Total anti-symmetrische Quasigruppen

Bei der Untersuchung von Prüfziffersystemen über Quasigruppen stößt man auf die so genannten total anti-symmetrischen Quasigruppen. Bislang war ihre Existenz für alle Ordnungen $4k+2\geq 10$ ungeklärt. Ecker und Poch vermuteten 1986, dass es keine total anti-symmetrisch...

Full description

Saved in:
Main Author: Damm, Michael H.
Format: Dissertation
Language: German
Published: 2004-09-14
Edition: http://archiv.ub.uni-marburg.de/diss/z2004/0516
Subjects:
Online Access: Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Summary: Bei der Untersuchung von Prüfziffersystemen über Quasigruppen stößt man auf die so genannten total anti-symmetrischen Quasigruppen. Bislang war ihre Existenz für alle Ordnungen $4k+2\geq 10$ ungeklärt. Ecker und Poch vermuteten 1986, dass es keine total anti-symmetrischen Quasigruppen der Ordnung $4k+2$ gibt. In der vorliegenden Arbeit widerlegen wir diese Vermutung und entwickeln Konstruktionen für total anti-symmetrische Quasigruppen der Ordnung $n$ für alle $n\neq 2,6$. Per Computersuche weisen wir außerdem nach, dass Prüfziffersysteme über einer 2-Quasigruppe der Ordnung 10, ebenso wie Prüfziffersysteme über Gruppen der Ordnung 10, nicht alle (Sprung-)Zwillingsfehler oder Sprung-Transpositionen erkennen können. Als weiteres Ergebnis zeigen wir, dass die Klasse der total anti-symmetrischen Quasigruppen keine Varietät ist.