneous activity from all
converging orientations is necessary.

This mechanism allows the detection of curvatures of a wide
range of luminances: A high contrast line stimulus will activate neu-
rons of one orientation preference to a very high firing rate but will
not trigger any other types of orientation detectors. Thus, the prod-
uct of orientation detectors converging in Area-2 via an AND-gate
will be very low or nil. In contrast, a low contrast curve-stimulus will
activate three types of orientation detectors converging on the same
Area-2 neuron. Though all Area-1a neurons will only be active with
a low firing rate due to the low contrast of the stimulus, the prod-
uct of their firing rates will be big enough to activate the appropriate
Area-2 curvature detector.

Due to the multiplication in the AND-operation, the range ofSaturation Function in
Area-2 Neurons resulting values is increased compared to the usual adding of pre-
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3.4 Area 2: Curvature Detectors

Figure 3.4: Area-2 Curvature Detectors. Exemplary, the
convergence of Area-1a orientation selective neurons to Area-
2 curvature detector neurons is shown. The lower part of the
figure shows a clipping of Area-1a, each grid squared sym-
bolising a neuron. The yellow, blue and red bars indicate the
orientation selectivity of the neurons shaded in those resp.
colours. These neurons converge on the same Area-2 neuron
(highlighted grey). There is an overlap of the receptive fields of
curvature detectors, as shown by the example of the cRF and
neuron highlighted in green, but the overlap is not functional.
One stimulus curvature can only elicit activity in one curvature
detector.

27



3 Model Architecture

synaptic activity in a postsynaptic neuron. In order to transform the
product of the AND-operation in a reasonable firing rate of curvature
neurons, we implemented Area-2 neurons with a saturation function
(see Equation 2.7; in the rest of the network we used a transfer func-
tion which is linear above threshold). Thus, a certain input is neces-
sary to bring an Area-2 neuron above threshold. When input strength
has reached saturation, increase of input firing rate will not increase
the output firing rate of the neuron.

As an alternative to introducing a saturation function, the root
(here: 3

√) of the result of the AND-product could have been used.
That approach did not work as well since the setting of the Area-
2 neurons threshold became more difficult, making the mechanism
less robust.

Physiologically, an AND-gate can be motivated by non-linearNeural Correlates of
AND-Gate dendritic interactions (Koch et al., 1983). For example, different area

V1 neurons project to the same V3 neuron. Each V1 neuron (e.g. en-
coding a different orientation preference each) elicits a postsynaptic
potential on the V3 neuron’s dendritic tree via a synapse. Thus, a
V1 neuron of one orientation preference can trigger only a certain
maximal depolarisation in the postsynaptic V3 neuron. Only if sev-
eral V1 neurons (encoding different orientations) provide input, the
combined depolarisation will trigger an action potential. AND-gates
are also used by Grossberg (1994) for his model bipolar-cells, which
will only be active when receiving input at both sides.

Area-2 neurons are activated by a (limited) range of curvatureComplex Cell
Properties radii, thus showing complex cell properties. From Figure 3.4 it can be

inferred which types of curves and right angles elicit Area-2 activity.
In the Area-1a region, where the top left (second quadrant) curvature
detector receives its input from, a stimulus curve has to activate at
least one of each type of orientation detector in order to bring the
appropriate Area-2 neuron above threshold.

As indicated by the green rectangle in Figure 3.4, the cRFs of cur-
vature detectors overlap. The convergence onto Area-2 and overlap
in Area-1a were designed so that a stimulus curve will elicit the same
Area-2 activity (of different neurons) independent of their position in
the visual field.

There are three types of lateral connections in Area-2: (1) Cur-Lateral Connections
vature detectors, which correspond in their bending sense, facilitate
each other. (2) Curvature detectors, which complement each other
to a curvature change (S-curve), inhibit each other. (3) Curvature de-
tectors of the same type subtractively inhibit each other locally with
Gaussian distribution of coupling strength.
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3.5 Area-3: Convex Object Detection

3.5 Area-3: Convex Object Detection

Area-3 neurons are activated by convex contours. The cRF properties
of neurons in Area-3 result from the following feed-forward conver-
gence from Area-2: Curvature detectors of orientations and spatial
relations, appropriate to encode a convex contour converge on the
same Area-3 neuron. In our model, it is not necessary that the cRFs
of these curvature detectors are adjacent. The object’s contour can be
interrupted (occlusions, gaps) and the object will still be detected.
Even if only three curvature detectors are activated by the corners
of a rectangle (e.g. due to one of the corners being occluded), acti-
vation is still elicited in Area-3 by the remaining three detectors, but
at a lower firing rate. If only two curvature detectors are activated,
it is still possible that Area-3 activity is elicited, yet at an even lower
firing rate.

Area-3 consist of one layer of 21x21 excitatory/inhibitory neuron
pairs.

The activation strength of a neuron in Area-3 is interpreted as the Area-3 Encodes
Probability of
Presence of an Object

probability of the presence of an object in the stimulus at the loca-
tion coded by this neuron. Thus, a preference is encoded for contour
detectors complementing each other to what would be perceived as
a closed contour (according to Gestalt law of closed contour, Figure
1.2B). This property is supported by psychophysical experiments (El-
der and Zucker, 1993, 1994; Kovács and Julesz, 1993). Through the
convergence of curvature neurons with different spatial relations to
different Area-3 neurons, information about size and position of an
object in visual space is preserved and encoded in Area-3 (Figure
3.5.A).

Due to the low pass characteristic of the orientation filter and due
to the increase of cRF size with each layer in the forward path, stim-
ulus shifts by less than 6 pixels will activate the same Area-3 neuron.

In Area-3 neighbourhood property is defined by lateral connec- Lateral Connections in
Area-3tions. Neurons encoding objects that share parts of their contour in-

hibit each other. There are two classes of inhibitory connections: In-
hibition between neurons encoding objects (1) extending to the same
side from the shared contour and (2) extending to opposing sides.

When a stimulus object is presented, not only the Area-3 neuron Ghost Inhibition
encoding the object best is driven, but also neurons encoding similar
(in size and position) objects receive input by curvature detectors.
The objects encoded by the Area-3 neurons being co-activated, we
call ghost objects, since they are not actually contained in the stimu-
lus but neurons encoding them are nonetheless active. Since the co-
activation of neurons encoding ghost objects is unwanted, we intro-
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3.5 Area-3: Convex Object Detection

duced lateral subtractive inhibition, which we named ghost inhibition.
This form of inhibition is implemented between all Area-3 neurons
encoding neurons sharing parts of their contour.

Figure 3.5 shows neurons from Area-3, each neuron is indicated
by a visual field (Figure 3.5.B) with the cRF specific to the neuron
(Figure 3.5.A).

Let us go back to the initial example: When a stimulus object is
presented to the network, a high response firing rate is elicited in
the most fitting Area-3 neuron. Co-activated neurons show a lower
initial firing rate. Due to ghost inhibition the correct (regarding the
stimulus) Area-3 neuron exerts high inhibition on the co-activated
neurons due to its high firing rate. Thus, the firing rate of the co-
activated neurons is nearly completely inhibited. A significant acti-
vation of the ghost Area-3 neurons would lower the network’s per-
formance, since these neurons would project BO feedback back to
neurons not encoding the stimulus object.

In Figure 3.5.D all neuronsII inhibited by the neuron in the top
right of the grid and vice versa inhibiting this neuron are pointed
out by an arrow.

The second type of lateral subtractive inhibition in Area-3 is the Rubin Inhibition
inhibition occurring between all neurons that encode objects that
share parts of their contour but extend to opposing directions. One
example case of such a scenario is Rubin’s vase (Rubin, 1921), where
two objects (vase and face) are contained in a stimulus which share
a part of their contour. Hence, we named this type of inhibition Ru-
bin inhibition. Such two objects can be encoded in Area-3 at the same
time. This will result in feedback from these Area-3 neurons encod-

IIi.e., all neurons shown in this excerpt of the entire layer

Figure 3.5 (facing page): Area-3 Topology. Area-3 neurons
encode object position and size. A sample of 6x6 neurons
from Area-3 (lower right corner) with each neuron’s respec-
tive cRF is displayed. Upper graph: Rubin inhibition for the
neuron in the top right corner of the grid. Lower graph: Ghost
inhibition for the neuron in the top right corner of the grid. A:
The cRF location in the visual field of the neuron represented
here. B: The visual field of the neuron represented. C: Arrows
indicate all neurons that inhibit and are inhibited by the neuron
in the top right corner of the grid with Rubin inhibition. D: All
neurons that inhibit and are inhibited by the top right neuron
with ghost inhibition.
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ing the objects to antagonistic BO neurons encoding the shared con-
tour. If one of the two Area-3 neurons encoding the Rubin-type ob-
jects is activated with a much higher firing rate, then due to the soft
Rubin inhibition, the more activated neuron will prevail.

Figure 3.5.C indicates all neurons in the sample inhibiting and
vice versa inhibited by the neuron in the top right of the grid by
Rubin inhibition. With all but the lowest neuron in the first column
the top right neuron shares parts of its left contour.

3.6 Feedback

Feedback from Area-3 facilitates the activity of those Area-1b neu-
rons that encode the contour of the object detected in Area-3 via a
linking synapse (Section 2.3.3). Area-3 neurons encode the position
and size of an object. The spike density (i.e. firing rate) of an Area-3
neuron encodes the probability of presence of an object in a stimu-
lus at one location. Furthermore, the side of the contour to which the
object extends, can be inferred from the object’s position and size en-
coded in Area-3. This information is also encoded into the feedback
by selectively facilitating the appropriate Area-1b neurons.

In Area-1b there are two neurons which encode the same part
of an object’s contour, only differing in the feedback they receive.
Feedback from the neuron that encodes the probability of an object’s
presence is only sent to one of them. Thereby, the neuron receiving
feedback is given border-ownership property. It has a preferred direc-
tion for an object’s surface to extend to from the contour it encodes.

The antagonist is facilitated with feedback from Area-3 neurons
activated by stimulus objects, of which the surface extends to the op-
posite direction.

Antagonistic pairs of such BO-neurons mutually inhibit each
other subtractively (Figure 3.3D).

Due to the increase of cRF size from the lower to the higher areas,
an Area-3 neuron can be activated by a certain range of object sizes
and positions. Thus, feedback is projected not only onto neurons en-
coding one specific contour but to neurons encoding a range of con-
tours. This divergence does not pose a problem, since local inhibition
in Area-1b suppresses activity of neurons inappropriately receiving
feedback.

32



Chapter 4

Results of the Main
Border-Ownership Model

Outline

We describe the behaviour of the network responding to the presen-
tation of a range of stimuli in order to demonstrate object presence
detection (in Area-3) and the effect of BO-feedback (in Area-1b). Fur-
ther, the object detection performance of the model in scenes with
noisy input is analysed.

4.1 Overview Over Stimuli

The network was presented with the stimuli used by Zhou et al.
(2000) and others. With these stimuli we demonstrate the network
response regarding the following variations of stimulus objects:

• size

• form

• position (translation)

• number of objects

• correlation of objects

• completeness

Further, we investigate how the model handles noisy stimuli.
For that purpose we overlayed a stimulus containing an object with
noise.
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4 Results of the Main Border-Ownership Model

4.2 Response of the Network Areas to an
Example Stimulus

We give an overview over the network’s behaviour by describing its
response to an example stimulus. A rectangle stimulus (Figure 4.1.A)
is presented for 100ms with stimulus onset at t=100ms. The stimulus
onset delay was chosen in order to allow the system to relaxate into
a steady state after it is switched on. There is immediate input to the
network, since background brightness of 25% of the object’s bright-
ness is added to the stimulus (after convolution with the orientation
filter) throughout the entire simulation.

Area-1a neurons exhibit cRF properties corresponding toArea-1a
orientation-selective simple cells (Hubel and Wiesel, 1962) (Fig-
ure 4.1.B, filters: Figure 3.2). There are four layers, each encoding
a different orientation preference (0◦, 45◦, 90◦ and 135◦). Their av-
erage response to the example stimulus (Figure 4.1.A) is displayed
in Figure 4.1.C. Each square pixel in the 30x30 grid represents a
neuron. Each neuron’s average rate is colour-coded. The average
activity was computed for the time during stimulus presentation
(100-200ms) and normalised to the maximum activity of the four
layers (maximum=1). The development of firing rate over time is
plotted for several example neurons encoding the object’s contour
(indicated by arrows) in Figure 4.1.D. All these neurons show a high
transient and a lower sustained tonic response.

In the layers encoding horizontal and vertical orientation (Figure
4.1.C.a/c) the effect of lateral divisive inhibition can be seen. The ac-
tivity of neurons in the vicinity of the neurons encoding contours is
completely inhibited during stimulus presentation.

Excitatory feed-forward projections from Area-1a to Area-2 (forArea-2
details see Section 3.4) activate curvature detector neurons matching
the stimulus. In Figure 4.2.A the average activity evoked by the ex-
ample stimulus (Figure 4.2.B) for each of the four curvature layers is
depicted. The average was computed for the time of stimulus pre-
sentation and normalised to the maximum over all four layers. The
cRF property of each layer is indicated in the top left corner in Figure
4.2.A. Every corner of the stimulus object activates a different type
of curvature detector. Further, since the four corners of the rectangle
are at different positions, each corner activates a curvature detector
with a different cRF. In Figure 4.2.C the firing rate of all Area-2 neu-
rons significantly activated are plotted. Due to the saturation transfer
function of the Area-2 neurons, the optimally activated neurons all
reach saturation and thus exhibit very similar dynamics. Hence the
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stimulus presentation is displayed. In D the development of
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arrows) is plotted.
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Figure 4.2: Curvature detection: Area-2 activity elicited by
example stimulus. Average activity during stimulus presenta-
tion (100-200ms) evoked in the four curvature detector layers
(A) by a rectangle stimulus (B). C: The firing rate of all signif-
icantly active neurons. For assignment of neuron activities to
location in layers arrows and activity graphs are colour coded.

computed average in Figure 4.2.A is nearly the same for all neurons
significantly activated.

As described in Section 3.5 curvature detectors converge via exci-Area-3
tatory feed-forward connections to Area-3 neurons. With Area-3 neu-
rons having a very high threshold, accumulated input from several
curvature neurons is necessary to drive a neuron. In Figure 4.3.B the
average activity of the excitatory layer of Area-3 neurons is shown.
The sample stimulus (Figure 4.3.A) brings only one Area-3 neuron
above threshold. Its rate is plotted in Figure 4.3.C. Due to the high
tonic activity in Area-2 and the value of Area-3 neuron time con-
stants and inhibition strength, Area-3 shows a high sustained activity
for the time of stimulus presentation.

Area-1b differs from Area-1a in that it receives the identical inputArea-1b
delayed and that there are two detector layers for each orientation. In
these layers identical neurons inhibit each other (Figure 3.3.D). An-
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Figure 4.3: Area-3 activity elicited by example stimulus.
A: This rectangle stimulus was presented to the network. B:
One neuron in Area-3 is driven by the stimulus. C: The firing
rate of the only active Area-3 neuron plotted over time.

other difference is that Area-1b additionally receives feedback from
Area-3. The effect of feedback can be seen in Figure 4.4 for the ex-
ample rectangle stimulus. In Figure 4.4.B the average rate for all
BO-layers from response onset to end of stimulation (125-200ms) is
shown. The icons in the top left corner of each graph indicate the ori-
entation and BO preference (the black bar shows orientation prefer-
ence, the grey semi-circle preferred BO direction relative to the bar).
In Figure 4.4.B antagonistic layers are arranged in columns. The rate
is normalised to the maximum activity in each pair of antagonistic
layersI. In the third column, e.g., the upper layer has a BO preference
to the right, whereas the lower layer has a BO preference to the left.
Since these neurons encode parts of the right vertical contour of the
stimulus object, the neuron with the BO preference leftwards receives
BO-feedback input, thus has a higher rate and inhibits the other an-
tagonistic neuron. The effect of inhibition can be seen in Figure 4.4.A.
In Figure 4.4.A the rates of two neurons with identical cRFs, one with
BO preference rightwards (blue), the other with BO preference left-
wards (red) is plotted. For comparison of rates of neurons of the same
BO preference encoding opposing contours of a stimulus object, in
Figure 4.4.C the rate of two exemplary neurons is plotted. Due to
BO-feedback the rates of neurons start to differ already during the
transient answer of the response. The rate of the neuron encoding

IThis is done since the maximum rate in layers encoding orientation preference
45◦ and 135◦ is higher than in the other layers. This is due to divisive inhibition
having less effect if one neuron is more active than its entire surround.
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4 Results of the Main Border-Ownership Model

the left vertical contour (green) is low due to inhibition from its an-
tagonist in the layer encoding the opposite BO-direction.

After now having demonstrated the response of all areas of the
network to the example stimulus, we will direct our attention to the
key features of the network. For that purpose we made simulations
with stimuli that make these features most explicit.

4.3 Stimuli Eliciting Opposite BO
Preference in One Neuron

Figure 4.5 shows the activity of one model BO neuron (Area-1b) to
two different object stimuli. One stimulus extends leftwards from the
neuron’s cRF (Figure 4.5A), the other one rightwards from the cRF
(Figure 4.5B). The neuron shows a BO preference to the left (Figure
4.5D), i.e., it responds stronger to objects extending leftwards from
its contour.

4.4 Stimuli of Varying Position, Size and
Form

Area-3 neurons encode position and size (see Chapter 3.5). In FigureVariation of Position
and Size 4.6 we demonstrate that the same rectangle at a different position in

visual space (see Figure 4.6.A.a/b) activates a different Area-3 neu-
ron (Figure 4.6.B.a/b). Also, stimulus objects of different size (Figure
4.6.A.a/c) activate different Area-3 neurons (Figure 4.6.B.a/c). The
response onset and magnitude of firing rate in Area-3 to an appro-
priate stimulus is however independent of position and size (Figure
4.6.C).

Detection of object presence is widely invariant of stimulus ob-Variation of Form
ject form. A rectangle and a C-shaped form of the same size (Figure
4.7.A.a/b) are detected by the same Area-3 neuron (Figure 4.7.B.a/b)
whereas a smaller rectangle stimulus (Figure 4.7.A.c) sharing three
of its edges with the other two objects, activates a different Area-3
neuron (Figure 4.7.B.c). As in the previous example of varying posi-
tion and size, the response onset and magnitude of Area-3 activity is
very similar for all three stimuli (Figure 4.7.C).
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Figure 4.4: Area-1b: BO-layers response to an example
stimulus. B: Average activity of BO-layers during stimulus
presentation. Layers encoding antagonistic BO properties are
arranged in columns. The activity is normalised for each col-
umn of layers. A: Response of two antagonistic BO neurons
with identical cRF encoding parts of the contour of the stim-
ulus object. C: Response of two neurons with identical BO
property encoding opposite contours of the stimulus object.
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Figure 4.5: Border-ownership neuron activity. A,B: Two
simulations are done with different stimuli. C: The stimuli are
identical within the receptive field of the neuron plotted. D:
The response of an Area-1b border-ownership neuron to each
of the two stimuli. The neuron shows a higher response for
objects extending leftwards from the contour it encodes. The
simulations reproduce the experimental data (Figure 1.1).

4.5 Feedback Effect Quantification

Figure 4.8 shows results of simulations with and without feedback.
With identical stimuli (Figure 4.8.A) for the same neuron (Figure
4.8.B) the difference in activity (Figure 4.8.C) is due to the feedback.

With the normalised accumulated feedback effect Efb we quantify the
difference in activity between simulations with and without feed-
back to Area-1b:

Efb(t) =

∫ τ1+t

τ1
Af (τ) − An(τ)dτ

t
∫ τ1+t

τ1
An(τ)dτ

(4.1)

with time of response onset τ1, window of integration ∆τ = t,
activity with feedback Af and without feedback An. The effect is nor-
malised to the activity without feedback.

The feedback effect Efb(t) is plotted in 4.8.D. Figures 4.8.E/F
show the average activation of a layer of BO neurons with a preferred
contour orientation of 90◦ and BO preference to the left.

4.6 Multiple-Object Stimulus

Our network is capable of detecting the presence of several objects
at the same time. In case of ambiguities, such as when two objects
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4 Results of the Main Border-Ownership Model

have a contour in common, neurons in Area-3 encoding these objects
inhibit each other. Here we present the network’s response to several
stimuli with different constellations of multiple objects.

4.6.1 Separate Stimulus Objects

We demonstrate the network’s ability to detect several objects at a
time with a stimulus containing two rectangles (Figure 4.9.A). The
stimulus drives two Area-3 neurons, each encoding size and posi-
tion of one of the stimulus objects (Figure 4.9.D). Feedback from
these neurons activates neurons in the appropriate BO layers. Fig-
ure 4.9.B/C/E/F show the average activity (110-220ms) of four BO
layers. The neurons encoding any stimulus object’s contour having a
BO preference towards the inside of the object show a far greater rate
than the neurons with the same cRFs encoding the opposite BO pref-
erence. Therefore, BO feedback can also introduce correct BO prop-
erties in Area-1b for stimuli containing more than one object.

4.6.2 Stimulus Objects Sharing an Edge

We investigated stimulus scenarios where two stimulus objects share
an edge. This class of stimuli is interesting, since unlike with separate
objects it is not trivial which BO property will be assigned to the
shared edge. We presented three different stimuli of this class to the
network:

• two objects sharing an entire edge (not shifted), extending to
opposing sides

• two objects sharing parts of an edge (shifted), extending to op-
posing sides

• two objects sharing parts of an edge, extending to the same
side, one object located within the other

We presented the network with two rectangular stimulus objectsStimulus Objects
Sharing an Edge
Without Shift

sharing an entire edge (Figure 4.10.A). In Area-3 initially three neu-
rons are activated by the stimulus (Figure 4.10.D). The neurons that
are only briefly active are marked with circles in Figure 4.10.D, since
their average activity is far lower than the one of the prevailing neu-
ron and thus can be hardly made out in the graph. The firing rate of
all neurons active in Area-3 is plotted in Figure 4.10.H. Area-3 de-
tects initially three objects: each rectangle by itself and the rectangles
combined. The neuron encoding the latter prevails against the other
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Figure 4.9: Network response to stimulus containing two
objects. A: Stimulus containing two rectangles presented for
100ms starting at t=100ms. D: Average Area-3 activity evoked
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layers (110-220ms). BO preference is indicated in the top left
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4 Results of the Main Border-Ownership Model

two. Hence, BO feedback is mainly provided to the contour of the
combined object, i.e. the shared contour does not receive any feed-
back but in the first 25ms of response onset. Since the feedback from
the neurons encoding the two single objects projects to antagonistic
neurons encoding the shared edge, the edge is not attributed to one
or the other object during that time. As can be seen from the irregular
activation of the shared edge (Figure 4.10.E/F), in some cases a BO
neuron with the preference rightwards is slightly more active than
its antagonist neuron or vice versa. Once, the Area-3 neurons encod-
ing the single stimulus objects are completely inhibited (t > 135ms),
there is no BO feedback at all to the shared edge. Figure 4.10.G shows
the activity of sample neurons of the same BO property II encoding
three different edges. The response is very similar to the response of a
neuron encoding a contour receiving no feedback (see Figure 4.8.C).

The mechanism that leads to a winner-take-all of the Area-3 object
detector neuron encoding the combined object is the following: There
is inhibition between Area-3 neurons encoding shared contours: In-
hibition between neurons encoding objects extending to opposite
sides is less (.002, Rubin inhibition) than inhibition between neurons
encoding objects extending to the same side (.005, ghost inhibition) for
reasons given in Chapter 3.5. Thus, the neurons encoding the single
objects inhibit each other reciprocally with weak inhibition, whereas
the neuron encoding the combined object and the other two neurons
inhibit each other reciprocally stronger. This would imply, that the
neuron encoding the combined object is inhibited most and thus the

IIvertical orientation preference, BO preference rightwards

Figure 4.10 (facing page): Two objects sharing an entire
edge. A: Stimulus with two objects sharing an entire edge.
D: Area-3 average activity during the simulation (0-250ms).
Sparsely active neurons are indicated by circles. H: Single
unit activity of all active Area-3 neurons. Same color code
as arrows in D. Neurons encoding single objects are only
briefly active, whereas the neuron encoding the combined ob-
ject shows high sustained activity. B/C/E/F: Average activity of
selected BO layers between response onset and end of stim-
ulation (110-220ms). The outer contours show BO properties,
whereas the shared contour (E/F) shows no significant BO
preference. G: Exemplary single cell activity of neurons en-
coding different edges. Which neurons’ activations are plotted
is indicated by the arrows.
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4 Results of the Main Border-Ownership Model

other two will prevail. Yet, another aspect has to be taken into ac-
count for the explanation. Due to the shared contour, the curvature
detectors driven by the corners verging on the shared contour are not
activated as much, since the T-junction does not drive the curvature
detectors as well as a single edge. Thus, the neurons encoding the
single objects are not activated as much as the neuron encoding the
combined object. For that reason, the combined object prevails.

When a stimulus with two objects that share an edge but areStimuli Objects
Sharing an Edge With
Shift

shifted against each other (Figure 4.11.A) is presented, the presence
of two objects is detected in Area-3 (Figure 4.11.D). BO feedback to
Area-1b modulates the correct BO neurons encoding the outer edges
of each of the two objects (see e.g. Figure 4.11.B/C). The shared edge
shows, as in the previous example, no significant BO property (Fig-
ure 4.11.E/F). This is due to antagonistic BO neurons encoding the
shared contour both receive feedback of the same magnitude. Thus,
no BO neuron exhibits such a high rate that it could inhibit its antag-
onist drastically.

A stimulus with two objects extending to the same side from aStimuli Objects
Sharing a Contour
Extending to the Same
Side

shared edge (Figure 4.12.A) evokes activity in two Area-3 neurons
(Figure 4.12.D). To be precise, the stimulus contains small gaps in
the shared edge where the smaller object branches off of the shared
contour. Thus, the upper and lower right corners of the smaller rect-
angle activate curvature detectors. As described above (Figure 4.10),
T-junctions activate curvature detectors far less. The real world stim-
ulus equivalent to our stimulus would be that the smaller rectangle
overlaps the bigger one on the shared edge and that the rectangles
are e.g. of different luminance. Then, the upper and lower right cor-
ners of the smaller rectangle are visible as curvatures.

Figure 4.12.H shows the activity of the two active Area-3 neu-
rons over time. The smaller rectangle elicits a slightly lower response
in Area-3, especially in the late tonic response. These two neurons
provide feedback to Area-1b (Figure 4.12.B/C/E/F). As can be seen,
the rate of the contour detecting neurons encoding the “correct” (re-
garding the stimulus) BO direction is greater for the bigger object
(compare blue to red neuron rate in Figure 4.12.G). The activity on
one edge varies considerably (compare orange and blue in Figure
4.12.G). The rate of some neurons encoding the “wrong” BO direc-
tion is in some cases very similar to the rate of a neuron encoding the
“correct” BO direction (compare red and yellow in Figure 4.12.G).
Nonetheless, the ratio between antagonistic BO neurons is still cor-
rect (compare red and yellow in Figure 4.12.F and their antagonists
in Figure 4.12.E.) Thus, not absolute rate, but relative rate compared
to the antagonistic BO neuron encodes BO property. This allows the
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Figure 4.11: Two objects shifted against each other shar-
ing parts of an edge. A: The stimulus. D: Area-3 activity
evoked by stimulus. Average activity during stimulus presenta-
tion normalised to 1. B/C/E/F: Area-1b layers being modulated
by BO feedback. The average activity is plotted, normalised to
the maximum of B and C resp. the maximum of E and F. G:
Sample single unit activity of neurons of the same BO prop-
erty with cRFs at different edges of stimulus objects.
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differences in unambiguity of object detection to be encoded.

4.6.3 Overlapping Stimulus Objects

We presented a stimulus of two overlapping rectangles to the net-
work (Figure 4.13.A). With the stimulus we incidently demonstrate
that the curvature detectors respond also to rounded corners. The
stimulus evokes activity in four Area-3 neurons (average activity for
all layer neurons: Figure 4.13.D; rate over time of active neurons: Fig-
ure 4.13.I). Two neurons are only briefly active (red, green), hence their
average activity is very low (they are marked by circles in Figure
4.13.D). Figure 4.13.G shows where the Area-3 neurons project to in
Area-1b. Thus, the Area-3 neuron marked green was activated by two
corners (the lower left and right corners of the overlapped rectangle)
and a T-junction (the lower left intersection of the rectangles). Since
the T-junction activates the appropriate curvature detector less than a
corner, the green neuron exhibits a lower rate than the Area-3 neuron
encoding the overlapped object. Because these two neurons encode
objects sharing parts of their contour, the neurons inhibit each other.
The neuron encoding the overlapped object prevails since its rate is
higher (Figure 4.13.I). The same as for the green neuron holds true for
the neuron circled red in Figure 4.13.D. Figure 4.13.H shows the fir-
ing rate for a few example neurons (indicated by arrows originating
at Figure 4.13.E/F). The BO neuron encoding the bottom right corner
of the overlapped object receives for some time feedback from three
Area-3 neurons, whereas the bottom left corner of the overlapped
object receives slightly less feedback. This manifests in the slightly
lower BO neuron rate in the latter region (see Figure 4.13.H blue vs.
red firing rate graphs.)

Figure 4.12 (facing page): Network response to two ob-
jects sharing an edge, extending to the same side. A:
Stimulus containing two objects. D: Evoked Area-3 average
activity (100-200ms). H: Activity of all (2) active Area-3 neu-
rons. B/C/E/F: Area-1b average activity (110-220ms). Neu-
rons encoding contours show BO preferences. G: Activity
trace of Area-1b sample neurons, showing activity on edges
encoding the BO preference suiting the stimulus object (or-
ange, blue, red) or encoding the opposite BO reference (green,
yellow). Neurons encoding the smaller object receive less
feedback and show a lower rate. But the difference of activ-
ity between antagonistic BO neurons is still unambiguous.
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4 Results of the Main Border-Ownership Model

Altogether, all contours are assigned with the “correct” BO pref-
erence regarding the stimulus objects. Further, the neurons encoding
the contour of the overlapping object and the “correct” BO preference
show a uniformly high rate. Neurons encoding the contour of the
overlapped object and the “correct” BO preference show a slightly
more irregular and partially lower firing rate.

4.7 Incomplete Objects and Non-Objects

Area-3 detects complete as well as incomplete objects, as we have
shown in the previous example (Figure 4.13), where an incomplete
overlapped rectangle elicits a response in Area-3. We investigate the
response stimulus objects of varying completeness elicit in Area-3.
Further, we document how that effects the emergence of BO proper-
ties in Area-1b.

Figure 4.14.B shows that Stimuli a, b and c (Figure 4.14.A) elicit
Area-3 responses which increase with the degree of stimulus object
completeness. Stimuli d and e do not cause any activity in Area-3.

In Figure 4.14.C the average activity (110-220ms) of the layer with

Figure 4.13 (facing page): Overlapping stimulus objects.
A: Stimulus with rounded corners. D: Average Area-3 object
detector neuron activity. Two neurons with very low average
rate are marked by circles. G: Regions in Area-1b where ac-
tive Area-3 neurons project feedback to (color coding as in D).
I: Activity of all active Area-3 neurons over time (color coding
as in D and G). B/C/E/F: Average Area-1b activity for example
BO layers. Edges encoded by neurons having the “correct” BO
property show far greater average activation than their antag-
onistic neurons encoding the opposite BO property. Some BO
neurons encoding the edges of the overlapped object show
lower activity than the neurons encoding the contour of the
overlapping object. H: Sample single Area-1b neuronal activ-
ity for neurons encoding an edge of the overlapping object with
the right BO property (green), encoding an edge with right BO
property of the overlapped object (orange and violet) and en-
coding an edge of the overlapped object with the “wrong” BO
property (red and blue). This shows that BO encoding works
well in most parts, but that for some parts of the overlapped
object the difference between “correct” and “wrong” BO neu-
ron regarding the stimulus is very low (violet and blue).
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4.7 Incomplete Objects and Non-Objects

Area-1b layers: average response
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4 Results of the Main Border-Ownership Model

horizontal orientation and upward BO preference in Area-1b is plot-
ted for all five stimuli. Figure 4.14.F shows the activity in layers of the
opposite BO preference. In Figures 4.14.D/E for every stimulus the
activities of two antagonistic BO neurons encoding parts of the stim-
ulus object’s contour are plotted. Figure 4.14.D shows the activity
of neurons encoding the “correct” BO property regarding the stim-
ulus (except the neurons encoding Stimuli d and e, since there is no
correct/incorrect BO direction, since the stimuli do not contain an
object). The non-object stimulus e shows the steepest transient re-
sponse. The neuron encoding the complete stimulus object (Stimu-
lus a), shows the highest tonic answer, though the tonic responses
only differ slightly. In contrast, the responses of the neurons encod-
ing the “wrong” BO property regarding the stimulus objects (Fig-
ure 4.14.E) show very different rates. The neurons encoding the non-
objects (Stimulus d and e) and the most incomplete object (Stiumu-
lus c) show a response rate similar to their antagonists’, whereas the
tonic response of the other neurons decrease with increase of com-
pleteness of the stimulus object.

4.8 BO in Neurons Not Receiving Direct
Feedback

The presentation of a C-shaped stimulus (Figure 4.15.A) demon-
strates a further important property of our model: BO coding in con-
cavities of stimuli.

As can be seen in Figure 4.15.B-E the BO neurons encoding the
outer convex part of the C-shape show strong BO preference (e.g.
the top edge of the C-shape has a high BO preference downward, see

Figure 4.14 (facing page): Complete and incomplete stim-
ulus objects. A: Stimulus objects of varying completeness
and non-objects. B: Stimuli A.a/b/c each elicit an Area-3
response plotted here. C/F: Average Area-1b activity (110-
220ms) for horizontal orientation preference and BO prefer-
ence upward (C) resp. downward (F) for all stimuli (a-e). D: Fir-
ing rate of sample neurons encoding “correct” (insofar there is
an object detected in Area-3) BO property regarding the stim-
ulus object. E: Firing rate of sample neurons encoding the
“wrong” (if an object is detected in the stimulus) BO property
regarding the stimulus object.
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4.8 BO in Neurons Not Receiving Direct Feedback
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4 Results of the Main Border-Ownership Model

Figure 4.15.B). But also the concave inner part of the C-shape exhibits
correct BO properties, i.e. the salient BO preference is directed inside
of the C-shaped object. In Figure 4.15.B (BO preference downward)
e.g. the neurons encoding the lower edge of the concave part of the
C-shape show a higher average response than their antagonists (Fig-
ure 4.15.C). Therefore these neurons encode that the object extends
downward from this edge. All edges encoding the inner part of the
C-shape show the “correct” BO property regarding the stimulus.

The correct BO coding of the entire contour of the C-shape doesBO Coding Without
Direct Feedback not trivially follow from the network’s architecture. This is, because

the inner part of the C-shape does not receive direct BO feedback —
unlike the outer convex contour.

Area-3 only detects the presence, position and rough size of a
stimulus object, but does not encode information about the specific
form of the object. The BO feedback from an Area-3 neuron is con-
strained to a limited region in which the contour of a blob shaped
object is inferred to lie in order to activate this particular Area-3 neu-
ron. Hence, only the outer convex contours of the C-shape receive
BO-feedback.

The BO preference of neurons encoding the inner concave partRole of Lateral Linking
emerges due to lateral linking from BO-neurons encoding the outer
contour.

An essential element of lateral linking in Area-1b is that linking
is restricted to BO neurons with the same or similar BO preferences.
Lateral linking is transmitted between neurons whose cRFs are lin-
early and curvi-linearly arranged (see Figure 3.3). Thus, the “correct”
BO property encoded strongly on the outer (convex) contour of the
C-shape, propagates along the contour into the concave part.

A key factor of filling-in along contours into concavities is theRatio Between
Feedback and Lateral
Linking Strength

ratio of feedback strength to strength of lateral coupling. Our sim-
ulations showed that a ratio of about 10 : 1 of feedback to lateral
couplingIII worked best for lateral transmission of induced feedback.
With less feedback lateral coupling dominates along contours re-
ceiving feedback over feedback, i.e. the effect of lateral linking is so
strong, that feedback does not make a significant difference. In the

IIIThe feedback strength was wfeedback = 3 · 10−4, the strength of lateral link-
ing was wl = 10−5, weighted with a Gaussian profile. If several neurons are ac-
tive with the same rate encoding a linear stimulus, then lateral linking sums to
wl,sum = 3.18 · 10−5. If we now assume equal rates in Area-3 and Area-1a, then the
ratio is wfeedback/wl,sum ≈ 9.43. If we assume a rate of the magnitude measured
in our simulations (50 spikes/s in Area-3 and 40 spikes/s in Area-1b) we get a
slightly different ratio of (wfeedbackOArea−3)/(wl,sumOArea−1b ≈ 11.79. Since both
approaches are plausible we just give a rough approximation of the ratio 10:1.
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4.8 BO in Neurons Not Receiving Direct Feedback
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Figure 4.15: BO at concave contours of stimulus objects.
A: A C-shaped stimulus was presented to the network (100-
200ms). The inner part of the C-shape is concave. B-E: Aver-
aged response of Area-1b layers encoding different BO prop-
erties. The inner part of the C-shape shows BO preferences
directed inside the C-shape, i.e. “correct” BO coding with re-
spect to the stimulus object. F/G: Firing rate of sample neu-
rons.
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4 Results of the Main Border-Ownership Model

other extreme, if feedback dominates over linking, BO coding along
contours receiving feedback works fine, but BO properties laterally
transmitted along contours e.g. into concavities does not work.

When the C-shaped stimulus was presented to the network, onlyObjects and Ghost
Objects (Not) Detected one Area-3 neuron became active. The inner part of the C-shape de-

scribes two aligned corners of an incomplete rectangle missing one
edge. This ghost object was not detected in Area-3 for the following
reason:

1. The Area-2 neurons encoding the two inner corners of the C-
shape modulate each other laterally. But at the same time each
of these neurons is also inhibited laterally by the Area-2 neu-
rons encoding the curvatures where the concavity starts on the
C-shape contour. The second derivatives of these curvatures
have the opposite sign of the inside curvatures, thus the Area-2
neurons encoding these curvatures inhibit each other.

2. Since the ghost object and the object detected from the C-shape
stimulus share parts of an edge, the Area-3 neurons encoding
them inhibit each other. Since the neuron encoding the C-shape
is quickly active, it inhibits the other neuron, also keeping it
from exceeding the threshold.

The above simulations were all done without lateral delay. SinceSimulations with
Lateral Delay Render
More Realistic
Dynamics

the lateral spreading of BO activity does not occur instantly in vi-
sual cortex and since the dynamics of the neurons’ responses will be
significantly different when lateral delay is considered, we included
lateral delays in our model. The results of those simulations for a
C-shaped stimulus are presented and discussed in Chapter 5.

4.9 Figure-Ground Segregation

Facilitation of the activity of neurons encoding object presence by
feedback can strongly support figure-ground-segregation. The follow-
ing results show that with feedback, figure and ground can be much
better distinguished than without. We quantified the consequences
of feedback for figure-ground-segregation by analysing the discrim-
inability of neurons coding figure and ground with and without feed-
back. As stimulus we used the same rectangle as shown in Figure 4.8.
Figure 4.16 shows that feedback makes figure-ground-segregation
more robust against noise. The standard deviation σ of the noise
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4.9 Figure-Ground Segregation
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Figure 4.16: Separability of figure and ground. The stan-
dard deviation σ of broadband Gaussian amplitude noise
added to the membrane potential of the neurons was varied.
Discrimination between figure and ground was analysed by
applying detection theory (receiver-operator characteristic,
ROC). Separability of figure vs. background from the activ-
ity just before the end of stimulus presentation for 3ms was
analysed. The separability works significantly better for areas
receiving feedback for lower and medium noise levels. σ was
normalised to the average membrane potential around a neu-
ronal maximum of neurons encoding background. The vertical
bars indicate the standard deviation of the ROC values.
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4 Results of the Main Border-Ownership Model

added to the neurons’ membrane potential (see Equation 2.5 in Sec-
tion 2.2) was systematically varied. Figure 4.16 shows the separabil-
ity, measured as area under a ROC curve (Green and Swets, 1988),
between all neurons encoding the object and the same number of
randomly picked background neurons. For every neuron the average
activity around its maximum (+/-1ms) is used, since (1) information
density is highest in the peak and (2) in rapid processing consecutive
layers integrate only over a limited time-window. We normalised σ
to the average membrane potential of background neurons during
the time-window of integration. The ROC values are averages over
about 20 runs for every σ value.
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Chapter 5

Model with Delays

Outline

Lateral conduction delays are added to the previous border-
ownership model. This allows better comparison with other models.
The model with delays predicts later BO property differentiation in
concave than in convex parts of a stimulus object’s contour.

5.1 Lateral Conduction Delays

So far conduction delays between neurons connected to each other Types of Indirect
Delaywere only implicit in our model. There are several sources for indi-

rect delays:

• discrete time steps due to our numeric approach
(1 time step = 1 ms), thus at least 1ms delay

• delays due to neuron properties (e.g. membrane time constants,
firing threshold)

• delays due to indirect activation via interneurons

Since in other BO models (see Chapters 1.1.2 and 8.3) lateral con- Delays for
Comparisonduction delays play a crucial role we added delays to our simulation

framework for comparison. Since the conduction of activity along
inter-areal connections is very rapid (Girard et al., 2001) we intro-
duced delays for lateral intra-areal connections only.

We assume that our visual input space covered a visual angle of Neurologic
Determination of
Lateral Delay

20◦. Hence 90 pixels of the stimulus, i.e. a distance of 30 Area-1 neu-
rons, correspond to 20◦ visual angle. The visual field used by Zhou
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5 Model with Delays

et al. (2000) was of the same size. For simplicity, we assume a uni-
form lateralaxonal conduction velocity independent of eccentricity.
Further, we use the cortical magnification factor at 3◦ eccentricityI of
2.3mm/◦ (Virsu and Hari, 1996; Adams and Horton, 2003, the latter
in monkey). Lateral velocity in cortex is known to be in the range
of .1 − .2m/s which is equal to .1 − .2mm/ms (Slovin et al. (2002) in
monkey; see Nowak and Bullier (1997) for review). For the following
computations we used the medium of this range of v = .15 m/s:

v = .15
mm

ms

(
2.3

mm
◦

)
−1

≈ .0652
◦

ms
=̂ .098

neurons

ms
(5.1)

⇒ v−1 = ∼ 10
ms

neuron
(5.2)

Thus, the time for one AP to propagate from one neuron to an adja-
cent neuron takes approximately 10 ms from one neuron to the next.

5.2 Delays in the Model

In our model feed-forward activation reached Area-3 about 20ms af-
ter stimulus onset (see Figure 4.3). These delays are due to the neuron
and network properties.

Lateral divisive inhibition (Gaussian weighted, HWFM 4 neu-Lateral Inhibition
without Delay rons far, reaching a maximum of 6 neurons far) was implemented

without conduction delay. Due to the Gaussian-weighted coupling
strength a slight delay comes about indirectly, since weak inhibition
has to be integrated longer to take the same effect.

The lateral conduction velocities were implemented as computedLateral Linking with
Delay in the previous section. As in our previous simulations linking had

spatially a Gaussian profile. Neighboring neurons received the link-
ing input with a delay of 10ms, neurons in a distance of 2 neurons
range with 20ms and so forth. For implementational reasons (han-
dling of queues) lateral linking reached only up to 3 neurons far. In
order to keep the total lateral linking strength at the same value as in
the simulations without delays with lateral linking reaching a maxi-
mum of 5 neurons far, we normalized the total synaptic weight of the
modulatory linking kernel to the same value as in Chapter 4.

Ii.e. 3◦ visual angle away from the fovea
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5.2 Delays in the Model
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Figure 5.1: Firing rate of antagonistic BO neuron pairs en-
coding the concave contour of C-shape. For 4 positions of
the horizontal part of the concave contour of a C-shape the
activity of antagonistic BO pairs is plotted. The position where
the firing rate start to significantly diverge is approximately the
point in time when the laterally transmitted BO preference in-
formation reaches these neurons. The neurons in A are po-
sitioned closest to the convex contour, D is next to the inner
corner, B and C are located A and D.
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5 Model with Delays

5.3 Results

As stimulus we used the same C-shape as in the simulations without
delays (Figure 4.15).

In Figure 5.1 the spreading of BO activity into the concavity of the
C-shape is plotted. We plotted the rate over time for antagonistic BO
neurons encoding the concave contour. As can be seen, for neurons
located closer to the convex part of the C-shape the rate of the antag-
onistic BO neurons begins to differ earlier than for neurons encoding
the more inner parts of the concavity.

Thus, we predict, that in recordings of neurons encoding the con-Prediction of Model
with Delays tour of an object, the BO effect can be discerned earlier in neurons

concoding convex parts of the contour than in neurons encoding con-
cave parts.
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Chapter 6

Closed Feedback Loop

Outline

We investigate the effect of adding feedback connections from Area-3
to Area-1a on the model’s performance. We show that with this closed
loop, figure-ground segregation in Area-1a is improved.

6.1 Feedback to Area-1a

So far we have shown how feedback from higher Area-3 of our
model can induce border-ownership properties in lower Area-1b and
how feedback at the same time improves the signal-to-noise ratio.

Here we investigate feedback from Area-3 to Area-1a. Through Closed Loop
projecting back to Area-1a a loop is closed, i.e. feedback modulates
an area from which itself receives input. This is an interesting prop-
erty, since during the presentation of a stimulus object detection can
be continuously refined in all areas of the loop. Closed loops are used
in a number of models (e.g. Grossberg, 1994; Neumann and Sepp,
1999; Siegel et al., 2000; Corchs and Deco, 2002).

Unlike the feedback to Area-1b, the onset of the feedback modu- Modulation of Tonic
Response Onlylation is too late to have an effect on the transient answer. But closed

loop feedback can positively modulate the tonic activity of a lower
area neuron. Through lateral inhibition, in turn, local contrast is im-
proved.

6.2 Modifications to the Model

The feedback connections to Area-1a were constructed nearly iden- Feedback Architecture
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6 Closed Feedback Loop

Neuron excitatory inhibitory
transfer function slope m 2 2
threshold θ/ spikes

s 6 (A1) 2 (A2) 10 (A3) 30 (A1) 0 (A2,A3)
τe/ms (excitatory) 5 (A1) 30 (A2,A3) 23 (A1) 7 (A2,A3)
τl/ms (linking/facilitatory) 150 (A1) 50 (A2,A3) 10 (A1) 50 (A2,A3)
τ1/ms (subtractive inhibitory short) 5 -
τ2/ms (subtractive inhibitory long) 17 -
τ3/ms (divisive inhibition) 100 -
σ 2.0 (A1) .5 (A2,A3) .5

Table 6.1: Closed loop model parameters. The slopes,
thresholds and time constants of neurons in all areas (A1, A2,
A3) are listed. A dash indicates that the neuron does not re-
ceive any activation through that synapse type.

tical to the feedback connections to Area-1b. The only difference was
that feedback was not BO preference direction specific. I.e. feedback
from an Area-3 neuron to the Area-1a layer with neurons encod-
ing vertical orientation preference is projected to the neurons (po-
tentially) encoding the upper and the lower contour.

We adjusted the network parameters so that Area-1a and Area-2New Parameters Allow
Continuous States neurons showed two basic modes of activation beyond the transient

response: (1) high and (2) low tonic response. The parameters are de-
tailed in Table 6.1. Unlike in the previous model we used a linear
threshold function in Area-2 instead of a saturation function. When
the saturation function is used Area-2 neurons are basically in one of
two states. Either they are hardly active at all or their rate is close to
saturation. This performance is not appropriate for the closed feed-
back loop, since once one of the two states is adapted, a change of
state is very unlikely. In a closed loop, on the other hand, change of
states should be possible after the transient response.

Figure 6.1 (facing page): Closed loop feedback with exam-
ple stimulus. A: The stimulus contained an object and a non-
object. E/F: Average response of Area-1a layers (100-200ms).
B: Firing rate over time of two neurons, one encoding a part
of the contour of the stimulus object, the other encoding the
contour of the non-object. G/C: Two Area-2 neurons are acti-
vated by the curvature indicated at the top of G – one far more
than the other, though the patterns they are activated by are
very similar. H/D: In Area-3 only on neuron fires with a rate
significantly above 0 spikes/s.
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6.2 Modifications to the Model
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6 Closed Feedback Loop

6.3 Results

The network’s response to an exemplary stimulus is shown in FigureArea-1
6.1. We included a rectangle as stimulus object and a curvy contour
as non-object into the stimulus (Figure 6.1.A). Figure 6.1.B shows the
development of firing rate over time for an Area-1a neuron encoding
parts of the contour of the rectangle and the firing rate of a neuron en-
coding parts of the non-object. Figure 6.1.E/F show the average rate
(100-200ms) of the Area-1a layer with orientation preference horizon-
tal (E) resp. vertical (F). The activity over time of the neurons marked
in Figure 6.1.F is plotted in Figure 6.1B. The Area-1a neuron encod-
ing the object shows a significantly higher tonic response than the
neuron encoding a part of the non-object.

The two neurons active in Area-2 encode simliar curvatures (Fig-Area-2
ure 6.1.G). One neuron shows a far greater tonic activity (Figure
6.1.C) because it encodes a part of an object’s contour.

In Area-3 (average rate see Figure 6.1.H) one neuron shows aArea-3
high firing rate (Figure 6.1.D), whereas a few other neurons detect-
ing ghost objects (Chapter 3.5) of the stimulus object and non-object
show a very low firing rate (Figure 6.1.D).

As a result Area-1a neurons encoding the contour of the stim-Contours of Objects
Show High Rate in
Area-1a

ulus object show a continuously higher firing rate during the tonic
response than neurons encoding contours not being part of objects
(Figure 6.1.B).

6.4 Discussion of Closed Feedback Loop

The exemplary simulation shows that feedback perpetuates highActivity in All Layers
Affected by Object
Detection

tonic Area-1a activity. As a result not only do neurons coding ob-
jects show a higher rate in the lowest area of the network, but also
in intermediate (Area-2) and highest (Area-3) areas neurons encod-
ing features of the stimulus object or the entire stimulus object show
higher rates compared to neurons not encoding the stimulus object.
This difference is greater than in the simulations with the network
that had no closed feedback loop (e.g., see Chapter 4.2).

To conclude, a closed feedback loop is a good mechanism to fur-Closed Loop Improves
Segregation ther improve segregation between neurons encoding stimulus ob-

jects and neurons encoding the rest. In our model the closed loop
can support BO coding, since object coding in Area-3 is improved.
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Chapter 7

Learning Feedback

Outline

Support for the connection architecture of our model is provided by
showing that feedback connections can be learned with a biologically
plausible learning rule. We used a Hebbian learning rule. We show
the main principles necessary for learning feedback modulation in
a simple network. Finally, we demonstrate, that our network model
learns connections which are similar to the hand wired connections
which we used in previous chapters.

7.1 Why Learn What?

So far, the architecture of our model was based on knowledge Aim: Support for the
Model Through
Learning

of anatomy, physiology and inferences from Gestalt laws and psy-
chophysics. This engineering-type approach is an accepted and often
used method in computational neuroscience (e.g. Grossberg et al.,
1995; Riesenhuber and Poggio, 1999; Neumann and Sepp, 1999). The
aim of this section is to show that core aspects of our model (Figure
3.1) are confirmed by learning.

Developing neural network models of parts of the cortex is part Epistemology
of an iterative process of experimenting, modelling, making predic-
tions, experimenting and refining the models. Through this process
our understanding of the brain advances.

The central epistemological question in computational neuro-
science is how to ensure that a model captures essential elements of
a cortical process (Amit, 1989). Core strategies commonly used are:

• Basic building blocks are used, in our case the model neu-
rons and their types of interactions (Chapter 2). These building

69



7 Learning Feedback

blocks are chosen to show emergent behaviour on the network
level that is qualitatively similar to cortical activity on the net-
work level.

• Models designed from the building blocks try to reproduce
known experimental data (Chapter 4) and make predictions for
future experiments (Chapter 8).

• Unsupervised, biologically motivated learning of a model’s
connectivity is aimed to reproduce essential connection fea-
tures of a preliminary designed (“hand wired”) model (this
chapter).

In learning the strength of synapses is de- or increased according
to pre- and postsynaptic activation. Hebbian learning (Hebb, 1949)
is the most basic and common learning rule. There are many varia-
tions to this rule, e.g. trace learning (Földiak, 1991) used for learn-
ing invariances. For reasons detailed below we use classical Hebbian
learning.

Learning in a biologically plausible neural network should beLimits to Learning
subject to neurologic constraints. As it is implausible to assume that
the visual system is fully developed at birth, it is neither reasonable
to propose that everything has to (and can) be learned from scratch.
The visual cortex is pre-structured genetically to a significant degree,
so that certain specifications of the network to be learned can be
assumed. Further, learning connections to and in higher cortical ar-
eas before lower areas develop their specificities, cannot render any
meaningful results.

For that reason and due to computational constraints we had toFocus on Feedback
focus learning on a part of the model. We focused on the model’s
modulatory feedback connections, for several reasons:

• Feed-forward paths similar to ours have been learned by oth-
ers (e.g. Deco and Rolls, 2004; Kayser et al., 2001; Rolls and Mil-
ward, 2000)

• Lateral connections have been learned before (e.g. Prodöhl
et al., 2003; Mel and Fiser, 2000; Spratling, 1999)

• In contrast, there is no model explaining border-ownership by
feedback, let alone a model where this has been learned.

• In general, there are only few models explaining how feedback
connections can be learned.
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7.2 Learning Rule

We show that through Hebbian learning information about the Goal
probability of object presence, its position and size can be learned to
positively modulate those neurons that encode the detected object in
lower visual areas.

We first introduce the learning rule used by us, then demon-
strate the mechanisms involved in learning feedback connections in
a simple model and finally integrate learning in our comprehensive
model.

7.2 Learning Rule

For learning modulatory feedback we used the most common learn- Hebbian Learning
ing principle, Hebbian learning (Hebb, 1949). Hebb’s learning rule
states that the connection strength between neuron A and neuron B
is to be increased, if neuron A fires an action potential within a cer-
tain small time window before neuron B fires. The reasoning behind
it is, that if the described scenario occurs above chance level, the in-
formation encoded by the two neurons is correlated. Hence, neuron
A, firing earlier, can support neuron B in eliciting an action poten-
tial. The influence of neuron A on neuron B can be increased for this
purpose by increasing the synaptic strength of the connection from
neuron A to neuron B. The plasticity of weights thus depends on the
current rate of presynaptic (Oi) and postsynaptic (Oj) neuron and on
the current weight wij (Gerstner and Kistler, 2002):

d

dt
wij = F (Oi,Oj,wij) (7.1)

There is physiological evidence for Hebbian learning, e.g. Bi and Poo
(1998). We used the following implementation of the Hebbian learn-
ing rule. Every time step weights are changed according to:

d

dt
wij = α(wmax − wij)OiOj (7.2)

with learning rate α, maximum weight wmax (upper bound), activ-
ity of presynaptic neuron Oj, activity of postsynaptic neuron Oi, and
current weight wij (Gerstner and Kistler, 2002). Since the weights are
confined by wmax and normalisation (see next paragraph) avoids all
weight eventually reaching wmax, the decay factor γ continiously de-
creasing the weights contained in the original formula by Gerstner
and Kistler (2002) was not needed and thus removedI.

Icorresponds to setting it to 0, since γwij was a summand
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7 Learning Feedback

The sum of all connections converging on the same neuron areNormalisation
normalised. Thus, the total synaptic weight of every target neuron
is kept constant. This can be physiologically motivated by a limited
capacity of the dendritic tree of the postsynaptic neuron. Royer and
Pare (2003) found conservation of total synaptic strength by synaptic
depression compensating potentiation. Normalisation is computed
by:

wi = wmax
wi∑
j wij

(7.3)

Through the upper bound wmax (in equation 7.2) for learning,
weights are avoided to increase indefinitely. Further, weights are
avoided to eventually all reach wmax by normalisation. Through nor-
malisation synaptic competition is introduced leading to selectivity
of neurons. By lateral inhibition in the network neurons are decorre-
lated. Thus, neurons become selective for different stimuli.

7.3 Learning Feedback: Simple Model

We discuss the prerequisites for and mechanisms involved in learn-
ing modulatory feedback connections on the basis of a simplified
model. The feedback connections provide lower layers with border-
ownership information. The central question is: How do neurons,
although they receive identical input, develop opposing BO prefer-
ences?

For orientation contrast selective neurons to develop BO pref-Prerequisites
erence, there have to be at least two neurons with identical cRFs, in
order to learn opposite BO preferences. The neurons of every antago-
nistic pair have to mutually inhibit each other. Further, to potentially
learn any feedback connection, all object detector neurons (source
neurons) are connected to all BO neurons (target neurons).

In the simplified model we reduced the object detection areaArchitecture of a
Simplified Model and
its Stimuli

(Area-3) to two neurons, each representing another object detected.
The BO encoding area (Area 1b) was also reduced to two neurons
mutually inhibiting each other (Figure 7.1). Alternating, two stimuli
were presented for t=100ms with a pause in between of t=100msII.
Each stimulus activated a different neuron in the object detection
layer, whereas both BO layer neurons were activated by both stimuli
(see Figure 7.1). The BO neurons can be thought to encode a contour,

IIA random presentation of stimuli would have rendered the same results. It
would have possibly taken longer, though.
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object 
detectors neurons

BO

linking

network
stimulus B

stimulus A

A

B D

C

Figure 7.1: Simple model demonstrating aspects of learn-
ing feedback. A,B: Source neurons, analogue to Area-3 ob-
ject detector neurons. C,D: Neurons analogous to two Area-
1b BO neurons with identical cRFs. The neurons mutually in-
hibit each other. Stimulus A/B: Two stimuli are presented to
the network. Both stimuli activate neurons C and D (both BO
neurons), whereas each stimulus activates another object de-
tector neuron, either A or B.

which is equally activated by two different stimuli, each stretching
to a different side from the contour.

All weights were initialised with the same value (wi,j=.009). The Initialisation and
Delayslearning rate was set to α = 10−6. The offset of the input between the

layers was 8ms with the object detector layer stimulated first.
Leaning was done with high BO inhibition (wij=.3) letting the two

neurons behave in a winner-take-all (WTA) manner. Thus, in the be-
ginning (Figure 7.3.A/B) it is chance which neuron wins.

After 50s (50,000 network iterations) the network reached a sta- Target Neurons
Specialise on One
Stimulus Each

ble state. Each BO neuron learned to respond preferably to a differ-
ent stimulus. In Figure 7.2 the change of weights over time during
learning is shown. The connection from the object detector neuron
encoding one stimulus to the BO neuron it learns to prefer increases
during learning. Due to normalisation the connection from the other
object detector neuron to this BO neuron is decreased by the same
amount as the weight from the first neuron is increased. In Figure 7.3
the responses of BO neurons before and after learning are shown. Be-
fore learning it is random which target neuron wins (Figure 7.3.A/B).
Though always one neuron prevails, occasionally the loosing neuron
shows a slight tonic activation. After learning target neurons respond
to the preferred stimulus with a higher maximum transient firing
rate than before learning (Figure 7.3.C/D). Also, there is only a slight
transient response and no tonic response at all by the target neuron
when the non-preferred stimulus is presented.
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Figure 7.2: Dynamics of learning BO properties in a sim-
plified model. The changes of all four weights during learning
is plotted. The dynamics were averaged over 30 simulations.
The network converges to the steady state after about 50s
(50,000 simulation time steps). Object detector neuron A (see
Figure 7.1) provides mainly BO neuron C with “feedback” and
neuron B does so to neuron D.

Therefore, our extremely simplified model shows how neurons
receiving identical input develop opposing BO preferences. In the
following section we show how feedback connections are learned in
the big network.

7.4 Learning Feedback: Complex Model

With the simple model we showed how antagonistic neurons can be
learned. Here, we present the results from our simulations in the big
network. The simple model showed how antagonistic BO neurons
specialise on different stimuli. An important question to investigate
in the big model is how different Area-3 neurons encoding objects
that share a contour learn to project to the same BO neuron encoding
the contour and not on antagonistic BO neurons encoding opposing
BO preferences. We designed our stimuli according to this question.

We presented 4 stimuli, each with a different rectangle, all shar-Stimuli
ing one edge. Two of them extended to one side from the shared
edge, the other two stimuli to the other side (Figure 7.4.A).

The stimuli were presented alternately for 100 ms with a pauseLearning Parameters
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Figure 7.3: Neurons response before and after learning.
The presentation of the two stimuli alternated. A: The re-
sponse of target neuron C (see Figure 7.1) before learning
plotted for 20 stimulus presentations. B: The response of tar-
get neuron D before learning. C: The response of target neu-
ron C after learning in the converged network. The neuron
responds pronounced to every other stimulus. The neuron
shows only a brief low transient response to the non-preferred
stimulus. D: The response of target neuron D after learning. It
has learned to respond to the other stimulus.
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7 Learning Feedback

between stimulus presentations of 200 ms. Between presentations
of different stimuli a pause is necessary because the negative mem-
brane potential has to relaxate to assure equal opportunity for learn-
ing. The learning was α = .5 · 10−6 and the upper bound of summed
weight converging on a BO neuron was wmax = .001. The weights
were initialised to 0.

In Figure 7.4 the development of weights during learning forResults
some exemplary connections and the final learned weight matrices
is shown.

The network was stimulated repeatedly with the 4 stimuli shown
in Figure 7.4.A. Figure 7.4.B shows that weights of connections from
two Area-3 neurons encoding objects extending to the same side
from the shared contour to the same Area-1b neuron either increase
conjointly (red and orange) or decrease conjointly (light green and dark
green). Thus the weights from different Area-3 neurons to the same
Area-1b neuron are either all high or all low when the Area-1b neu-
ron encodes a part of a contour shared by the objects encoded by the
two Area-3 neurons and if these objects extend to the same side.

Figure 7.4.C.a shows the weights at the end of the simulation of
100,000 time steps (100s). At that time not all weights have reached
a stable state. These are the weights between the Area-3 neurons ac-
tivated by Stimulus a (Figure 7.4.A.a) and one Area-1b layer. Fig-
ure 7.4.C.b/c/d show the same for the other 3 stimuli and the same
Area-1b layer. In Figure 7.4.C.a/b the connections to the same neu-
rons encoding the shared contour show similar weights, either high

Figure 7.4 (facing page): Learning of feedback connec-
tions in big network. A: We presented repeatedly these 4
stimuli to the network. All 4 stimuli share one edge. Two ex-
tend from this shared edge leftwards, two rightwards. B: The
development of weights over time for 4 weights converging on
the same Area-1b neuron from the 4 Area-3 neurons which
each encode one of the stimuli objects. C: Four weight matri-
ces, one from each Area-3 neuron encoding one of the stimuli
to an entire Area-1b layer with preference for vertical oriented
stimuli. D: Four weights matrices connecting from the same 4
Area-3 neurons to the Area-1b layer holding the potentially an-
tagonisitc neurons of the layer shown in C. Weights between
Area-3 and Area-1b neurons encoding the same stimulus ob-
ject are learned. If the weight from one Area-3 neuron to one
Area-1b neuron is high then the weight from the same Area-3
neuron to the Area-1b neuron’s antagonist is low (C/D).
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7 Learning Feedback

or low (red circles). Figure 7.4.D.a/b weights induce the opposite BO
preference (yellow circles). The same holds true for Figure 7.4.C.c/d
(green circles). This shows that not only the exemplary connections
(Figure 7.4.B) developed a coherent BO preference but that this is the
case for most connections.

Learning did not result in all neurons of one layer to encode the
same BO preference. For BO properties to develop we initialised two
layers of identical neurons inhibiting each other. Unlike in our hand-
wired model, the two preferences are not assigned to the layers. From
this we conclude that the lateral modulation in these layers was not
strong enough to force neighbouring neurons to encode the same BO
preference. That would have rendered patches of neurons in each
layer encoding the same BO preference. Since our model is very ab-
stract, we cannot derive from this that first BO feedback and then
lateral connections are learned during the development of the brain.

These results bring up an interesting question: Why did differ-Explanation for
Learning Results ent Area-3 neurons learn to connect correctly to the same Area-1b

neuron?
It turns out that one important property of Area-3 is that when a

stimulus is presented not only the Area-3 neuron best encoding the
stimulus is activated, but there are co-activation of Area-3 neurons
encoding similar objects (ghost activation). This plays an important
role in learning, since the ghost objects extend to the same side from
a contour shared with the stimulus object. Thus when feedback is
learned from the “correct” Area-3 neuron to an Area-1b neuron that
prevailed in the competition against its antagonist, then also connec-
tions from Area-3 neurons encoding the ghost objects to this Area-1b
neuron are learned a little bit. If later a stimulus object is presented
that activates one of the ghost neurons, then already having slightly
learned the connections to the Area-1b neuron mentioned above, this
Area-1b neuron receiving slightly more feedback than its antagonist
is likely to prevail against its antagonist. As a result the connection
between this Area-1b neuron and the Area-3 neuron is learned again.

Due to this mechanism every Area-3 neuron activated and its
ghost neurons will learn feedback to the same Area-1b neurons.
Thus, these Area-1b neurons will encode the same BO preference for
all stimuli presented. This mechanism has to be confirmed by more
intense simulations with sets of more than 4 stimuli.

In our simulation we used a relatively high learning rate. Thus,
there are high fluctuations in the weights with every stimulus pre-
sentation. Since it is not plausible that one stimulus presentation
causes such a great difference in connection strength, future simu-
lations should be performed with lower learning rate. The results of
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our simulations are nonetheless valid, since the fluctuations do not
keep the weights we plotted (Figure 7.4.B) from reaching a stable
state.

We have shown that our hand-made feedback connections can be Summary
confirmed by learning these connections with a biologically plausible
learning rule.
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Chapter 8

Discussion

Outline

Our model reproduces basic properties of object-presence coding
in the dorsal visual pathway. We demonstrate how feedback from a
higher level visual area can specifically facilitate the activity of neu-
rons at lower stages of the processing hierarchy. This modulation can
indicate border-ownership and improve figure-ground segregation.

We compare the properties of our model with electrophysiological
results of Zhou et al. (2000). We show how our results relate to
other physiological and psychophysical findings and discuss what our
model predicts and which cortical areas could correspond to the mod-
ules of our model. Further, we compare our model with other models
on BO and discuss implications of BO coding to figure-ground segre-
gation.

8.1 Comparison of Our Model to
Properties of BO Neurons

8.1.1 Reproducing Effects Measured in BO
Experiments

Our model qualitatively reproduces the experimental data measured
by Zhou et al. (2000). As in the experiments, our network codes BO
independent of stimulus object size and position (Chapter 4.4). In our
model a BO neuron responds with a high firing rate when encoding
a contour owned by an object extending to one side from the contour.
The same neuron responds with a low firing rate when the stimulus
object owning the contour extends to the other side (Figure 4.5).
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Our model shows BO properties for different stimulus object
forms, among others the rectangular and C-shapes used by Zhou
et al. (2000) (see Figure 4.7). The model is able to reproduce the early
differentiation between “correct” and “wrong” BO responses with
respect to the stimulus object (Figure 4.4). Also quantitatively our
model reproduces the temporal dynamics and firing rates measured
by Zhou et al. (2000).

When Zhou et al. (2000) presented rectangular objects extendingIncomplete and
Non-Objects beyond the boundary of their screen, thus appearing only incom-

plete, these objects elicited nonetheless “correct” BO response, only
with lower intensity. When a rectangle extending nearly over the en-
tire half of the stimulus screen was shown, the BO neurons showed
no BO preference, i.e. a neuron that previously showed BO prop-
erties fired with the same rate independent to which side the object
extended. The latter stimulus was likely to be perceived just as a con-
trast polarity edge.

We were able to reproduce these results by presenting incomplete
objects and non-objects to our network (see Chapter 4.7). Incomplete
objects such as a rectangle missing one or two corners, elicit a BO
response, just not as pronounced as a complete rectangle. A curve
by itself, however, does not elicit any BO activity. Also, other non-
objects, such as a line, showed no BO preference.

When presenting two overlapping rectangles (Figure 4.13), ourOverlapping Stimuli
network reproduced the results found by Zhou et al. (2000). All neu-
rons encoding the border shared by the two stimulus objects showed
a BO preference in the direction of the object on top.

In their experiments Zhou et al. (2000) also varied the size ofStimuli Sharing a
Contour shift between two overlapping stimulus objects. They recorded neu-

rons encoding the edge shared by the two objects. When the shift be-
tween the objects was clearly visible and thus also the visual identifi-
cation of the overlapping object, the shared edge encoded the correct
BO property with BO preference directed to the overlapping object.
When a stimulus with two unshifted objects sharing an edge was
presented (ambiguous situation), the neurons encoding the shared
contour did not show any BO preference. Our network reproduces
this behaviour (Figures 4.10 and 4.13).

We further tested our model with stimuli which were not used by
Zhou et al. (2000): Objects sharing parts of their contour (Figures 4.11
and 4.12). Our model predicts that for these stimuli neurons encod-
ing the shared part of the contour do not show any significant BO
property wen the objects extend to opposing sides from the shared
contour (Figure 4.11). Thus, these neurons respond as in the previ-
ous example with the unshifted stimulus objects. On the other hand,

82



8.1 Comparison of Our Model to Properties of BO Neurons

neurons encoding the outer parts of the partially shared edge that
only belongs to one stimulus show BO preference. This response be-
haviour is a direct result of the network architecture: Two objects are
detected in Area-3. Antagonistic neurons encoding the shared edge
both receive feedback neither prevails, thus no BO preference devel-
ops. The neurons encoding the outer side belonging only to one of
the two stimulus objects only receive feedback from one Area-3 neu-
ron and thus show an unequivocal BO response.

8.1.2 Coding BO by Feedback

Our model suggests fast feed-forward object detection and feedback
to a lower level area with finer resolution to explain the BO effect. In
Chapter 1.1.1 we suggest that there is feedback from high area neu-
rons encoding an object’s presence and location to neurons in lower
primary visual cortex area (V1) encoding the object’s contour and
surface. There we show that fast feed-forward and feedback connec-
tions would allow feedback to coincide with the longer-latency input
from the retina to area V1 of the parvocellular pathway.

We suggest that V1 neurons, receiving parvocellular input and BO in the Ventral
Pathwayencoding BO properties, project to visual areas V2 and V4 of the ven-

tral pathway. As a result, BO information is available to neurons of
those extrastriate ventral areas. Zhou et al. (2000) showed that most
neurons in areas V2 and V4 exhibit BO properties.

Thus, BO could play an important role in solving the initially
posed problem of segregating an object from its ground. Once this
is achieved through feedback in lower areas, further processing in-
cluding object recognition can take place.

8.1.3 Coding BO by Feedback Only

In our model the only source for BO encoding is the feedback from
Area-3. The lateral facilitatory coupling profile in Area-1b is unspe-
cific regarding BO coding (Figure 3.3). Lateral connections encoding
Gestalt properties (Figure 1.2) in our model thus only transmit BO
information (see Figure 3.3), but do not extract it.

There is experimental support for feedback as a mechanism of Support for BO via
FeedbackBO. Zhou et al. (2000) recorded from the same V2 cells for sim-

ple rectangular stimuli and more complex C-shaped or overlapping
stimuli, i.e., including contradictory BO cues. Over 50% of the cells
showed BO properties for simple but not for complex stimuli. In
some cases, neurons were selective to contrast polarity as long as
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they did not show BO properties. Zhou et al. (2000) concluded that
there are a variety of figure-ground separating mechanisms, each us-
ing a different strategy.

The neurons recorded by Zhou et al. (2000) were not only selec-Further Properties of
BO Neurons in
Experiment

tive to orientation and showed border-ownership but some showed
further preferences, such as for contrast polarity. A number of neu-
rons did only show a preference to contrast polarity when the con-
tour they encoded was not part of an object. When the neuron en-
coded an object contour, it only showed BO preference, but no sig-
nificant polarity preference anymore.

In our model BO properties are absent from the network as longBO Property Only
“Overwrites” Other
Properties When
Object Is Detected

as no object is detected. This allows other preferences to be encoded,
which are not “overwritten” as long as there is no BO feedback. Our
model only codes preference for oriented lines, thus further prefer-
ences would need to be added to demonstrate this property in our
network. In other models (Kikuchi and Akashi, 2001; Li, 2005, dis-
cussed later in detail) BO coding is always present.

Our model fails to encode “correct” BO when too much noise or
clutter is contained in the stimulus.

8.1.4 BO Coding in Concave Objects

Our model reproduces the effects measured by Zhou et al. (2000)Inner Side of C-Shape
for a C-shape stimulus. They found neurons encoding parts of the
vertical inner (concave) part of a C-shape to encode the “correct” BO
preference (directed to the inside of the object). This is noteworthy
since local curvature Gestalt cues suggest that the contour belongs to
an object extending to the side opposite of the C-shape.

Our simulations with a C-shaped stimulus show “correct” BODelay
encoding for the entire concave contour of the C-shape (Figure 4.15).
When introducing lateral delays in Area-1b, the latency of the BO
responseI increases compared to the simulations without delay, but
only by a few milliseconds (Figure 5.1).

The difference in firing rate of antagonistic neurons is signifi-BO Less Pronounced
at Concave Than
Convex Contour

cantly lower for neurons encoding the inner contour (concave) of the
C-shape than for the neurons encoding the outer contour - especially
during the transient answer. This reproduces the result of Zhou et al.
(2000).

Nonetheless, our results show that BO feedback and its lateral
spreading may be fast enough to propagate BO preference informa-

IThe BO response is defined to take effect when the activity of a pair of antago-
nistic neurons starts to differ.
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tion along an object’s contour. The BO activation in the model reaches
the BO neuron encoding the center of the concavity fast enough for
the experimental results of Zhou et al. (2000) to be reproduced.

For the C-shaped stimulus Zhou et al. (2000) only measured the
BO property of the neuron encoding the central part of the concavity.
Our model predicts that not only neurons encoding this edge but also
all neurons encoding the horizontal edges of the concavity encode
BO. This could be tested in future experiments.

8.1.5 Limitations of the Model

Our network uses fairly simple object detection mechanisms. Due Form Detection
Limitationto the lack of appropriate connections from Area-2 to Area-3 hor-

izontally and vertically elongated objects, but not diagonally elon-
gated ones can be detected. Since Zhou et al. (2000) presented many
of their stimulus objects tilted, strictly speaking, our network would
not have detected them. This is not a principle limitation, though.
Our framework could be extended to also detect otherwise elongated
forms.

Further, due to the restricted radius of curves, Area-2 curvature Limited Radius
detectors cannot detect stimulus objects with curvatures greater than
radius r = 6 neurons distanceII.

In order to enable our network to deal with a wider range of stim- Limited Spatial
Frequenciesuli (greater range of curvatures, different spatial frequencies) one can

do the following: (1) The Gabor input filters could be set to a low
spatial frequency. Thus, the spectrum of spatial frequencies resulting
from filtering would be in a range of lower frequencies. The task of
object presence detection according to Gestalt properties would not
be obstructed. (2) Alternatively, our architecture could be replicated
at different spatial frequencies. Supporting and competing mecha-
nisms would need to be introduced between the different frequen-
cies.

The network is limited to detecting objects in the range of 15x15 Object Size Limitation
to 90x90 pixels, the latter being the size of the entire input stimulus.

III.e. in Area-1 neurons describing a curvature with a radius of 6 neurons dis-
tance are activated by the stimulus. In our 90x90 stimulus this translates to a radius
of r = 18 pixels.
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8.2 Comparison Between Model and
Physiology

In Chapter 2 and 3 we argued that our network is a biologically plau-
sible model of parts of the visual cortex. In the following section we
discuss several aspects of our model with regard to physiology:

• processing of input

• cortical areas corresponding to our model areas

• plausibility of our feedback connections

• possible extensions of the model

8.2.1 Input - Filtering - Processing

Our model is limited to detecting only contour stimuli. Zhou et al.Static Contour
Detectors (2000) recorded BO properties for stimuli with objects encoded by

contrast polarities as well as by lines. Besides these features, there
are many more cues defining an object, e.g. surface, texture or depth
cues (disparity) (Grossberg, 1994).

By changing the spatial and temporal properties of the inputAlternative Detectors
filters of our network it could also process various other types of
stimuli. Instead of linear contours also luminance or disparity could
be detected. With temporal filters motion could be encoded. This
would be interesting, since the dorsal pathway is known to detect
motion signals better than static images (e.g. Goodale and Milner,
1992; Ungerleider and Haxby, 1994). Though the dorsal pathway also
responds to static images with a transient response (Thorpe et al.,
1996), it would be more plausible if our model received moving input
and was able to respond to it. To implement this, the network’s archi-
tecture could be maintained, only the network input would need to
be filtered differently, e.g. by Reichardt type detectors (Hassenstein
and Reichardt, 1956). The detectors could be implemented as pro-
posed by Bayerl (2006) with integration over temporal consecutive
images to compute motion vectors.

Since our aim was to demonstrate basic mechanisms we ab-
stained from implementing motion detection. For further develop-
ment of the model motion detectors would be one of the first features
to add.
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8.2.2 Gestalt Rules and Intra- and Inter-Areal
Connectivity

The performance of the network arises from the interplay of lateral
and inter-areal connections. Facilitatory and inhibitory local connec-
tions according to the Gestalt law of good continuation and proxim-
ity (Figure 1.1) aid object feature extraction. Neuronal activity that
cannot be attributed to object features is suppressed. The remaining
activation encodes object features, which are bound together step by
step by inter-areal feed-forward connections.

8.2.3 Correspondence of Network Areas and Visual
System Areas

Here we discuss what cortical areas could correspond to the areas of
our model.

We argued that the feed-forward path of our network models Dorsal Pathway
the dorsal pathway of visual cortex (see Chapter 1.1.1). The dorsal
pathway leads from Area V1 via V2 and V3 to MT (medial tempo-
ral cortex; also referred to as V5) and further to the parietal cortex
with MST (medial superior temporal), AIP (anterior intraparietal),
LIP (lateral intraparietal) among others (Wallis and Bülthoff, 2003).
There are also direct connections from V1 to MT and V2 to MT.

Our model Area-1 neurons show receptive field properties found Model Area-1
in area V1 in primate (Hubel and Wiesel, 1968) and cat (Hubel and
Wiesel, 1962) visual cortex.

The Area-2 neurons of our model respond to a range of curva- Model Area-2
tures of a specific orientation within their cRF. Cells with similar
cRFs have been found in area V2 of visual cortex. Hegdé and van
Essen (2000) recorded V2 cells in macaque monkey that explicitly
responded to complex shapes, among others, curvatures. The stim-
ulus most effectively eliciting activity in a neuron caused the neu-
ron to show a significantly larger responce than elicited by the most
effective bar or sinusoid. About one-third of the neurons recorded
showed significant differential responsiveness to various complex
shapes. Many neurons selectively responded to a particular orien-
tation, size and/or spatial frequency of the preferred shape. Ito and
Komatsu (2004) recorded from V2 cells that were selective to angles.
The responses were highly selective to a particular angle in approxi-
mately one-fourth of the neurons.

Area-3 of our model shares many properties with area MT in pri- Model Area-3
mates. The cRFs of Neurons recorded in Area MT are selective to reti-
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nal position, direction of motion, speed of motion, binocular dispar-
ity, and stimulus size (Born and Bradley, 2005). Their cRFs are much
larger (about ten times in linear dimensions) than in V1 (Born and
Bradley, 2005). Nontheless, the range of lateral interaction in MT is
not greater than the one in V1. The range is not greater than fractions
of a degree of visual angle, with the MT cRF being many degrees
wide (Churchland et al., 2005).

Many MT cells show center-surround properties, with stimuli ex-
tending into the surround region eliciting a much lower response
than stimuli only covering the center part of the cRF (Born and
Bradley, 2005). Due to this cRF property the extent of the cRF of these
neurons is well defined.

The cRFs of our Area-3 also cover up to the entire stimulus field.
Further, both MT and model Area-3 are selective to retinal position
and stimulus size. We did not implement motion detection. Thus,
area MT and model Area-3 are different in that concern, which is not
a principal limitation, as discussed in Section 8.2.1 .

If motion detection is implemented, the feedback projectionsMotion Detection and
Feedback need to be adapted. Feedback has to projet into the lowest area not

to where the object was detected but where it is expected to be once
the feedback reaches the lowest area.

8.2.4 Alternative Localisation of Feed-Forward Path
of Model in Ventral Pathway

We argued that the dorsal pathway could correspond to the feed-
forward path of our network (Chapter 1.1.1) because response onset
to a stimulus is so much earlier in higher dorsal areas than in lower
areas of the ventral pathway, that feedback from the dorsal path can
reach lower ventral areas when afferent input reaches that area.

Alternatively, the feed-forward path could correpond to the ven-Feedback Within
Ventral Path tral pathway. Due to the variation observed in response onset of ven-

tral areas (Schmolesky et al., 1998) it is possible that feedback from
a higher area elicited by a first activation wave could coincide with
response onset of lower area neurons receiving late afferent input.

The ventral pathway extends from V1 via V2 and parts of V3 toAreas of Ventral Path
V4 and further to IT (inferior temporal cortex) and other areas in the
temporal lobe. There are also direct connections from V2 to V4.

We already described in the previous section the properties ofProperties of V4
V1 and V2. Area V4 neurons respond preferrably to objects that are
more complex than the ones V2 prefers. In experiments Pasupathy
and Connor (2002) and Kobatake and Tanaka (1994) found that V4
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8.2 Comparison Between Model and Physiology

neurons respond to specific complete shapes made up of linear, con-
vex and concave boundary fragments. At the same time, the spatial
invariance of neurons compared to V2 and especially V1 increased.
With encoding these properties, area V4 could correspond to our
model’s Area-3. The only property required in our model architec-
ture that is not matched well by V4 is the spatial selective coding of
objects. Our model requires rather specific spatial coding of object
position in order to allow relative precise feedback to the neurons
encoding the object’s contour in lower areas.

Measurements of the delays in the visual system (Bullier, 2001; Latency in Ventral
PathwaySchmolesky et al., 1998) show, that the range of response onset to a

stimulus varies greatly within the areas:

• V1: 26-122ms (Bullier, 2001), 34-98ms (Schmolesky et al., 1998)

• V2: 56-118ms (Schmolesky et al., 1998) 56-120ms (Bullier, 2001)

• V4: 72-159ms (Schmolesky et al., 1998)

Since in comparison inter-areal delays are very short (Fellemann
and Van Essen, 1991) it is feasable that V1 and V2 neurons with late
response onset receive feedback from higher ventral areas that were
activated on the first activation wave.

This is an interesting alternative, since feedback from higher areas
in the ventral pathway would show different properties than feed-
back from the dorsal pathway. Object detection would not occur in-
dependent of form. Hence, feedback could be given much more pre-
cisely onto object contour.

8.2.5 BO Feedback: Selective to Orientation

When a stimulus object is detected in Area-3 of our model, feedback
is projected to all those Area-1b neurons which can potentially en-
code a convex stimulus object that could elicit activation in this Area-
3 neuron. This feedback is selectively projected back to neurons of
specific orientations and BO preferences.

There are no experimental results about the orientation selectiv- Selective or
Non-Selective
Feedback in the
Brain?

ity of feedback projections from area MT or other higher areas of the
dorsal pathway. For feedback from V2 to V1 there exists contradict-
ing evidence. Selective feedback is supported by measurements of
Angelucci et al. (2002) (in macaque). Stettler et al. (2002) on the other
hand found experimental evidence that V2-V1 feedback is not selec-
tive to orientation (also in macaque). What would be the effect to our
network if feedback was not selective?. If feedback is projected to all
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orientations in a limited region equally, then, obviously, the activity
of all neurons receiving feedback increases compared to the back-
ground activity. If within the region receiving feedback there are neu-
rons encoding the contour of the stimulus object, these neurons ex-
hibit locally the highest rate. Thus, these neurons will also exhibit the
highest rate when additionally receiving feedback. Since our feed-
back acts multiplicative the firing rate of neurons with a high rate
increases absolutely more than the rate of neurons with a low firing
rate. Thus, also after unselective feedback our model neurons encod-
ing the stimulus object contour will prevail against their surround.
From this we conclude that orientationally unselective feedback can
also provide lower layer neurons with BO properties. Nonetheless,
unselective feedback would not render as good BO coding in Area-
1b as the selective feedback we use in our model.

8.2.6 Predictions for Future Experiments

the analogue of our model’s Area-1 (e.g. V1) to receive direct BOLatencies
feedback from the object detection area (Area-3 in our model). If
this was the case, then the latency of BO-specific activity should be
shorter in V1 than in other, higher areas of the ventral stream. If this
was not the case, then this suggests that V1 receives BO feedback
only indirectly, e.g. via area V2 or V3. This could be investigated in
future experiments.

Further, the latency of BO coding in the areas of the ventral path-
way, such as V4, would give a hint whether they receive direct BO
feedback or, as we propose with our model, indirectly via V1 or V2.

8.2.7 Extension of Architecture: Indirect BO
Feedback via Area-2

In our model feedback is projected back only from the highest area
(Area-3) to Area-1. This architecture could be extended by feedback
from Area-3 to Area-2 and from Area-2 to Area-1 and an adequate
bi-layer extension of Area-2.

Area-2 neurons activated by a simulus would modulate Area-1Feedback From and
Via Area-2 activity by feedback. Area-2 neurons additionally receiving feedback

from Area-3 would fire with a higher rate and would modulate Area-
1 even more. Feedback from lower areas could be projected more pre-
cisely to the contour of a stimulus object than feedback from higher
areas, because the spatial specificity is usually higher in lower areas
of the dorsal pathway. Consequently, concavities that receive BO ac-
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tivation only indirectly via lateral connections in the current model
would receive direct BO feedback in the extended architecture.

Curvature invariance is modelled in our network in the connec- Divergence of
Feedbacktions from Area-1 to Area-2. From Area-2 to Area-3 no further spa-

tial invariance is added. Therefore, feedback from our model’s Area-
2 to Area-1 would not be more precise than feedback from Area-3.
Thus, the above mentioned advantage of feedback from multiple ar-
eas does not work for our concrete implementation.

Probably new dynamic properties would be the result. Area-2 Change in Response
Dynamicswould provide Area-1 with BO feedback gathered from its vicinity

due to lateral activation in Area-2 until Area-2, in turn, receives BO
feedback from Area-3. Thus, new dynamics could probably be ob-
served on the concave inner contour of a C-shape. First, feedback
would arrive in Area-1 with BO encoded only by Area-2, provid-
ing Area-1 with the “wrong” BO property due to the inner contours
of the C-shape hinting at an object to extend to the other direction
from the contour than the C-shape. Once Area-2 receives BO feed-
back from Area-3, Area-2 would begin to encode the “correct” BO
preference, the opposite from what it encoded previously. As a result
Area-1b neurons encoding the concave part of the contour would
first receive feedback with the “wrong” BO preference.

8.3 Comparison with Other
Border-Ownership Models

As described in the introduction there are several models trying to
explain BO. They utilise one or more of the following mechanisms:

• feed-forward connections to V1 and lateral connections in V1,
where:

– activation spreads along the contour of the object (Li, 2005;
Kikuchi and Akashi, 2001)

– long-range connections between neurons encode oppos-
ing contours of the object (Nishimura and Sakai, 2004)

• feedback modulation of BO properties to explain Rubin’s vase
and other attentional effects (Li, 2005)

8.3.1 Review of Other BO Models

Recently, several mechanisms explaining the BO effect were sug-
gested (Kikuchi and Akashi, 2001; Nishimura and Sakai, 2004; Li,
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2005). Since BO neurons were mostly found in V2 and V4 (>50%)
(Zhou et al., 2000) and only few in V1 (18%), modelling focussed on
V2. BO properties in V1 are often explained by fast feedback connec-
tions from V2 (Girard et al., 2001). Previous models argued for BO
properties to arise by feed-forward connections to and lateral con-
nections in V2 (Li, 2005; Kikuchi and Akashi, 2001; Nishimura and
Sakai, 2004). Feedback from higher areas is attributed only a modu-
latory effect to BO perception (Li, 2005) to explain attentional effects
leading to switches in perception as in the famous example of Ru-
bin’s vase (Rubin, 1921).

There have been two approaches explaining BO by intra-arealBO Explained by
Intra-Areal
Connections

connectivity: (1) chains of activation running along the object’s con-
tour (Kikuchi and Akashi, 2001; Li, 2005) and (2) long-range con-
nections between neurons encoding opposite contours of the object
(Nishimura and Sakai, 2004).

8.3.2 Border-Ownership and Delays

Li (2005) argues that lateral connections in V2 allow fast BO cod-Lateral Delay
Determined by
Physiological
Constraints

ing. She argues that the correlate of her BO area is area V2 of visual
cortex. She assumes 8-10 ms activation latency of monosynaptic con-
nections independent of the distance between neurons. Further, she
assumes 3◦ visual angle as greatest distance of lateral connections.
However, lateral latencies in V2 are too long to explain the effects
measured by Zhou et al. (2000), who found the latency of the BO ef-
fect to be largely independent of object size. Physiological data about
V2 (Roe and Ts’o, 1995, in macaque monkey) indicate a cortical mag-
nification factor of 4 mm per degree across orientation-, colour-, and
disparity-stripes together (∼ 1.3 mm per degree each) and ∼ 0.7 mm
per degree along each stripe. Assuming the lowest cortical magnifi-
cation factor (along stripes) of 0.7 mm per degree, this results in an
axonal velocity of 0.26 mm/ms. This is in the range of spike velocities
measured in horizontal connections (Slovin et al. (2002): 0.1–0.2 m/s
in monkey; see Nowak and Bullier (1997) for review). If BO informa-
tion would propagate along the object’s contour representation, as
in the models by Li (2005) and Kikuchi and Akashi (2001), the direct
distance from the outer corner of the C-shape from where the “cor-
rect” BO information is transmitted to the neurons recorded at the
inner side of the C-shape would exceed 10 degrees of visual angleIII.

IIIIn Zhou et al. (2000) the C-shaped stimulus covered 10◦ (horizontal) x 20◦ (ver-
tical). That makes ∼ 15◦ distance going along the contour from the outside edge to
the cRF location of the neuron recorded and more than 10◦ distance assuming the
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Thus, even with the shortest distance and the shortest delay, it would
take longer than 25 ms for the signal to arrive at the neuron with cRF
at the inner side of the C-shape. For the neuron to start showing the
“correct” BO property it would take even longer, since the neuron
encodes the “wrong” BO property at arrival of the “correct” signal
due to misleading local cues having arrived earlier. Thus, inversion
of the BO neuron’s activation would still be necessary. Therefore, the
mechanism suggested by Li (2005) and Kikuchi and Akashi (2001)
cannot explain the BO properties measured by Zhou et al. (2000) by
lateral connections in V2 for larger stimulus representations.

Nishimura and Sakai (2004) developed a BO model suggesting Lateral Coupling
Perpendicular to
Contour

long-range lateral connections with their main axis perpendicular to
the contour encoded. In their model, BO properties arise from con-
nections between linking neurons encoding opposite sides of an ob-
ject. This model can explain BO properties arguably for mid-sized
objects due to employing direct lateral connections. But Li (2005)
noted that it cannot explain some of the observations by Zhou et al.
(2000).

Intra-areal connections, as suggested by Li (2005), Kikuchi and
Akashi (2001), and Nishimura and Sakai (2004), may support BO en-
coding.

Kikuchi and Akashi (2001), Nishimura and Sakai (2004) and Li Feedback Support
(2005) explain BO mechanisms by integration of local cues. Thus,
BO selective activity should be present for C-shaped or overlapping
objects, since local cues are available. The models by Li (2005) and
Kikuchi and Akashi (2001) predict initially “wrong” BO classifica-
tion, induced by misleading local cues, and later in the response
encoding of “correct” BO property. Their models and the model by
Nishimura and Sakai (2004) cannot explain neurons only significantly
encoding contrast polarity when BO is not encoded.

In our model the “wrong” BO property is not initially encoded Fast Laterally Induced
BO Effect in Our
Model

in concavities (e.g. in the C-shape) until the “correct” BO property
is laterally relayed. Further, all neurons encoding the convex parts
of the object contour receive direct BO feedback. Thus, “correct” lat-
eral BO activation into a concavity is significantly faster in our model
than in the model by Li (2005), since (1) BO coding does not have to
be reversed and (2) the distance along the contour to the nearest neu-
ron encoding the “correct” BO property is at least as short, usually
shorter.

most direct connection.
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8.4 Feedback and
Figure-Ground-Segregation

8.4.1 Closed Loop

When feedback is projected from Area-3 to Area-1a in our model
(see Chapter 6) neurons encoding the contour of an object detected
are modulated by linking. Thus, Area-1a neurons receiving linking
input exhibit a higher firing-rate. Due to the properties of the feed-
forward path, only Area-1a neurons receiving feedback show tonic
firing-rates significantly greater than 0.

In the closed loop, in contrast to Area-1b feedback does not reach
Area-1a neurons during their transient response.

8.4.2 Feedback Improves
Figure-Ground-Segregation

Our model demonstrates that figure-ground segregation can be sig-
nificantly improved by feedback encoding object presence.

In our model, fast feedback connections from Area-3 to Area-1Segregation by
Feedback play an important role in improving figure-ground segregation by

facilitation of BO neurons, i.e., in the low level area where neurons
represent visual objects at high spatial resolution. Thus, segregation
of object and background representations in early visual areas is im-
proved. Feedback may enhance the activity of BO neurons encod-
ing the contour of an object. These neurons, in turn, may suppress
non-object activity in their surround by lateral inhibition. (See also
Gewaltig et al., 2003, for a related idea.).

Besides many feed-forward models mainly dealing with object
recognition in the visual system (e.g. Riesenhuber and Poggio, 1999),
there are a number of other models, suggesting recurrent networks
for improving figure-ground segregation.

Locally limited feedback via inhibitory interneurons to improveInhibitory Feedback
contrast locally, as in Area-1 and Area-2 of our model, has been used
in our group for some time. Eckhorn et al. (1992) demonstrate a two
layer network, in which inhibitory connections from higher to lower
layer serve as control loops. Feedback is diverted to the association
field of a local neuron assembly. This feedback reduces mainly un-
correlated noise, since neurons encoding an object facilitate each
other by lateral connections. This mechanism locally improves sepa-
ration of figure and background.
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An often implemented feedback mechanism in models of the vi- Feedback Using
Bigger cRFs in Higher
Areas

sual system is to use integration over greater distances due to greater
cRFs. Lateral connections in higher areas and feedback can then aid
figure-ground segregation in lower areas.

Gove et al. (1995) use bipolar cells in V2 with two collinear recep-
tive fields for long range grouping. They encode surface brightness
by modelling filling-in in V4. This so-called boundary contour system
gives feedback to lower areas, encoding form and surface (feature con-
tour system). This, in turn, projects to higher areas encoding object
identity (object recognition system).

Similarly, Weitzel et al. (1997) developed a multi-layer network
of spiking neurons encoding vertex presence in its highest layer.
Through a synchronisation layer and feedback, linking waves prop-
agate along detected edges and vertices in lower layers. Further, rep-
resentations of contours belonging to different objects are temporally
separated.

Also Neumann et al. use integration over greater distances in
higher areas to provide V1 neurons with information from outside
their cRFs (feedback from V2 (Neumann and Sepp, 1999); motion
detection in MT and feedback (Bayerl and Neumann, 2004)). Their
models areas only differ in spatial scale of integration. Higher areas
have greater fields of integration, lower areas allow more detailed
representation due to smaller cRFs. Neumann and coworkers mod-
elled feedback modulation as we did (Equation 2.5). They also com-
pute lateral inhibition by divisive inhibition in order to enhance lo-
cal feature contrast. This can be subsequently used to improve figure
ground segregation, as done by us.

8.4.3 Model of Dorsal and Ventral Pathway

Deco and Rolls (2004) developed a model linking dorsal and ventral
pathways.

They use a mechanism very similar to the one used by us: Feed-
back from a higher area modulates the activity of neurons encoding
a stimulus object in a low area of the visual system, which in turn
is used for further feed-forward processing. In their model attention
from higher areas can trigger one of two modes: (1) visual spatial
search and (2) visual object identification. In the latter case a bias is
given to a neuron in an area modelling posterior parietal cortex (PP),
where a spatial map of an object’s location is encoded. Feedback from
PP to V1 modulates neurons encoding the detected object. In their
model V1 functions as an active blackboard (Bullier, 2001) mediating
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between higher visual areas. Unlike us, Deco and Rolls (2004) mod-
elled the ventral pathway, whereas their dorsal path is reduced to
one layer. In our model feedback takes effect with far shorter delays
with respect to response onset in the lowest layer than in the model
by Deco and Rolls (2004), where attention effects reach V1 neurons
as late as 120–200 ms after response onset.

8.4.4 Our Model and Bistable Stimuli

There are stimuli, where an observer experiences fluctuations in per-Bistable Stimuli
ception despite unchanging visual stimulation.

The best known example is Rubin’s vase (Rubin, 1921), where ei-
ther two faces or a vase are seen. Another example is the necker cube
(Necker, 1832), a cube wth transparent sides which is perceived to
either extend towards the front from a focussed corner or to the back
(multistable depth reversal). For review of further bistable patterns
see Leopold and Logothetis (1999).

For some bistable stimuli such as Rubin’s vase the shared con-
tour of the two objects plays an important role for which object of
a bistable stimulus is seen. Modulations of BOLD signals from V1
correlate with rivalry states when the rival targets are more complex
(Lee and Blake, 2002).

In Area-3 of our model there are two types of (divisive) inhibi-Area-3 Inhibition
tion:

• Ghost inhibition between objects sharing parts of their contour
extending to the same side

• Rubin inhibition between objects sharing parts of their contour
extending to opposite sides from there

The Rubin inhibition is implemented as a weak subtractive in-
hibition. As a result BO feedback from an Area-3 neuron activated
more than its Rubin counterpart will be stronger and thus the con-
tour is assigned to that object. If Area-3 neurons show about the same
firing rate, then they inhibit each other equally, resulting in a slightly
reduced rate for both. Feedback will be of about equal strength and
thus BO activation will be ambiguous (Figure 4.10).

In order to reproduce activity likely to trigger bistable percep-Adding Bistability to
Model tion, we would need an attentional mechanism modulating either

one or the other Area-3 neuron. Then one Area-3 neuron would
show a higher firing rate, inhibit the other significantly, BO neurons
of one direction preference would prevail and in consecutive areas
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the shared contour would be assigned to the stimulus object that re-
ceived attention.

Alternatively, the Rubin effect could be explained by introducing
harder competition either in Area-3 or Area-1b of our model. Thus,
one of the possible two interpretations would be forced to win. This
is not a plausible mechanism, since the other experimental results
could not be reproduced by the model.
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Chapter 9

Conclusions

Our model of the dorsal pathway proposes a realistic mechanism
for fast detection of object presence. We encode Gestalt properties in
the network to support extraction of object boundary features. Our
results demonstrate that, with feedback, figure-ground segregation
is possible under higher noise levels. Furthermore, our model pro-
duces BO properties by feedback in lower area neurons as found by
Zhou et al. (2000). Unlike BO models using intra-areal connections,
our model can explain BO selectivity of the response transient and in-
dependence of object size. Finally, our model explains that BO infor-
mation is present in the ventral pathway, since ventral areas receive
input from BO neurons in lower areas. Feedback not only provides
neurons with BO properties but contributes to object recognition in
the ventral stream by improving figure-ground segregation.

For future research, we suggest – besides what was already sug-
gested in the discussion – cooling experiments as done by Hupe et al.
(2001) on area MT combined with electrophysiological recordings in
V1, V2 and/or V4. If as a result BO properties would seize to oc-
cur in thse areas, this would be an evidence for BO properties be-
ing induced by feedback from the dorsal pathway. Further, our alter-
nate proposal of BO feedback coming from higher areas of the dorsal
pathway, could be examined by cooling ventral areas such as V4.
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