Zum Mechanismus der 2-Hydroxyglutaryl-CoA Dehydratase aus Clostridium symbiosum

Das 2-Hydroxyglutaryl-CoA-Dehydratase-System ist das Schlüsselenzym in der Fermentation von Glutamat zu Acetat, Butyrat, CO2 und H2 durch Clostridium symbiosum und Acidaminococcus fermentans. Die Dehydratase katalysiert die syn-Dehydratisierung von (R)-2-Hydroxyglutaryl-CoA zu (E)-Glutaconyl-CoA. Di...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Hetzel, Marc
Beteiligte: Buckel, Wolfgang (BetreuerIn (Doktorarbeit))
Format: Dissertation
Sprache:Deutsch
Veröffentlicht: Philipps-Universität Marburg 2004
Biologie
Schlagworte:
Online Zugang:PDF-Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Das 2-Hydroxyglutaryl-CoA-Dehydratase-System ist das Schlüsselenzym in der Fermentation von Glutamat zu Acetat, Butyrat, CO2 und H2 durch Clostridium symbiosum und Acidaminococcus fermentans. Die Dehydratase katalysiert die syn-Dehydratisierung von (R)-2-Hydroxyglutaryl-CoA zu (E)-Glutaconyl-CoA. Diese Dehydratisierung ist seit Jahren von großem mechanistischem Interesse, da ein nicht azides Proton (pKs = 40) am C-3 des (R)-2-Hydroxyglutaryl-CoA abstrahiert werden muss. In der vorliegenden Arbeit wurden biochemische und spektroskopische Untersuchungen dieses Enzymsystems bzw. Katalysemechanismuses durchgeführt, um weitere Einblicke in Reaktion und Elektronenfluss zu erhalten. Die Reinigungsmethoden für Komponente D aus Clostridium symbiosum wurden weiter verbessert und erneute Charakterisierungen der Kofaktoren durchgeführt. Trotz Hinweise auf eine Beteiligung eines d1-Metalls am Katalysemachanismus konnten nur Spuren (10 %) von Molybdän in Komponente D als auch ein nicht weiter identifizierter Molybdänkofaktor nachgewiesen werden. Durch die Einführung einer neuen Aktivitätsbestimmung der Komponente D konnte durch nicht-äquimolare Mischungen aus Komponente A und Komponente D der Beweis erbracht werden, dass nur substöchiometrische Mengen an Komponente A zur maximalen Aktivität gebraucht werden. Somit konnte gezeigt werden, dass es sich bei dem postulierten Mechanismus tatsächlich um einen katalytischen Mechanismus handelt. Durch die Bildung eines AlF4--induzierten Komplexes der Komponenten A und D in Anwesenheit von ATP konnte die Interaktion und den durch ATP-Hydrolyse getriebenen Elektronentransfer von Komponente A nach Komponente D gezeigt werden. Die bisher in der Komponente D gefundenen Kofaktoren ([4Fe-4S]2+Cluster und FMNH2) zeigen keine Änderungen ihrer Redoxzustände in Anwesenheit von Komponente A und ATP. Durch die erfolgreiche Kristallisation sowohl von Komponente D als auch von AlF4--induziertem Komplex der Komponenten A und D könnten nähere Informationen über Lage und Koordination der Kofaktoren zum aktiven Zentrum geben. Durch die Lösung der 3D-Struktur der b-Untereinheit der Komponente D konnte ein ungewöhnlicher [4Fe-4S]Cluster erkannt werden, der durch 3 Cysteine (Cys 74, 101 und 332) und 1 Tyrosin (Tyr 37) koordiniert ist. An dieser Koordination sind die drei strikt konservierten Cys-Reste der hgdB-Sequenz beteiligt. Der Tyr-Rest ist hingegen nicht konserviert und wird als Parkplatz des am postulierten Katalysemechanismus beteiligten Ketylradikals diskutiert.